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Tree

Diego Cifuentes

Abstract. The degree chromatic polynomial Pm(G, k) of a graph G counts the
number of k-colorings in which no vertex has m adjacent vertices of its same color.
We prove Humpert and Martin’s conjecture on the leading terms of the degree
chromatic polynomial of a tree.
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1 Introduction

George David Birkhoff defined the chromatic polynomial of a graph to attack the renowned
four color problem. The chromatic polynomial P (G, k) counts the k-colorings of a graph G
in which no two adjacent vertices have the same color [3].

Given a graph G, Humpert and Martin defined its m-chromatic polynomial Pm(G, k) to
be the number of k-colorings of G such that no vertex has m adjacent vertices of its same
color. They proved this is indeed a polynomial. When m = 1, we recover the usual chromatic
polynomial of the graph P (G, k).

The chromatic polynomial is of the form

P (G, k) = kn − ekn−1 + o(kn−1)

where n is the number of vertices and e the number of edges of G. For m > 1 the formula is
no longer true, but Humpert and Martin conjectured the following formula when the graph
is a tree T :

Pm(T, k) = kn −
∑

v∈V (T )

(
d(v)

m

)
kn−m + o(kn−m) (1)

where d(v) is the degree of v. Note that (1) is not true for m = 1 —we will see why in the
course of proving Theorem 1.

The goal of this paper is to prove this conjecture in Theorem 1. In section 2 we discuss
the basic concepts required to understand the theorem, while in section 3 we provide the
proof.

2 Background

A finite graph G is an ordered pair (V,E), where V is a finite set of vertices and E is a set
of edges, which are 2-element subsets of V .

Figure 1 shows the graphic representation of graph.

1 2 3

5

4

Figure 1: Graphic representation of a graph with V = {1, 2, 3, 4, 5} and E =
{{1, 2}, {2, 3}, {3, 4}, {3, 5}}.

We now present some basic definitions of graph theory.
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Definition 1. The degree of a vertex v is the number of edges which contain v, and is
denoted as d(v). Two vertices p, q ∈ V are said to be adjacent if the pair {p, q} ∈ E. A path
is a sequence of vertices v0, v1, . . . , vk where vi is adjacent to vi+1 for 0 ≤ i ≤ k − 1. A cycle
is a path v0, . . . , vk with v0 = vk. A graph is connected if for any pair of vertices there exists
a path containing both of them. A tree is a connected graph with no cycles.

It is easy to see that the graph in Figure 1 is actually a tree.
A coloring of a graph is an assignment of colors to each of its vertices. If σ is a coloring,

we denote by σ(v) the color assigned to the vertex v. A k-coloring is one in which σ(v) ∈
{1, 2, . . . , k} for all v, i.e. we may use at most k different colors. A graph with n vertices
clearly has kn different k-colorings, as each of its n vertices has k possible choices for its
color.

A coloring is called proper if there is no edge connecting any two identically colored
vertices. Figure 2 shows all of these colorings with k = 3 for a 3-vertex tree.

Figure 2: Proper 3-colorings of a tree with 3 vertices.

The chromatic polynomial of a graph P (G, k) counts the proper k-colorings of G. It is
well-known to be a monic polynomial in k of degree n, the number of vertices.

Example 1. The chromatic polynomial of a tree T with n vertices is P (T, k) = k(k−1)n−1.
To prove this, fix an initial vertex v0. There are k possible choices for its color σ(v0). Then,
consider a vertex v1 adjacent to v0. There are k − 1 ways to choose σ(v1), as it has to be
different from σ(v0). Now, consider a vertex v2 adjacent to v0 or to v1. Notice it cannot be
adjacent to both of them, or there would be cycle. Thus, there are also k−1 possible choices
for σ(v2). If we repeat this algorithm, we will always have a vertex adjacent to exactly one
of the previously colored vertices, so it can be colored in k− 1 ways. The result follows after
repeating this procedure n− 1 times.

3 Results

Now, we prove the conjecture stated by Humpert and Martin.

Theorem 1 ([1, 2], Conjecture). Let T be a tree with n vertices and let m be an integer with
1 < m < n. Then the equation (1) holds, where Pm(G, k) counts the number of k-colorings
of T in which no vertex has m adjacent vertices of its same color.



Page 64 RHIT Undergrad. Math. J., Vol. 12, No. 2

Proof. For a given coloring of T , say vertices v1 and v2 are “friends” if they are adjacent and
have the same color. For each v, let Av be the set of colorings such that v has at least m
friends. We want to find the number of colorings which are not in any Av, and we will use
the inclusion-exclusion principle. As the total number of k-colorings is kn, we have

Pm(T, k) = kn −
∑
v∈V

|Av|+
∑

v1,v2∈V

|Av1 ∩ Av2 | − . . .

We first show that |Av| =
(
d(v)
m

)
kn−m + o(kn−m). Let A

(l)
v be the set of k-colorings such

that v has exactly l friends. In order to obtain a coloring in A
(l)
v , we may choose the l friends

in
(
d(v)
l

)
ways, the color of v and its friends in k ways, the color of the remaining adjacent

vertices to v in (k− 1)d(v)−l ways, and the color of the rest of the vertices in kn−1−d(v) ways.
Then

|Av| =
n−1∑
l=m

|A(l)
v | =

n−1∑
l=m

(
d(v)

l

)
kn−d(v)(k − 1)d(v)−l

=

(
d(v)

m

)
kn−m + o(kn−m).

To complete the proof, it is sufficient to see that for any set S of at least 2 vertices
|
⋂

v∈S Av| = o(kn−m); clearly we may assume S = {v1, v2}. Consider the following cases:

Case 1 (v1 and v2 are not adjacent). Split Av1 into equivalence classes with the equivalence
relation

σ1 ∼ σ2 ⇔ σ1(w) = σ2(w) for all w 6= v2.

Note that each equivalence class C consists of k colorings, which only differ in the color
of v2. In addition, for each C at most d(v2)

m
of its colorings are in Av2 , as if σ ∈ Av2 there

must be m vertices adjacent to v2 with the color σ(v2). Therefore

|Av1 ∩ Av2 | =
∑
C

|C ∩ Av2| ≤
∑
C

d(v2)

m
=
|Av1 |
k
· d(v2)

m
.

It follows that
|Av1∩Av2 |
|Av1 |

goes to 0 as k goes to infinity, so |Av1 ∩ Av2 | = o(kn−m).

Case 2 (v1 and v2 are adjacent). Let W be the set of adjacent vertices to v2 other than v1.
They are not adjacent to v1 as T has no cycles. Split Av1 into equivalence classes with the
equivalence relation

σ1 ∼ σ2 ⇔ σ1(w) = σ2(w) for all w /∈ W.
Each equivalence class C consists of k|W | colorings, which may only differ in the colors of

the vertices in W . If v1 and v2 are friends in the colorings of C, then a coloring in |C ∩Av2|
must contain at least m− 1 vertices in W of the same color as v2. Therefore
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|C ∩ Av2| =
|W |∑

l=m−1

(
|W |
l

)
(k − 1)|W |−l <

|W |∑
l=0

(
|W |
l

)
k|W |−1 = 2|W |k|W |−1.

Notice that here we are using m ≥ 2 so that l ≥ 1. Otherwise, if v1 and v2 are not friends
in the colorings of C, then

|C ∩ Av2| =
|W |∑
l=m

(
|W |
l

)
(k − 1)|W |−l <

|W |∑
l=0

(
|W |
l

)
k|W |−1 = 2|W |k|W |−1.

Therefore

|Av1 ∩ Av2| =
∑
C

|C ∩ Av2| <
∑
C

2|W |k|W |−1

=
|Av1|
k|W |

· 2|W |k|W |−1 =
|Av1| · 2|W |

k

and |Av1 ∩ Av2| = o(kn−m) follows as in the first case.

This completes the proof of the theorem.

4 Conclusions

In conclusion, the degree-chromatic polynomial is a natural generalization of the usual chro-
matic polynomial, and it has a very particular structure when the graph is a tree. The
leading terms of the chromatic polynomial are determined by the number of edges. Like-
wise, when m ≥ 2, the leading coefficients of the degree chromatic polynomial Pm(G) can
be described easily in terms of G, but now they depend on the degree of the vertices of G.
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