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Abstract. Let K be a field and suppose that G is a finite group that acts faithfully
on K(x1, . . . , xm) by automorphisms of the form g(xi) = ai(g)xi + bi(g), where
ai(g), bi(g) ∈ K(x1, . . . , xi−1) for all g ∈ G and all i = 1, . . . ,m. As shown by
Miyata, the fixed field K(x1, . . . , xm)G is purely transcendental over K and admits
a transcendence basis {φ1, . . . , φm}, where φi is in K(x1, . . . , xi−1)[xi]

G and has
minimal positive degree di in xi. We determine exactly the degree di of each invariant
φi as a polynomial in xi and show the relation d1 · · · dm = |G|. As an application, we
compute a generic polynomial for the dihedral group D8 of order 16 in characteristic
2.
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1 Introduction

Let K be a field and G be a subgroup of the symmetric group Sn. The group G acts naturally
by permutation of the indeterminates on the field of rational functions K(x1, x2, . . . , xn).
E. Noether asked in 1971 [9] whether the field of invariants K(x1, x2, . . . , xn)G is purely
transcendental over K, that is, whether it can be generated over K by exactly n invariant
functions ξ1, ξ2, . . . , ξn. If G is the full symmetric group Sn, it is a classical theorem that
K(x1, . . . , xn)G is generated by the n elementary symmetric polynomials. Noether noted
that if Q(x1, . . . , xn)G is purely transcendental, then G is realizable as a Galois group over
Q by the Hilbert Irreducibility Theorem. It is still an open question whether every finite
group is a Galois group over Q.

Noether’s question turned out to be very difficult, even for “easy” groups. The first coun-
terexample was given by Swan [10] for G = C47, the cyclic group of order 47. More recently,
Lenstra [7] settled the question for all abelian groups over Q. He showed in particular that
Q(x1, x2, . . . , x8)

C8 is not purely transcendental.
We can consider more generally a finite matrix subgroup G ⊂ GLn(K) acting linearly in

the indeterminants of K(x1, x2, . . . , xn) and ask whether K(x1, x2, . . . , xn)G is purely tran-
scendental. This is known as the Linear Noether Problem. If G acts linearly on K(x1, . . . , xn)
and K(x1, . . . , xn)G is purely transcendental over K, then, as described by Kemper [5], there
exists a generic polynomial that parameterizes all Galois extensions with Galois group G.
We will explore this connection in the last section with an statement of Kemper’s result and
an example.

Kuniyoshi [6] proved that if G is a p−group acting on K(x1, . . . , x|G|) by the regular
representation and K has characteristic p, then KG is purely transcendental over K, and
Gaschütz generalized this result to arbitrary representations [2]. Miyata generalized this to
triangular automorphisms acting on a field of arbitrary characteristic and possibly infinite
order [8].

Our starting point is a result if Miyata [8, Lemma 1]. We give below a slightly reformu-
lated statement. In particular, we will only need the result for G of finite order.

Proposition 1.1 (Miyata). Let L be a field and let G be a finite group of automorphisms of
L(x) such that G preserves L and g(x) = a(g)x + b(g), where a(g), b(g) ∈ L for all g ∈ G.
Then for any invariant φ ∈ L[x] of minimal positive degree in x, L(x)G = LG(φ).

This result implies in particular that if G is a group of m ×m upper triangular matri-
ces acting linearly on K(x1, . . . , xm), then K(x1, . . . , xm)G is purely transcendental over
K. To see this, we let L = K(x1, . . . , xm−1) and x = xm in Proposition 1.1. Then
for any polynomial φm ∈ K(x1, . . . , xm−1)[xm] of minimal positive degree in xm we have
K(x1, . . . , xm)G = K(x1, . . . , xm−1)

G(φm). We start over with K(x1, . . . , xm−1) to find φm−1
and so on. Constructing one invariant at a time according to this process, we get a tran-
scendence basis φ1, . . . , φm for K(x1, . . . , xm)G.

Our main result (Proposition 3.1 and Corollary 3.5) is the exact determination for all i of
the minimal positive degree di in the variable xi occurring in the subring (K(x1, . . . , xi−1)[xi])

G.
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It follows from the above procedure that any set of invariants {φ1, . . . , φm}, with φi ∈
K(x1, . . . , xi−1)[xi] of degree di in xi, is a transcendence basis for K(x1, . . . , xm)G.

Although Proposition 3.1 can be deduced from the work of Hajja and Kang [3, Theorem
1], our proof is more elementary in that it requires nothing beyond the formula [E : EG] = |G|
for a finite group G acting faithfully on a field E. We present some corollaries to this result
and give an application to finding a generic polynomial for the dihedral group D8 of order
16 in characteristic 2.

In Section 2, we recall some necessary background and present some conditions that are
equivalent to the hypotheses given in Proposition 1.1. We present our main result and proof
in Section 3 and an example of its application to the construction of generic polynomials in
Section 4.

2 Preliminaries

2.1 Definitions

If L is a field containing K, then we say that L is an extension of the field K, denoted
L/K. We define x1, x2, . . . , xn ∈ L to be algebraically independent over K if they do not
satisfy a nontrivial polynomial equation with coefficients in K. The set {x1, . . . , xn} ⊂ L
is a transcendence basis for the extension L/K if K(x1, . . . , xn) = L and x1, . . . , xn are
algebraically independent. Recall that we can view L as a vector space over K. We let
[L : K] be the dimension of this vector space.

A automorphism of a field K is a bijection φ : K → K such that φ(k1 + k2) = φ(k1) +
φ(k2) and φ(k1k2) = φ(k1)φ(k2). We denote the automorphisms of K as Aut(K). The
automorphisms Aut(K) form a group, where multiplication is composition of automorphisms.
Also, given a field extension L/K, we denote Aut(L/K) as the subgroup of Aut(L) that act
as the identity when restricted to K.

If L/K is a field extension, then in general |Aut(L/K)| ≤ [L : K]. If equality holds, then
we say the extension is Galois and Aut(L/K) is the Galois group Gal(L/K). Given a field
K and a polynomial f with coefficients in K, we call L a splitting field for f if f factors
completely into linear factors in L[x] but not over any proper subfield of L containing K.
The polynomial f is called separable if it has no repeated roots in its splitting field. A field
extension L/K is Galois if and only if it is the splitting field of a separable polynomial over
K, see for example Theorem 13, Section 14.2 [1]. The Galois group of a separable polynomial
over K is the Galois group of its splitting field over K.

Given a group G of automorphisms of a field L, we define the fixed field LG of L under
the action of G to be {α ∈ L : g(α) = α ∀g ∈ G}. Given a subfield K ⊂ L, we say that G
preserves K if g(k) ∈ K for all k ∈ K.

2.2 Equivalent Conditions for Proposition 1.1

We begin by giving conditions equivalent to the condition in Proposition 1.1.
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Proposition 2.1. Let L be a field and suppose that G is a finite group of automorphisms of
L(x) that preserves L. Then, the following conditions are equivalent.

1. G preserves the polynomial ring L[x].

2. Frac(L[x]G) = L(x)G and LG $ L(x)G.

3. LG $ L[x]G.

4. g(x) = a(g)x+ b(g) for all g ∈ G,where a(g), b(g) ∈ L.

5. L[x]G = LG[φ], where φ has positive degree in x. In particular, φ needs to be of minimal
degree in x for this to hold.

Proof. We prove the implications (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1) and (4) =⇒ (5)
=⇒ (3).

(1) =⇒ (2). The polynomial
∏

g∈G g(x) has positive degree and is invariant so it is

in L(x)G \ LG. It remains to show that Frac(L[x]G) = L(x)G. Let A/B ∈ L(x)G, with
A,B ∈ L[x] . Let B′ =

∏
g∈G g(B) and let A′ = A

∏
g∈G\{1} g(B). Clearly B′ is in L[x]G,

and so is A′ since A′ = (A/B)B′. It follows that A/B = A′/B′ is in Frac(L[x]G).

(2) =⇒ (3). The ring L[x]G contains polynomials of positive degree, otherwise its fraction
field would be LG, contrary to the hypothesis.

(3) =⇒ (4). Let φ = c0 +c1x+ · · ·+cdx
d, where c0, . . . , cd ∈ L, be a G-invariant polynomial

of positive degree d and let g ∈ G. Since g is an automorphism of L(x), the element g(x)
generates L(x) over L, so it is of the form g(x) = ax+b

cx+d
with a, b, c, d ∈ L. By the invariance

of φ we have

c0 + c1x+ · · ·+ cdx
d = g(c0) + g(c1)

ax+ b

cx+ d
+ · · ·+ g(cd)

(
ax+ b

cx+ d

)d

,

and clearing denominators we get

(c0+c1x+ · · ·+cdxd)(cx+d)d = g(c0)(cx+d)d+g(c1)(cx+d)d−1(ax+b)+ · · ·+g(cd)(ax+b)d.

Since the degrees on both sides of the equality above must match, we have c = 0, and hence
(4) is true.

(4) =⇒ (1). Obvious.

(4) =⇒ (5). Let φ in L[x]G be of minimal positive degree and let p ∈ L[x]G. Following
Miyata [8], we apply Euclidean division to write p = mφ+ r, with deg(r) < deg(φ). Since p
and φ are invariants, applying g ∈ G yields p = g(m)φ + g(r) and by the uniqueness of the
quotient and the remainder in the Euclidean algorithm we conclude g(m) = m and g(r) = r,
that is m and r are G-invariant.
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By the minimality of the degree of φ, the remainder r must be constant in x, that is
r ∈ LG. If the quotient m is not constant in x, we can repeat this process on m. Eventually,
we see that we can express p as a polynomial in φ.

(5) =⇒ (3). Clearly φ is in L[x]G but not in LG, so (3) is satisfied.

Remark. We note that if any of the equivalent conditions in Proposition 2.1 is satisfied, then
L(x)G = Frac(L[x]G) = Frac(LG[φ]) = LG(φ). Thus Proposition 2.1 implies immediately
Proposition 1.1.

3 The degree of the invariant φ ∈ L[x]G

Unless otherwise mentioned, we will assume in this section that G acts on L(x) faithfully
by automorphisms, where G preserves L and g(x) = a(g)x + b(g) with a(g), b(g) ∈ L.
Throughout this section, we shall denote by H the subgroup of G that fixes L. In other
words, H contains all the elements of G that act as the identity when restricted to L.

Proposition 3.1. If G is finite, then the minimal positive degree occurring in L[x]G is equal
to |H|.

Proof. The proof will follow immediately from Lemmas 3.2 and 3.3 below.

For the result below, we do not assume that G is finite.

Lemma 3.2. If φ ∈ L[x]G is of positive degree in x, then the degree of φ in x is at least |H|.
Also, if H is infinite, then there does not exist φ ∈ L[x]G of positive degree in x.

Proof. Let φ = a0 + a1x+ · · ·+ adx
d be a polynomial of positive degree in L[x]G. Consider

the polynomial P ∈ L(x)[Y ] that is formed by substituting Y in φ for x, so that P =
a0 + a1Y + · · · + adY

d. Note that even though P is an element of L(x)[Y ], none of its
coefficients has the variable x. Also, the degree of P in Y is equal to the degree of φ in x.

Consider P − φ as a polynomial in Y . Since the coefficients ai are H-invariant, the
polynomial P − φ vanishes when we substitute Y = h(x) for all h ∈ H, so P − φ is divisible
by Y − h(x) in L(x)[Y ]. Therefore, if H is finite, the polynomial∏

h∈H

(Y − h(x))

divides P−φ, and therefore φ has degree at least |H|. If H is infinite, then P−φ has infinitely
many roots, which means P − φ = 0. This can only happen if degx(φ) = degY (P ) = 0.

We next see that when G is finite, this lower bound is tight.

Lemma 3.3. If G is finite, then the minimal positive degree occurring in L[x]G is at most
|H|.
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Proof. Note that H is normal in G, so the quotient group G/H is defined. The action of G
on L induces faithful action of G/H on L so we have the equality [L : LG] = [G : H]. Let B
be a basis B for L as a vector space over LG. Note that B has cardinality [G : H].

Let φ ∈ L[x]G be a polynomial of minimal positive degree and let d = deg(φ). Let
Bxi be the set obtained by multiplying every element in B by xi. We claim that the set
B ∪ Bx ∪ · · · ∪ Bxd−1 is linearly independent over L(x)G. Indeed, suppose that we have a
linear combination ∑

i

aibi = 0, (1)

where ai ∈ L(x)G and bi ∈ B ∪ Bx ∪ · · · ∪ Bxd−1 are distinct elements. By Proposition
1.1, we can view the ai as rational functions in φ with coefficients in LG. Clearing out the
denominators in (1) we can assume without loss of generality that the ai are polynomials in
φ with coefficients in LG. Write ai =

∑
j αijφ

j with αij ∈ LG. We express (1) in the form

c0 + c1φ+ · · ·+ clφ
l = 0, (2)

where ck =
∑

i αikbi.
If cl 6= 0, then the degree in x of clφ

l is at least dl. No other term can cancel out a
power of x with this degree as the maximal degree of cjφ

j in x is dj + (d− 1) < dl for j < l.
Therefore, cl = 0. Similarly, cl−1 = cl−2 = · · · = c0 = 0.

Since x is transcendental over L and B is linearly independent over LG, the set B∪Bx∪
· · ·∪Bxd−1 is linearly independent over LG. Thus αik = 0 for all i, k, which proves the claim.

Therefore, we have found [G : H]d elements in L(x) that are linearly independent over
L(x)G = LG(φ). Since [L(x) : L(x)G] = |G|, we have [G : H]d ≤ |G|. Hence d ≤ |H| as
desired.

Corollary 3.4. Suppose G is finite. Let φ ∈ L[x]G of minimal positive degree in x. Then,
φ is expressible in the form

φ = a

(∏
g∈H

g(x)

)
+ b,

where a, b ∈ L.

Proof. Let P be the polynomial defined in the proof of Lemma 3.2. We know that P − φ is
divisible by ∏

g∈H

(Y − g(x)).

Since P − φ has degree |H| in Y from Lemma 3.3,

P − φ = a
∏
g∈H

(Y − g(x))

for some a ∈ L. We set Y = 0 on both sides to get

b− φ = a
∏
g∈H

(−g(x)),
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where b = P (0) is the constant term of P . Replacing a by (−1)|H|a, we get the announced
expression.

Corollary 3.5. Let G be a finite group of m×m upper triangular matrices with coefficients
in K. We let G act on K(x1, . . . , xm) by g(xi) =

∑m
i=1 aijxj for g = (aij) ∈ G. Let di be

the minimal positive degree in the variable xi occurring in the subring (K(x1, . . . , xi−1)[xi])
G.

Let Hi be the subgroup of G that fixes {x1, . . . , xi}. Then di = [Hi−1 : Hi].

Proof. Let L = K(x1, . . . , xi−1). Then G/Hi acts faithfully on L(xi) The subgroup of G/Hi

that fixes L is Hi−1/Hi, so by Proposition 3.1 we have di = [Hi−1 : Hi].

Corollary 3.6. (With the same hypotheses and notation of Corollary 3.5.) The degrees di
satisfy d1d2 · · · dm = |G|.
Proof. Using Corollary 3.5 we have

d1d2 · · · dm =
|H0|
|H1|
|H1|
|H2|

· · · |Hm−1|
|Hm|

= |G|.

4 Generic polynomial for D8 in characteristic 2

Here, we present an application of the previous section to the problem of constructing generic
polynomials, which parametrize all field extensions containing a base field K with a given
Galois group G. For the general theory of generic polynomials, see [4].

Definition. LetK be a field and letG be a finite group. A separable polynomial g(t1, . . . , tm, X) ∈
K(t1, . . . , tm)[X] with coefficients in the rational function field K(t1, . . . , tm) is generic for
G over K if

1. The Galois group of g as a polynomial in X is G.

2. If L is a field containing K and N/L is a Galois extension with Galois group G, then
there exist λ1, . . . , λm ∈ L such that N is the splitting field of g(λ1, . . . , λm, X) over L.

Our main tool to compute generic polynomials is a theorem of Kemper [5, Theorem 7]
that we restate below.

Theorem 4.1 (Kemper). Let G be a finite group and let V be a m-dimensional faithful
linear representation of G over the field K. Assume that K(V )G is purely transcendental
over K with transcendence basis {φ1, . . . , φm}. Let M ⊂ K(V ) be a finite, G-stable subset
that generates K(V ) over K(V )G = K(φ1, . . . , φm). Let

f(X) =
∏
y∈M

(X − y) ∈ K(V )G[X],

so f(X) = g(φ1, . . . , φm, X) with g ∈ K(φ1, . . . , φm)[X]. Then g(X) is a generic polynomial
for G over K.
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It is a standard fact that a finite p-group G can be realized as a group of triangular
unipotent matrices over a field of characteristic p. This can be seen, for instance, by taking
a composition series of a faithful linear representation of G over Fp.

We compute a generic polynomial for the dihedral group D8 of order 16. Recall that this
group is given by the presentation

D8 =
〈
a, x|a8 = x2 = 1, xax−1 = a−1.

〉
Using MAGMA, we find a 5-dimensional faithful representation of D8 over F2 given by

a =


1 1 0 0 0
0 1 1 0 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

 , x =


1 1 0 0 1
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 .
MAGMA also provides a fundamental set of invariants {t1, . . . t5} forD8 acting on F2[x1, . . . , x5]
via the matrices above.

t1 = x1

t2 = x2(x2 + x1)

t3 = x3(x3 + x1)(x3 + x2)(x3 + x2 + x1)

t4 = x1x4 + x1x3 + x2x3 + x23
t5 = x2(x2 + x1)(x5)(x5 + x1) + x22x

2
3 + x21x3x4 + x1x

2
3x4 + x1x3x

2
4 + x23x

2
4 + x44.

As we will see below, these invariants form actually a transcendence basis for F2(x1, . . . , x5)
D8 .

Indeed, let di be the degree of ti in xi. From the expressions above, d1 = 1, d2 = 2, d3 = 4,
d4 = 1, and d5 = 2. Hence d1d2d3d4d5 = 16 = |D8|. It follows that the di are minimal by
Corollary 3.6, so {t1, . . . , t5} is a transcendence basis for the field of invariants. Notice that
each invariant is expressed in the form described in Corollary 3.4.

Let M be the orbit of x5, explicitly M = {x5, x2 + x4 + x5, x2 + x3 + x5, x2 + x3 + x4 +
x5, x1 + x5, x1 + x2 + x4 + x5, x1 + x2 + x3 + x5, x1 + x2 + x3 + x4 + x5}. The set M is
D8-stable by construction and it is easy to see that it spans the same vector space over F2

as {x1, . . . , x5}, so it generates F2(x1, . . . , x5) over F2. Thus M satisfies the hypothesis of
Theorem 4.1.

In order to find a generic polynomial, we need to express the coefficients of∏
y∈M

(X − y)

in terms of t1, . . . , t5. We explain below an algorithmic procedure to do this.
Let A/B ∈ F2(x1, . . . , x5)

G, where A and B are relatively prime polynomials in x5. Then
g(A) = χ(g)A and g(B) = χ(g)B, where χ(g) ∈ F2(x1, . . . , x4)

∗. Since in our case G is a
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group of unipotent matrices, the leading coefficient of A and B must be preserved, which
means χ(g) = 1 for all g ∈ G, so A and B are actually invariant. Furthermore, by Proposition
1.1, we have F2(x1, . . . , x4)[x5]

G = F2(x1, . . . , x4)
G[t5]. We apply to A and B the procedure

based on the Euclidean algorithm described in the proof of Proposition 2.1 (part (4) =⇒ (5))
to express A and B as a polynomials in t5 with coefficients that are rational functions in
x1, . . . , x4 fixed by G. We apply the same procedure to the numerator and denominator
of each of these coefficients to express them as a polynomials in t4 with coefficients that
are rational functions in x1, . . . , x3. Continuing this process will eventually result in A/B
expressed as a rational function in t1, . . . , t5. This process was implemented in Mathematica.
We obtain this way the following D8-generic polynomial over F2:

1

t161 t
4
2

(t161 t
4
2t

2
3 + t141 t

5
2t

2
3 + t141 t

3
2t

3
3 + t121 t

4
2t

3
3 + t161 t

4
3 + t81t

4
2t

4
3 + t81t

2
2t

5
3 + t81t

6
3 + t83 + t161 t

5
2t3t4 + t161 t

3
2t

2
3t4 +

t141 t
5
2t3t

2
4+t161 t

2
2t

2
3t

2
4+t121 t

2
2t

3
3t

2
4+t81t

2
2t

4
3t

2
4+t161 t

3
2t3t

3
4+t121 t

6
2t

4
4+t141 t

3
2t3t

4
4+t161 t

2
3t

4
4+t121 t

4
2t

6
4+t121 t

2
2t3t

6
4+

t81t
2
2t3t

8
4 + t81t

2
3t

8
4 + t81t

2
2t

10
4 + t164 + t161 t

6
2t5 + t161 t

2
2t

2
3t5 + t141 t

3
2t

2
3t5 + t121 t

2
2t

3
3t5 + t81t

2
2t

4
3t5 + t161 t

3
2t3t4t5 +

t161 t
4
2t

2
4t5+t161 t

2
2t3t

2
4t5+t141 t

3
2t3t

2
4t5+t121 t

4
2t

4
4t5+t121 t

2
2t3t

4
4t5+t81t

2
2t

8
4t5+t161 t

4
2t

2
5+t161 t

2
2t

2
4t

2
5+t161 t

2
2t

3
5+

t161 t
4
5)+

1

t71t2
(t81t

4
2+t81t

2
3+t61t2t

2
3+t41t

3
3+t43+t81t2t3t4+t81t

2
2t

2
4+t81t3t

2
4+t61t2t3t

2
4+t41t

2
2t

4
4+t41t3t

4
4+t84+

t81t
2
5)X+

1

t81t2
(t101 t

3
2 + t81t

4
2 + t81t

2
3 + t61t2t

2
3 + t41t

3
3 + t43 + t81t2t3t4 + t101 t2t

2
4 + t81t

2
2t

2
4 + t81t3t

2
4 + t61t2t3t

2
4 +

t41t
2
2t

4
4+t41t3t

4
4+t84+t101 t2t5+t81t

2
5)X

2+t31t2X
3+(t41+t21t2+t22+t24+t5)X

4+t1t2X
5+t2X

6+X8.

5 Conclusion

To summarize, given a finite group G acting on L(x) such that G preserves L and g(x) =
a(g)x+b(g) for all g ∈ G, L[x]G = LG[φ] for any φ of minimal degree in L[x]G. Using elemen-
tary methods, we were able to determine much more about the invariant φ, as summarized
in Corollary 3.4. If G is a finite group of upper triangular matrices acting on K(x1, . . . , xm)
linearly on the indeterminants, our results can be applied to test whether a set of invari-
ants φ1, . . . , φm with φi ∈ K(x1, . . . , xi)∩K(x1, . . . , xm)G generates all of K(x1, . . . , xm)G by
looking at the degrees of φ1, . . . , φm. This has applications to the computations of generic
polynomials, as seen in section 4.

The methods of this paper are specific to triangular groups. We do not expect them to be
generalizable to other classes of groups. The Noether Problem and the explicit determination
of transcendence bases is still widely open in general.
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