Rose-Hulman Undergraduate Mathematics Journal

Volume 12
Issue 2

On the Degree-Chromatic Polynomial of a Tree

Diego Cifuentes
Universidad de los Andes, Bogota, Colombia, df.cifuentes30@uniandes.edu.co

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation

Cifuentes, Diego (2011) "On the Degree-Chromatic Polynomial of a Tree," Rose-Hulman Undergraduate Mathematics Journal: Vol. 12 : Iss. 2 , Article 5.
Available at: https://scholar.rose-hulman.edu/rhumj/vol12/iss2/5

Rose-
 Hulman
 Undergraduate Mathematics Journal

Sponsored by

Rose-Hulman Institute of Technology
Department of Mathematics
Terre Haute, IN 47803
Email: mathjournal@rose-hulman.edu http://www.rose-hulman.edu/mathjournal

On the Degree-Chromatic Polynomial of a Tree

Diego Cifuentes ${ }^{\text {a }}$

Volume 12, No. 2, Fall 2011
${ }^{\text {a }}$ Universidad de los Andes, Bogota, Colombia,

Rose-Hulman Undergraduate Mathematics Journal
 Volume 12, No. 2, Fall 2011

On the Degree-Chromatic Polynomial of A Tree

Diego Cifuentes

Abstract

The degree chromatic polynomial $P_{m}(G, k)$ of a graph G counts the number of k-colorings in which no vertex has m adjacent vertices of its same color. We prove Humpert and Martin's conjecture on the leading terms of the degree chromatic polynomial of a tree.

[^0]
1 Introduction

George David Birkhoff defined the chromatic polynomial of a graph to attack the renowned four color problem. The chromatic polynomial $P(G, k)$ counts the k-colorings of a graph G in which no two adjacent vertices have the same color [3].

Given a graph G, Humpert and Martin defined its m-chromatic polynomial $P_{m}(G, k)$ to be the number of k-colorings of G such that no vertex has m adjacent vertices of its same color. They proved this is indeed a polynomial. When $m=1$, we recover the usual chromatic polynomial of the graph $P(G, k)$.

The chromatic polynomial is of the form

$$
P(G, k)=k^{n}-e k^{n-1}+o\left(k^{n-1}\right)
$$

where n is the number of vertices and e the number of edges of G. For $m>1$ the formula is no longer true, but Humpert and Martin conjectured the following formula when the graph is a tree T :

$$
\begin{equation*}
P_{m}(T, k)=k^{n}-\sum_{v \in V(T)}\binom{d(v)}{m} k^{n-m}+o\left(k^{n-m}\right) \tag{1}
\end{equation*}
$$

where $d(v)$ is the degree of v. Note that (1) is not true for $m=1$-we will see why in the course of proving Theorem 1.

The goal of this paper is to prove this conjecture in Theorem 1. In section 2 we discuss the basic concepts required to understand the theorem, while in section 3 we provide the proof.

2 Background

A finite graph G is an ordered pair (V, E), where V is a finite set of vertices and E is a set of edges, which are 2-element subsets of V.

Figure 1 shows the graphic representation of graph.

Figure 1: Graphic representation of a graph with $V=\{1,2,3,4,5\}$ and $E=$ $\{\{1,2\},\{2,3\},\{3,4\},\{3,5\}\}$.

We now present some basic definitions of graph theory.

Definition 1. The degree of a vertex v is the number of edges which contain v, and is denoted as $d(v)$. Two vertices $p, q \in V$ are said to be adjacent if the pair $\{p, q\} \in E$. A path is a sequence of vertices $v_{0}, v_{1}, \ldots, v_{k}$ where v_{i} is adjacent to v_{i+1} for $0 \leq i \leq k-1$. A cycle is a path v_{0}, \ldots, v_{k} with $v_{0}=v_{k}$. A graph is connected if for any pair of vertices there exists a path containing both of them. A tree is a connected graph with no cycles.

It is easy to see that the graph in Figure 1 is actually a tree.
A coloring of a graph is an assignment of colors to each of its vertices. If σ is a coloring, we denote by $\sigma(v)$ the color assigned to the vertex v. A k-coloring is one in which $\sigma(v) \in$ $\{1,2, \ldots, k\}$ for all v, i.e. we may use at most k different colors. A graph with n vertices clearly has k^{n} different k-colorings, as each of its n vertices has k possible choices for its color.

A coloring is called proper if there is no edge connecting any two identically colored vertices. Figure 2 shows all of these colorings with $k=3$ for a 3 -vertex tree.

Figure 2: Proper 3-colorings of a tree with 3 vertices.
The chromatic polynomial of a graph $P(G, k)$ counts the proper k-colorings of G. It is well-known to be a monic polynomial in k of degree n, the number of vertices.

Example 1. The chromatic polynomial of a tree T with n vertices is $P(T, k)=k(k-1)^{n-1}$. To prove this, fix an initial vertex v_{0}. There are k possible choices for its color $\sigma\left(v_{0}\right)$. Then, consider a vertex v_{1} adjacent to v_{0}. There are $k-1$ ways to choose $\sigma\left(v_{1}\right)$, as it has to be different from $\sigma\left(v_{0}\right)$. Now, consider a vertex v_{2} adjacent to v_{0} or to v_{1}. Notice it cannot be adjacent to both of them, or there would be cycle. Thus, there are also $k-1$ possible choices for $\sigma\left(v_{2}\right)$. If we repeat this algorithm, we will always have a vertex adjacent to exactly one of the previously colored vertices, so it can be colored in $k-1$ ways. The result follows after repeating this procedure $n-1$ times.

3 Results

Now, we prove the conjecture stated by Humpert and Martin.
Theorem 1 ([1, 2], Conjecture). Let T be a tree with n vertices and let m be an integer with $1<m<n$. Then the equation (1) holds, where $P_{m}(G, k)$ counts the number of k-colorings of T in which no vertex has m adjacent vertices of its same color.

Proof. For a given coloring of T, say vertices v_{1} and v_{2} are "friends" if they are adjacent and have the same color. For each v, let A_{v} be the set of colorings such that v has at least m friends. We want to find the number of colorings which are not in any A_{v}, and we will use the inclusion-exclusion principle. As the total number of k-colorings is k^{n}, we have

$$
P_{m}(T, k)=k^{n}-\sum_{v \in V}\left|A_{v}\right|+\sum_{v_{1}, v_{2} \in V}\left|A_{v_{1}} \cap A_{v_{2}}\right|-\ldots
$$

We first show that $\left|A_{v}\right|=\binom{d(v)}{m} k^{n-m}+o\left(k^{n-m}\right)$. Let $A_{v}^{(l)}$ be the set of k-colorings such that v has exactly l friends. In order to obtain a coloring in $A_{v}^{(l)}$, we may choose the l friends in $\binom{d(v)}{l}$ ways, the color of v and its friends in k ways, the color of the remaining adjacent vertices to v in $(k-1)^{d(v)-l}$ ways, and the color of the rest of the vertices in $k^{n-1-d(v)}$ ways. Then

$$
\begin{aligned}
\left|A_{v}\right|=\sum_{l=m}^{n-1}\left|A_{v}^{(l)}\right| & =\sum_{l=m}^{n-1}\binom{d(v)}{l} k^{n-d(v)}(k-1)^{d(v)-l} \\
& =\binom{d(v)}{m} k^{n-m}+o\left(k^{n-m}\right) .
\end{aligned}
$$

To complete the proof, it is sufficient to see that for any set S of at least 2 vertices $\left|\bigcap_{v \in S} A_{v}\right|=o\left(k^{n-m}\right)$; clearly we may assume $S=\left\{v_{1}, v_{2}\right\}$. Consider the following cases: Case 1 (v_{1} and v_{2} are not adjacent). Split $A_{v_{1}}$ into equivalence classes with the equivalence relation

$$
\sigma_{1} \sim \sigma_{2} \Leftrightarrow \sigma_{1}(w)=\sigma_{2}(w) \text { for all } w \neq v_{2}
$$

Note that each equivalence class C consists of k colorings, which only differ in the color of v_{2}. In addition, for each C at most $\frac{d\left(v_{2}\right)}{m}$ of its colorings are in $A_{v_{2}}$, as if $\sigma \in A_{v_{2}}$ there must be m vertices adjacent to v_{2} with the color $\sigma\left(v_{2}\right)$. Therefore

$$
\left|A_{v_{1}} \cap A_{v_{2}}\right|=\sum_{C}\left|C \cap A_{v_{2}}\right| \leq \sum_{C} \frac{d\left(v_{2}\right)}{m}=\frac{\left|A_{v_{1}}\right|}{k} \cdot \frac{d\left(v_{2}\right)}{m} .
$$

It follows that $\frac{\left|A_{v_{1}} \cap A_{v_{2}}\right|}{\left|A_{v_{1}}\right|}$ goes to 0 as k goes to infinity, so $\left|A_{v_{1}} \cap A_{v_{2}}\right|=o\left(k^{n-m}\right)$.
Case 2 (v_{1} and v_{2} are adjacent). Let W be the set of adjacent vertices to v_{2} other than v_{1}. They are not adjacent to v_{1} as T has no cycles. Split $A_{v_{1}}$ into equivalence classes with the equivalence relation

$$
\sigma_{1} \sim \sigma_{2} \Leftrightarrow \sigma_{1}(w)=\sigma_{2}(w) \text { for all } w \notin W \text {. }
$$

Each equivalence class C consists of $k^{|W|}$ colorings, which may only differ in the colors of the vertices in W. If v_{1} and v_{2} are friends in the colorings of C, then a coloring in $\left|C \cap A_{v_{2}}\right|$ must contain at least $m-1$ vertices in W of the same color as v_{2}. Therefore

$$
\left|C \cap A_{v_{2}}\right|=\sum_{l=m-1}^{|W|}\binom{|W|}{l}(k-1)^{|W|-l}<\sum_{l=0}^{|W|}\binom{|W|}{l} k^{|W|-1}=2^{|W|} k^{|W|-1} .
$$

Notice that here we are using $m \geq 2$ so that $l \geq 1$. Otherwise, if v_{1} and v_{2} are not friends in the colorings of C, then

$$
\left|C \cap A_{v_{2}}\right|=\sum_{l=m}^{|W|}\binom{|W|}{l}(k-1)^{|W|-l}<\sum_{l=0}^{|W|}\binom{|W|}{l} k^{|W|-1}=2^{|W|} k^{|W|-1}
$$

Therefore

$$
\begin{aligned}
\left|A_{v_{1}} \cap A_{v_{2}}\right|=\sum_{C}\left|C \cap A_{v_{2}}\right| & <\sum_{C} 2^{|W|} k^{|W|-1} \\
& =\frac{\left|A_{v_{1}}\right|}{k^{|W|}} \cdot 2^{|W|} k^{|W|-1}=\frac{\left|A_{v_{1}}\right| \cdot 2^{|W|}}{k}
\end{aligned}
$$

and $\left|A_{v_{1}} \cap A_{v_{2}}\right|=o\left(k^{n-m}\right)$ follows as in the first case.
This completes the proof of the theorem.

4 Conclusions

In conclusion, the degree-chromatic polynomial is a natural generalization of the usual chromatic polynomial, and it has a very particular structure when the graph is a tree. The leading terms of the chromatic polynomial are determined by the number of edges. Likewise, when $m \geq 2$, the leading coefficients of the degree chromatic polynomial $P_{m}(G)$ can be described easily in terms of G, but now they depend on the degree of the vertices of G.

References

[1] B. Humpert and J. L Martin, The incidence Hopf algebra of graphs, Preprint arXiv:1012.4786 (2010).
[2] , The incidence Hopf algebra of graphs, DMTCS Proceedings 0 (2011), no. 01.
[3] R. C Read, An introduction to chromatic polynomials, Journal of Combinatorial Theory 4 (1968), no. 1, 52-71.

[^0]: Acknowledgements: I would like to thank Federico Ardila for bringing this problem to my attention, and for helping me improve the presentation of this note. I would also like to acknowledge the support of the SFSU-Colombia Combinatorics Initiative.

