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Abstract. We present a new proof of the Poisson integral formula for harmonic
functions using the methods of representation theory. In doing so, we exhibit the
irreducible subspaces and unitary structure of a representation of the group SU(1, 1)
of 2 × 2 complex generalized special unitary matrices. Our arguments illustrate a
technique that can be used to prove similar reproducing formulas in higher dimen-
sions and for other classes of functions. Our paper should be accessible to readers
with minimal knowledge of complex analysis.
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1 Introduction

Recall that a function f of two variables x and y is harmonic if it is twice continuously dif-
ferentiable and satisfies ∂2f

∂x2
+ ∂2f

∂y2
= 0. Such functions are exactly the solutions to Laplace’s

equation, ∆f = 0. This equation has numerous physical applications. For various inter-
pretations of the function f , it can represent Fick’s Law of diffusion, Fourier’s law of heat
conduction, or Ohm’s law of electrical conduction. Moreover, harmonic functions play a role
in probabilistic models of Brownian motion [1].

By identifying z = x + iy ∈ C with (x, y) ∈ R2, a function of a complex variable can be
viewed as a function of two real variables and can thus be defined as harmonic in a natural
manner. The Poisson integral formula is a fundamental result that enables one to recover
all of the values of a harmonic function defined on a disk in the complex plane given only
its values on the boundary of the disk:

Theorem 1.1 (The Poisson Integral Formula). Let f be a complex-valued harmonic function
defined on a neighborhood of a closed disk D(p,R) of radius R and center p in the complex
plane. Then

f(reiθ + p) =
1

2π

∫ 2π

0

f(Reiφ + p)
R2 − r2

R2 + r2 − 2r cos(θ − φ)
dφ,

where reiθ is an element of the interior of D(p,R).

By translating and scaling the disk, it is no loss of generality to assume that R = 1 and
p = 0, in which case D(p,R) is the closed unit disk, which we henceforth denote simply by
D. In this case, the formula reduces to

f(reiθ) =
1

2π

∫ 2π

0

f(eiφ)
1− r2

1 + r2 − 2r cos(θ − φ)
dφ.

In this paper, we give a new proof of the Poisson integral formula. Our method makes use
of a representation (essentially a group action on a vector space by linear transformations)
of the group SU(1, 1) of 2 × 2 generalized special unitary matrices with complex entries
(isomorphic to SL(2,R)) over the vector space of harmonic functions on D. The interested
reader can find more information on matrix Lie groups like SU(1, 1) and their representations
in [7]. We show that as a representation, the space of harmonic functions is generated by the
identity function z 7→ z and its conjugate z 7→ z. We then use this fact to reduce the proof of
the Poisson integral formula to a few elementary computations, in much the same way that
one reduces the study of a linear transformation to the study of its effect on a basis. Along
the way, we describe the irreducible subspaces and unitary structure of our representation,
properties which the reader may find of independent interest.

Our proof is inspired by a paper by Igor Frenkel and Matvei Libine [2] which uses repre-
sentation theory to develop analysis over the quaternions. In particular, the authors make
use of the theory of the conformal group SL(2,H), the group of 2× 2 matrices with quater-
nion entries and determinant 1. Many of the parallels between complex and quaternionic
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analysis are made apparent by restating results in complex analysis from the perspective of
representations of the complex analogue of SL(2,H), SL(2,C). This lends importance to
the question of which results in complex analysis can, in fact, be restated and proven in
terms of representations of SL(2,C) and its subgroups, including SU(1, 1), for these are the
results which can likely be extended to quaternionic analysis.

Although the classical proof of the Poisson integral formula is short and elementary, our
proof illustrates a technique which has been successfully used to prove reproducing formulas
for other kinds of functions (as is done in [2] and [3]), and which is likely to be used again in
the future. For example, methods similar to ours might be used to prove higher dimensional
analogues of the Poisson formula in Rn, which are discussed in [11]. The matrix group
SO(n+1, 1) acts on the vector space of harmonic functions on Rn and its subgroup SO(n, 1)
preserves the unit ball, as is explained in [5]. Plausibly, SO(n, 1) and its own subgroup
SO(n) could play roles similar to those that the groups SU(1, 1) and SO(2) play in our
paper to engender a proof of the higher dimensional formulas.1 As another example, in
Section 5.4 of [2], the authors conjecture that the Feynman diagrams, which describe the
interactions of subatomic particles, correspond to projections onto irreducible components
of certain representations of the group SU(2, 2). It is quite possible that the technique we
illustrate here could be used to prove this conjecture.

We begin with a preliminary section in which we introduce the definitions and concepts
we shall use in the remainder of the paper and construct our representation of SU(1, 1).
This is followed by Section 3, which contains the proof that certain subrepresentations of
our representation are in fact irreducible. The only fact from this section that is needed
for the proof of the Poisson integral formula is that z and z generate the entire vector
space, but we give a more detailed exposition of the invariant subspace structure of our
representations which the reader might find of independent interest. Section 4 consists of
the elementary computations needed to finish the proof of the Poisson integral formula. To
complete the description of our representations, we conclude with Section 5, in which we
define an SU(1, 1)-invariant inner product on a modified version of our vector space.

2 Preliminaries

An action of a group G on a set S is a function from G × S → S, denoted by (g, x) 7→ gx,
such that for all x ∈ S and all g, h ∈ G, (gh)x = g(hx) and 1x = x, where 1 is the identity
in G.

Definition 2.1. A representation of a group G over a vector space V is a group homomor-
phism ρ : G→ GL(V ), where GL(V ) is the group of invertible linear transformations from
V to V .

1To complete the analogy, we note that, as real Lie groups, SL(2,C)/{±1} is isomorphic to the connected
component of the identity of SO(3, 1) and SU(1, 1)/{±1} is isomorphic to the connected component of the
identity of SO(2, 1).



Page 4 RHIT Undergrad. Math. J., Vol. 12, No. 2

In effect, a representation is an action of a group on a vector space by linear transforma-
tions. Oftentimes, when there is no danger of ambiguity, one refers to the vector space itself,
rather than the function ρ, as a representation. A group G that acts on a set U possesses a
natural representation over a vector space of functions defined on U given by composition on
the right: for g ∈ G, ρ(g) : f 7→ f ◦g−1. The inverse of g is needed so that the representation
preserves group multiplication. Representations arise frequently in this context, and it is
this sort of representation that we study here. Let us first define our group.

Definition 2.2. The group SU(1, 1) is the set of matrices

SU(1, 1) =

{
γ =

(
a b

b a

)
: a, b ∈ C, |a|2 − |b|2 = 1

}
,

with group multiplication given by matrix multiplication.

The group SU(1, 1) is isomorphic to the group SL(2,R) of 2 × 2 real matrices with deter-
minant 1.

We let CP 1 denote complex projective space, the set of pairs of complex numbers which
are not both equal to zero modulo the equivalence relation of being scalar multiples of one
another: (z, w) ∼ (z′, w′) provided z/w = z′/w′ or w = w′ = 0. The group SL(2,C) of 2× 2
invertible matrices with complex entries and determinant 1, and hence also its subgroup
SU(1, 1), acts on CP 1 by matrix-vector multiplication. If we associate with each z ∈ C the
equivalence class of the tuple (z, 1) ∈ CP 1 and with ∞ the equivalence class of the tuple
(1, 0) ∈ CP 1, we may think of this as an action of SL(2,C) on the extended complex plane

C ∪ {∞}. Under this action, γ =

(
a b
c d

)
∈ SL(2,C) sends z ∈ C ∪ {∞} to az+b

cz+d
.

A function from C∪{∞} to itself of the form z 7→ az+b
cz+d

is called a Möbius transformation.
Thus, we see that each element of SL(2,C) defines a Möbius transformation. We shall
henceforth denote the Möbius transformation associated with γ ∈ SL(2,C) by γ̃.

Of particular interest for our purposes are those matrices whose Möbius transformations
preserve the closed unit disk D. It is easily checked that for each matrix γ ∈ SU(1, 1), the
Möbius transformation

γ̃(z) =
az + b

cz + d

associated with γ maps each element z ∈ D to another element of D and does so in a bijective
manner2. Via these Möbius transformations, the group SU(1, 1) acts on D.

We identify the circle group SO(2) with the subgroup of SU(1, 1) given by

SO(2) =

{
kθ =

(
eiθ 0
0 e−iθ

)
: θ ∈ [0, 2π)

}
.

2In fact, these Möbius transformations are the only complex diffeomorphisms of D [6], but we will not
need this fact for our paper.
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The group SO(2) is thereby associated with Möbius transformations that merely rotate D,
i.e. those of the form k̃θ(z) = e2iθz.

We next define our vector space.

Definition 2.3. We denote by V the vector space of complex-valued functions which are
continuous on D and harmonic on the interior of D,

V =

{
f : D → C : f continuous,

∂2f

∂x2
(z) +

∂2f

∂y2
(z) = 0 ∀z ∈ int(D)

}
.

A complex valued function is harmonic if and only if both its real and imaginary parts
are harmonic. Recall that for U an open subset of C, a complex valued function f = u+ iv :
U → C is called holomorphic if f is complex differentiable. A complex-valued function
f = u+ iv : U → C is anti-holomorphic if its complex conjugate f = u− iv is holomorphic.

The partial derivatives of a holomorphic function satisfy the Cauchy-Riemann Equations,
∂u
∂x

= ∂v
∂y

and ∂u
∂y

= − ∂v
∂x

. Given these equations, it follows from a simple computation of
derivatives that every holomorphic function and every anti-holomorphic function is harmonic.
Thus, every function which is either holomorphic or anti-holomorphic on the interior of D
and continuous on its boundary is an element of V .

Definition 2.4. We denote by Vh the subspace of V consisting of functions which are
holomorphic on int(D), by Vah the subspace of V consisting of functions which are anti-
homomorphic on int(D), and by Vc the subspace of V consisting of constant functions.

Proposition 2.5. V = Vh + Vah.

Proof. Let f = u+ iv : D → C be in V . We seek to show that f can be expressed as the sum
of a holomorphic function and an anti-holomorphic function in V . The real and imaginary
parts of f , u and v, are harmonic on int(D) and continuous on ∂D. So, there exist harmonic
conjugates ũ and ṽ for u and v, respectively, such that the functions g = u+iũ and h = v+iṽ
are holomorphic on the interior of D and continuous on its boundary [6]. Then u = 1

2
(g+ g)

and v = 1
2
(h + h), so f = 1

2
(g + g) + i

2
(h + h) expresses f as the sum of holomorphic and

antiholomorphic functions f1 = 1
2
(g + ih) and f2 = 1

2
(g + ih).

This is almost, but not quite a direct sum: harmonic functions cannot be expressed as a sum
of holomorphic and antiholomorphic functions in a unique way, since constant functions are
both holomorphic and anti-holomorphic: Vh ∩ Vah = Vc.

It can be shown that every holomorphic function is analytic in the sense of being equal
to a convergent power series in any open disk contained in its domain. Typically this fact is
proven using the Cauchy integral formula [6], but it can also be proven using elliptic operator
theory [4]. As is always the case for analytic functions, the series representation centered at
any given point is unique. From the fact that any holomorphic function can be expressed as
a convergent series in powers of z−p on any open disc with center p contained in its domain,
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it follows immediately that any anti-holomorphic function can be expressed as a convergent
series in powers of z − p on any open disk with center p contained in its domain.

Since the interior of D is an open disk centered at the origin, Proposition 2.5 implies that
each function in f ∈ V can be expressed as f(z) =

∑∞
n=0 anz

n +
∑∞

n=1 bnz
n on int(D). We

thus have the following alternative characterization of V :

V =

{
f : D → C : f continuous, f(z) =

∞∑
n=0

anz
n +

∞∑
n=1

bnz
n on int(D)

}
.

When there is no danger of ambiguity, we sometimes write f(z) =
∑∞

n=0 anz
n +

∑∞
n=1 bnz

n

for functions f ∈ V , keeping in mind that this series representation is only valid on the
interior of D.

Define a norm on V by

‖f‖ = max{|f(z)| : z ∈ D}.

Like any norm, ‖.‖ induces a topology on V . Henceforth when we speak of subspaces of V
being closed or open, we mean with respect to this topology.

Recall that a sequence of functions {fn} on a common domain X converges uniformly
to a function f on a set S ⊂ X if for each ε > 0, there exists N ∈ N such that for all
n ≥ N , |fn(x) − f(x)| < ε for all x ∈ S. This is contrasted with pointwise convergence,
under which N may vary for different choices of x. If the domain X is open, one often
replaces uniform convergence on X with the requirement that {fn} converge uniformly on
any compact subset K of X, as we do in Section 4. It is easily seen that convergence with
respect to the maximum norm we defined above is equivalent to uniform convergence on
D. In introductory analysis texts, it is proven that the integrals of a uniformly convergent
sequence of functions converge to the integral of the limit function [9].

A metric space M is said to be complete if every Cauchy sequence in M converges to an
element of M , and a normed linear space is said to be a Banach space if it is complete with
respect to its norm. Once the Poisson formula is established, it is easy to show that V is
complete, and is hence a Banach space. This fact is, of course, not needed in our proof.

We are now ready to define our representation.

Definition 2.6. Define a map ρ : SU(1, 1) → GL(V) by ρ(γ)f = (f ◦ γ̃−1), where γ̃ is the
Möbius transformation induced by γ by its action on D.

Before we prove that this is indeed a representation of SU(1, 1), we note that for a
representation over an infinite-dimensional vector space, most authors require that the rep-
resentation function ρ be continuous. There are a variety of notions of continuity, discussed,
for example, in [10]. It can be shown that our representation satisfies this requirement under
most standard definitions.

Proposition 2.7. ρ is a representation of SU(1, 1).
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Proof. In light of the discussion after Definition 2.1, we need only show that for all f ∈ V ,
for all γ ∈ SU(1, 1), ρ(γ)f ∈ V . The Möbius transformation γ̃−1 associated with γ−1 is
holomorphic on D, and the composition of holomorphic functions is holomorphic. Since the
composition of continuous functions is continuous, if f1 ∈ Vh, then ρ(γ)f1 ∈ Vh. If c : z 7→ z
denotes the conjugate function, then f2 ∈ Vah if and only if (c◦f2) is holomorhpic on int(D),
in which case ρ(γ)(c ◦ f2) = (c ◦ f2 ◦ γ̃−1) is holomorphic on int(D). So, (f2 ◦ γ̃−1) is anti-
holomorphic on int(D) and ρ(γ)f2 ∈ Vah. A function is in V if and only if it is the sum of a
function in Vh and a function in Vah. Therefore ρ(γ)f ∈ V for all f ∈ V .

This representation of SU(1, 1) induces a representation of the subgroup SO(2) of SU(1, 1)
in the obvious way: by restricting ρ to SO(2).

The question of which subspaces of a vector space are preserved under the action of
a group is of great importance in representation theory. We devote the remainder of this
section and most of the next to exploring which subspaces of V are preserved under the
action of SU(1, 1).

Definition 2.8. Let ρ be a representation of a group G over a vector space V . We say that
a subspace W of V is G-invariant if ρ(g)w ∈ W for all g ∈ G and all w ∈ W . A G-invariant
subspace W of V is a subrepresentation if W is closed, and is a proper subrepresentation if
W is neither the zero subspace nor all of V . A subrepresentation W of V is irreducible if W
itself has no proper subrepresentations.

Note here the requirement that a subrepresentation W be closed, in the topological sense.
This is important in the context of infinite dimensional representations in that it implies
that W must contain the limit of any convergent series of its elements, as well as any finite
linear combination of them. For example, although the set of rational functions with no
singularities on D is an SU(1, 1)-invariant subspace of V , it is not closed because there exist
sequences of rational functions (even polynomials) which converge uniformly to elements of
V which are not themselves rational functions, such as the exponential function ez. So, this
subspace is not a subrepresentation.

Proposition 2.9. Vc, Vh, and Vah are SU(1, 1) subrepresentations of V.

Proof. We have established that these subspaces are SU(1, 1)-invariant in the proof of Propo-
sition 2.7. It remains to show that they are closed. Let {fn} be a sequence in Vh which
converges uniformly on D to f ∈ V . For each n, express fn as a power series on int(D) as
fn(z) =

∑∞
k=0 ankz

k. Write f(z) =
∑∞

k=0 ckz
k +

∑∞
k=1 dkz

k for z ∈ int(D). To show that
f ∈ Vh, we must show that dm = 0 for all m = 1, 2, 3, ....

Fix r ∈ (0, 1). Since the series for f is valid on int(D) and r < 1, fr(z) = f(rz) is
equal to a power series on all of D, including its boundary. Because power series converge
uniformly on compact subsets of their domain [9], they can be integrated term by term. For
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each positive integer m, we thus have

1

2π

∫ 2π

0

fr(e
iθ)eimθdθ =

1

2π

∞∑
k=0

ck

∫ 2π

0

eimθ(reiθ)kdθ +
1

2π

∞∑
k=1

dk

∫ 2π

0

eimθ(reiθ)
k
dθ

=
1

2π

∞∑
k=0

rkck

∫ 2π

0

ei(m+k)θdθ +
1

2π

∞∑
k=1

rkdk

∫ 2π

0

ei(m−k)θdθ.

We evaluate the terms of this sum individually. For each non-negative integer k,∫ 2π

0

ei(m+k)θdθ = −i(m+ k)−1ei(m+k)θ|2π0 = 0,

since the period of ei(m+k)θ is an integer fraction of 2π. Similarly, for each k 6= m,
∫ 2π

0
ei(m−k)θdθ =

0. Therefore
1

2π

∫ 2π

0

fr(e
iθ)eimθdθ =

rmdm
2π

∫ 2π

0

ei(m−m)θdθ = rmdm.

Because {fn(rz)} −→ f(rz) uniformly as n −→ ∞ and integrals commute with uniform
limits, we can integrate the series for fn(rz) on ∂D term by term to obtain

rmdm =
1

2π

∫ 2π

0

f(reiθ)eimθdθ = lim
n→∞

1

2π

∫ 2π

0

fn(reiθ)eimθdθ = 0,

by the same computations as above and the fact that the series for the holomorphic functions
fn contain no zm term. Therefore dm = 0 for every m, so f ∈ Vh and Vh is closed. By an
identical argument, Vah is closed. As a consequence, Vc = Vh ∩ Vah, as the intersection
of closed sets, is also closed. Thus, these three SU(1, 1)-invariant subspaces are indeed
subrepresentations.

We end this section with a lemma about V which we shall need in Section 3.

Lemma 2.10. Let f ∈ V be expressed as a convergent series on int(D) as f(z) =
∑∞

k=0 anz
k+∑∞

m=1 bmz
m. Then there exists a sequence of polynomials in zk and zm (finite linear combi-

nations of powers of z and z) which converges uniformly to f . We may choose this sequence
so that for each k with ak = 0 and each m with bm = 0, the coefficients on zk and zm for the
polynomials in the sequence are zero.

Proof. For each r ∈ (0, 1), define fr(z) = f(rz). Since f is uniformly continuous on D, fr
converges uniformly to f on D as r −→ 1 from the left. As in the proof of Proposition 2.9,
the series representation of f is valid on the interior of D, so since each r is less than 1, fr
is equal to a series on all of D. Since power series converge uniformly on compact subsets of
their domain,

fr(z) = lim
n→∞

n∑
k=0

rkakz
k +

n∑
m=1

rmbmz
m ≡ lim

n→∞
gr,n(z),
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and this limit is uniform on all of D. Each gr,n is a polynomial in zk and zm, and for each
k or m with ak or bm equal to zero, the coefficients on zk and zm in the formula for gr,n are
zero. Moreover, for a suitable choice of {rj} −→ 1− and {nj} −→ ∞, a diagonal subsequence
{grj ,nj} converges uniformly to f , as desired.

In particular, this lemma, along with Proposition 2.9, implies that Vh = span{1, z, z2, ...}
and Vah = span{1, z, z2, ...}, where the bar denotes the closure.

3 Invariant Subspaces

Our aim in this section is to show that Vh, Vah, and Vc are in fact the only proper SU(1, 1)
subrepresentations of V . In particular, this will imply that the identity function and its
conjugate generate V as a representation of SU(1, 1), in the sense that the smallest sub-
representation of V which contains these two functions is is all of V . This fact will play a
key role in our proof of the Poisson integral formula in Section 4. We shall first consider
subspaces of V which are invariant under the action of the subgroup SO(2) of SU(1, 1).

Lemma 3.1. Let α ∈ R and define an operator Aα : V → V by

Aα(f)(z) =
1

π

∫ π

0

eiαθρ(kθ)f(z)dθ =
1

π

∫ π

0

eiαθf(e−2iθz)dθ,

where each kθ ∈ SO(2). If W is a closed SO(2)-invariant subspace of V and f ∈ W , then
Aα(f) ∈ W .

Proof. It is clear that Aα(f) is continuous on D, and it follows from differentiation under
the integral sign that Aα(f) is harmonic on int(D), so Aα(f) is an element of V . It remains
to show that Aα(f) ∈ W . The integral expression for Aα(f) is given by a limit of Riemann
sums: for each z ∈ D,

Aα(f)(z) = lim
n→∞

1

n

n∑
j=1

eiαθjf(e−2iθjz),

where for each n, 0 ≤ θ1 < ... < θn ≤ π are test points in a partition of the interval [0, π]
which becomes arbitrarily fine as n −→∞. Since W is SO(2)-invariant, the function

fn(z) ≡ 1

n

n∑
j=1

eiαθjf(e−2iθjz)

is in W for each n. By definition, {fn} −→ Aα(f) pointwise. We claim that this convergence
is uniform.

By the Arzelá-Ascoli Theorem [8], it suffices to show that {fn} is equicontinuous3. That
is, given ε > 0, there is a single δ > 0 such that for all n, for all z, w ∈ D with |z − w| < δ,

3The Arzelá-Ascoli Theorem states that any bounded sequence of equicontinuous functions on a compact
set has a uniformly convergent subsequence. It is an immediate consequence (and indeed is usually proven
in the course of proving the theorem itself) that an equicontinuous sequence which converges poitwise on a
compact set also converges uniformly.
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we have |fn(z)− fn(w)| < ε. The function f is uniformly continuous, so we can choose δ > 0
such that |f(z) − f(w)| < ε for all z, w ∈ D with |z − w| < δ. Since |e−2iθj | = 1 for all j,
|z − w| < δ implies that |e−2iθjz − e−2iθjw| < δ. For all n we thus have

|fn(z)− fn(w)| =

∣∣∣∣∣ 1n
n∑
j=1

eiαθjf(e−2iθjz)− 1

n

n∑
j=1

eiαθjf(e−2iθjw)

∣∣∣∣∣
≤ 1

n

n∑
j=1

|f(e−2iθjz)− f(e−2iθjw)| < nε

n
= ε.

So, δ satisfies the ε requirement for equicontinuity of {fn}. Thus, {fn} −→ Aα(f) uniformly,
so since W is closed, Aα(f) ∈ W .

Lemma 3.2. Let W be a closed SO(2)-invariant subspace of V and let f ∈ W , f(z) =∑∞
k=0 akz

k +
∑∞

k=1 bkz
k on int(D). For each n, if an 6= 0 then zn ∈ W , and if bn 6= 0 then

zn ∈ W .

Proof. We consider only zn. The case for its conjugate is identical. By the Lemma 3.1, the
function A2n(f) is in W . We claim that this function is a constant multiple of zn. Indeed,
let z ∈ int(D). Then since power series can be integrated term by term,

A2n(f)(z) =
1

π

∞∑
k=0

∫ π

0

ake
2niθ(e−2iθz)kdθ +

1

π

∞∑
k=1

∫ π

0

bke
2niθ(e−2iθz)

k
dθ

=
1

π

∞∑
k=0

ak

∫ π

0

e2(n−k)iθdθzk +
1

π

∞∑
k=1

bk

∫ π

0

e2(n+k)idθzk.

As in the proof of Proposition 2.9, for each non-negative integer k 6= n,∫ π

0

e2(n−k)iθdθ = (2(n− k)i)−1e2(n−k)iθ|π0 = 0,

and if k > 0,
∫ π
0
e2(n+k)iθdθ = 0. Therefore

A2n(f)(z) =
an
π

∫ π

0

e2(n−n)iθdθzn = anz
n.

By continuity, A2n(f)(z) = anz
n on ∂D as well. So, since an 6= 0, W contains zn.

We can use these two lemmas to completely characterize the closed SO(2)-invariant subspaces
of V .

Proposition 3.3. Let W be a closed SO(2)-invariant subspace of V. Then

W = span{zn1 , zm1 , zn2 , zm2 ...},

where the nj are the non-negative integers such that znj ∈ W , the mj are the positive integers
such that zmj ∈ W , and the bar denotes the closure.



RHIT Undergrad. Math. J., Vol. 12, No. 2 Page 11

V

Vh Vc Vah

z3 z2 z 1 z z2 z3

Figure 1: Subrepresentations of V .

Proof. Let f(z) =
∑∞

n=0 anz
n +

∑∞
m=1 bmz

m ∈ W be expressed as a power series valid on
int(D). By Lemma 3.2, for each n such that an 6= 0, zn ∈ W and for each m such that bm 6= 0,
zm ∈ W . By Lemma 2.10, f is equal to the uniform limit of a sequence of polynomials in
only those zn and zm that occur with non-zero coefficients in the power series for f , i.e. only
a subset of the znj and the zmj . Thus, W = span{zn1 , zm1 , zn2 , zm2}, as required.

Before we prove the climactic theorem of this section, we take a moment to think about
our representation visually, and, perhaps, to reflect on why we decided to study mathematics
rather than, say, art. The subrepresentation structure of our representation is shown in
Figure 1. The subspaces Vh and Vah of functions which are holomorphic or anti-holomorphic
on the interior of D are subrepresentations, and intersect in a third subrepresentation: the
constant functions, Vc. We are about to prove that V cannot be decomposed any further
than shown in the diagram. Note that our claim is only the quotient spaces Vh/Vc and
Vah/Vc, not Vh and Vah themselves, are irreducible4. Indeed, this is the best that could be
hoped for, given that the space of constant functions Vc is an SU(1, 1)-invariant subspace of
both Vh and Vah.

Theorem 3.4. The only proper SU(1, 1) subrepresentations of V are Vh, Vah, and Vc. In
particular, Vh/Vc and Vah/Vc are irreducible.

Proof. Let W be a proper SU(1, 1) subrepresentation of V , i.e. a closed SU(1, 1)-invariant
subspace not equal to V or {0}. Assume that W does not consist solely of constant functions.
Since W is invariant under the action of SU(1, 1), W is also invariant under the action of
its subgroup SO(2). Because W contains a non-constant function, Lemma 3.2 implies that
W must contain either zn or zn for some n > 0.

Suppose first that W contains zn. Because W is SU(1, 1)-invariant, for each Möbius
transformation γ̃(z) = az+b

bz+a
corresponding to an element of SU(1, 1), W contains the function

γ̃(z)n. Choose one such γ̃ with a and b non-zero. Since γ̃(z)n is holomorphic on D, it equals
its Taylor series about the origin. The linear coefficient of this series is the derivative of
γ̃(z)n evaluated at z = 0,

nγ̃(0)n−1γ̃′(0) = n

(
b

a

)n−1(
1

a2

)
=
bn−1

an+1 6= 0.

4Since Vc is SU(1, 1)-invariant, the representation ρ gives rise to a well-defined representation of SU(1, 1)
on the quotient space V/Vc.
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Thus, by Lemma 3.2, the identity function z must be in W . Therefore, again by invariance,
W contains the function γ̃ itself. Using partial fractions and the properties of geometric
series, we find that for all z ∈ D,

γ̃(z) =
az + b

bz + a
=
b

a
+

z

a2

(
1

1 + (b/a)z

)
=
b

a
+

1

a2

∞∑
k=1

(−b/a)k−1zk.

In particular, for each non-negative integer k, the coefficient on zk in this series is non-zero.
Thus, again by Lemma 3.2, W contains zk for every non-negative integer k. Since W is
closed, the comment following Lemma 2.10 implies that W must contain all of Vh. This
same argument works for a subspace of Vh that contains a non-constant function. Hence,
Vh/Vc is irreducible.

By an identical argument, if zn ∈ W for some n, then W contains z, and hence zk for all
k. Therefore Vah ⊂ W and Vah/V is irreducible. Likewise, if W contains both zn and zm for
some m and n, then W contains both Vh and Vah, and since V = Vh + Vah, W is all of V ,
contrary to the assumption that W is proper. We are thus left with only two possibilities:
W must be either Vh or Vah. This completes the proof.

Let W be a closed SU(1, 1)-invariant subspace of V which contains h and h. Theorem
3.4 implies that W must be all of V . In other words,

Corollary 3.5. The identity function h : z 7→ z and its conjugate h : z 7→ z generate V as
a representation of SU(1, 1).

In particular, each f ∈ V must be the uniform limit of a sequence of finite linear combinations
of the images of h and h under the action of elements of SU(1, 1).

4 The Poisson Integral Formula

Having established the necessary representation theoretic background for our proof of the
Poisson integral formula (Theorem 1.1 in the introduction), we are almost ready to prove
the formula itself. We start with a definition.

Definition 4.1. Let ρ be a representation of a group G over a vector space V . An operator
T on V is G-equivariant or G-invariant if ρ(g)T (v) = T (ρ(g)v) for all g ∈ G and all v ∈ V .

The proof we finish in this section is based on the following general result:

Proposition 4.2. Let ρ be a representation of a group G over a topological vector space V .
Suppose that the set S ⊂ V generates V as a representation of V (in the terminology given
at the beginning of Section 3). Then a continuous, linear G-equivariant operator T on V is
completely determined by its values on S.
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Proof. Since S generates V , any v ∈ V can be expressed as v = limn→∞ vn, where each
vn =

∑Nn
k=1 ankρ(gnk)snk for scalars ank and for some snk ∈ S and gnk ∈ G. Since T is

continuous and linear, it commutes with limits and sums. Thus, G-invariance gives

T (v) = lim
n→∞

T (vn) = lim
n→∞

Nn∑
k=1

ankρ(gnk)T (snk).

In particular, T (v) depends only on the values of T on the snk.

The idea of Proposition 4.1 is similar to that of a linear transformation being completely
determined by its values on a basis for a vector space, or a group homomorphism being com-
pletely determined by the images of a set of generators. In our case, we have already shown
that our generating set consists of the identity function h and its conjugate h (Corollary 3.5).
We must now show that the Poisson integral operator is in fact continuous and equivariant
under the action of the group SU(1, 1), then evaluate the operator at the identity function
and its conjugate. The necessary computations require no more analysis than is typically
encountered in introductory courses.

Before we define the Poisson integral operator, we need to define its target space. The
formula is only defined for z on the interior of the disk D, so properly speaking it does not
output an element of V , which consists of functions defined on the boundary of D as well.
However, since the integrand in the formula is continuous, by the properties of the integral
we do know that the output function is continuous as well. We therefore define V ′ to be the
vector space of all continuous complex-valued functions defined on the interior of D, with
topology such that convergence in V ′ is equivalent to uniform convergence on compact subsets
of the interior of D. We note that by restricting elements of V to the interior of D, V can
be viewed as a subspace of V ′. Since convergence in V is uniform convergence, convergence
in V implies convergence in V ′. Consequently, this inclusion of V in V ′ is continuous.

Definition 4.3. Let P : V → V ′ be the Poisson integral operator,

P (f)(reiθ) =
1

2π

∫ 2π

0

f(eiφ)
1− r2

1 + r2 − 2r cos(θ − φ)
dφ

for z = reiθ ∈ int(D).

The term multiplied by f in the integrand is called the Poisson Kernel. Routine compu-
tation shows that for z = reiθ, this term equals

1− r2

r2 + 1− 2r cos(θ − φ)
=

1− |z|2

|z − eiφ|2
=

eiφ

eiφ − z
+

e−iφ

e−iφ − z
− 1. (1)

Proposition 4.4. P is a continuous operator on V.
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Proof. Let K ⊂ int(D) be compact. Then since the Poisson kernel is continuous on the
compact set K × [0, 2π], there exists B > 0 such that for all reiθ ∈ K, for all φ ∈ [0, 2π],∣∣∣∣ 1− r2

1 + r2 − 2r cos(θ − φ)

∣∣∣∣ < B.

Now, suppose that {fn} −→ f in V . Then {fn − f} −→ 0 uniformly. So by the properties
of integration under uniform limits,

|P (fn)(reiθ)− P (f)(reiθ)| =

∣∣∣∣ 1

2π

∫ 2π

0

(fn(eiφ)− f(eiφ))
1− r2

1 + r2 − 2r cos(θ − φ)
dφ

∣∣∣∣
≤ B

2π

∫ 2π

0

∣∣fn(eiφ)− f(eiφ)
∣∣ dφ −→ 0.

Since the term tending to zero does not depend on reiθ ∈ K, this convergence is uniform on
all compact subsets K of D.

To show the SU(1, 1)-equivariance of P , we shall need two simple lemmas.

Lemma 4.5. The operator P is SO(2)-equivariant, i.e. if ψ ∈ [0, 2π) and kψ ∈ SO(2), then
for all f ∈ V, ρ(kψ)P (f) = P (ρ(kψ)f).

Proof. Writing z = reiθ ∈ int(D), we have

ρ(kψ)P (f)(reiθ) = P (f ◦ k̃−ψ)(reiθ) =
1

2π

∫ 2π

0

f(ei(φ−2ψ))
1− r2

r2 + 1− 2r cos(θ − φ)
dφ.

Substituting σ = φ− 2ψ and dσ = dφ gives

1

2π

∫ 2π

0

f(ei(σ))
1− r2

r2 + 1− 2r cos(θ − 2ψ − σ)
dσ = P (f)(rei(θ−2ψ)) = P (ρ(kψ)f)(reiθ).

Lemma 4.6. Each γ ∈ SU(1, 1) can be decomposed as γ = ksγrkt, where

ks =

(
eis 0
0 e−is

)
, γr =

(
cosh(r) sinh(r)
sinh(r) cosh(r)

)
, and kt =

(
eit 0
0 e−it

)
for s, r, t ∈ R.

Proof. For a, b ∈ R, we may write

γ =

(
aeiψ beiθ

be−iθ ae−iψ

)
=

(
eis 0
0 e−is

)(
a b
b a

)(
eit 0
0 e−it

)
,

where s = ψ+θ
2

and t = ψ−θ
2

. Since det(γ) = a2 − b2 = 1, a = cosh(r) and b = sinh(r) for
some r ∈ R.
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Proposition 4.7. The operator P is SU(1, 1)-equivariant, i.e. if γ ∈ SU(1, 1), then for all
f ∈ V, P (ρ(γ)f) = ρ(γ)P (f).

Proof. It suffices to check this fact only for the generators of SU(1, 1). The matrices shown
to generate SU(1, 1) in Lemma 4.6 correspond to Möbius transformations of the forms

k̃t(z) = e2itz and γ̃r(z) =
cosh(r)z + sinh(r)

sinh(r)z + cosh(r)
.

The verification that P (ρ(kt)f) = ρ(kt)P (f) for kt ∈ SO(2) was completed in Lemma
4.5. Therefore we can restrict our attention to Möbius transformations of the latter form.
Moreover, by rotating the unit disk so that the point in question lies on the real axis, we
may assume that z ∈ int(D) ∩ R. Applying equation (1), for all f ∈ V , we have

ρ(γ−1r )(P (ρ(γr)f)(z) = P (f ◦ γ̃−1r )(γ̃r(z))

=
1

2π

∫ 2π

0

f(γ̃−1r (eiφ))
1− |γ̃r(z)|2

|γ̃r(z)− eiφ|2
dφ

=
1

2π

∫ 2π

0

f(γ̃−1r (eiφ))
1− γ̃r(z)2

|γ̃r(z)− eiφ|2
dφ,

where the last equality follows from the fact that z is real. We must show that this quantity

equals P (f)(z). Let eiσ = γ̃−1r (eiφ) = cosh(r)eiφ−sinh(r)
− sinh(r)eiφ+cosh(r)

. Then eiφ = γ̃r(e
iσ). Differentiating

gives

ieiσdσ =
ieiφdφ

(− sinh(r)eiφ + cosh(r))2
=

iγ̃r(e
iσ)dφ

(− sinh(r)γ̃r(eiσ) + cosh(r))2
.

Plugging in the expression for γr, solving for dφ and simplifying yields

dφ = eiσ
(

cosh(r)eiσ + sinh(r)

sinh(r)eiσ + cosh(r)

)−1(
− sinh(r)

(
cosh(r)eiσ + sinh(r)

sinh(r)eiσ + cosh(r)

)
+ cosh(r)

)2

dσ

=
(
sinh(r)2 + cosh(r)2 + sinh(r) cosh(r)(eiσ + e−iσ)

)−1
dσ.

Substitute eiσ = γ̃−1r (eiφ) and dφ = (sinh(r)2 + cosh(r)2 + sinh(r) cosh(r)(eiσ + e−iσ))
−1
dσ.

Since γr(1) = 1, the limits of integration remain unchanged and we obtain

1

2π

∫ 2π

0

f(eiσ)

(
1− γ̃r(z)2

|γ̃r(z)− γ̃r(eiσ)|2

)(
sinh(r)2 + cosh(r)2 + sinh(r) cosh(r)(eiσ + e−iσ)

)−1
dσ.

(2)
For the numerator of the middle term, we have

1− γ̃r(z)2 = 1−
(

cosh(r)z + sinh(r)

sinh(r)z + cosh(r)

)2

=
(sinh(r)z + cosh(r))2 − (cosh(r)z + sinh(r))2

(sinh(r)z + cosh(r))2

=
1− z2

(sinh(r)z + cosh(r))2
.
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The denominator equals

|γ̃r(z)− γ̃r(eiσ)|2 =

∣∣∣∣(cosh(r)z + sinh(r)

sinh(r)z + cosh(r)

)
−
(

cosh(r)eiσ + sinh(r)

sinh(r)eiσ + cosh(r)

)∣∣∣∣2
=

∣∣∣∣(cosh(r)z + sinh(r))(sinh(r)eiσ + cosh(r))− (cosh(r)eiσ + sinh(r))(sinh(r)z + cosh(r))

(sinh(r)z + cosh(r))(sinh(r)eiσ + cosh(r))

∣∣∣∣2
=

|z − eiσ|2

(sinh(r)z + cosh(r))2 (sinh(r)2 + cosh(r)2 + sinh(r) cosh(r)(eiσ + e−iσ))
,

where we can drop the absolute value on the denominator since z is real. Substituting into
equation (2) and cancelling terms gives

(γ̃r ◦ P (f) ◦ γ̃−1r )(z) =
1

2π

∫ 2π

0

f(eiσ)
1− z2

|z − eiσ|2
dσ = P (f)(z),

as required. We thus see that P is an SU(1, 1)-equivariant operator.

Proposition 4.8. Let h(z) = z be the identity function on D and let h(z) = z be its
conjugate. Then P (h) = h and P (h) = h.

Proof. Let z ∈ int(D). Equation (1) and partial fraction decomposition give

P (h)(z) =
1

2π

∫ 2π

0

eiφ
(

eiφ

eiφ − z
+

e−iφ

e−iφ − z
− 1

)
dφ

=
1

2π

∫ 2π

0

e2iφ

eiφ − z
+

1

e−iφ − z
− eiφdφ

=
1

2π

∫ 2π

0

z +
z2

eiφ − z
+

1

e−iφ − z
dφ

= z +
1

2π

∫ 2π

0

z2

eiφ − z
+

1

e−iφ − z
dφ.

To show that the remaining term of this integral equals 0, substitute u = eiφ and du =
ieiφdφ = iudφ. Letting a circled integral sign indicate integration once counter-clockwise
around the unit circle, this gives

1

2π

∫ 2π

0

z2

eiφ − z
+

1

e−iφ − z
dφ =

1

2πi

∮
z2

u(u− z)
+

1

1− zu
du

=
1

2πi

∮
z

u− z
− z

u
+

1

1− zu
du

=
1

2πi

(
z log(eiφ − z)− z log(eiφ)− 1

z
log(1− zeiφ)

)
|2π0 = 0,

since e0i = e2πi. Thus, the entire integral equals z, as desired.
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It remains to consider h. By Lemma 4.5, P is invariant under the action of SU(1, 1). So,
given z = reiθ ∈ int(D), we can apply the rotation z 7→ e−iθz without changing the value of
P (h)(z). This rotation maps z to r, so it suffices to consider only the case where z is real.
In this case, z = z, and so

P (h)(z) =
1

2π

∫ 2π

0

e−iφ
(

eiφ

eiφ − z
+

e−iφ

e−iφ − z
− 1

)
dφ.

Substitute σ = −φ and dσ = −dφ and use the periodicity of eiφ to obtain

P (h)(z) =
1

2π

∫ 0

−2π
eiσ
(

e−iσ

e−iσ − z
+

eiσ

eiσ − z
− 1

)
dφ = P (h)(z) = z = z,

since z is assumed real.

We are now ready to prove the Poisson integral formula.

Proof of Theorem 1.1. We must show that for any function f ∈ V , P (f) = f on int(D).
But, for h the identity function and h̄ its conjugate, P (h) = h and P (h) = h. Since h
and h generate V as a representation of SU(1, 1) and P is continuous, linear, and SU(1, 1)-
equivariant, Proposition 4.1 implies that P (f) does indeed equal f for all f ∈ V .

The astute reader will have noticed that we did not invoke the full force of Theorem
3.4 in our proof. We used only the implication that h and h generate all of V , rather
than the stronger assertion, which we proved, that Vc, Vh and Vah are the only proper
subrepresentations of V . The stronger result was proven to shed more light on the structure
of our representations.

5 An SU(1,1)-Invariant Inner Product

Although it is not a necessary part of our proof of the Poisson integral formula, for the
sake of completeness of our description of our representations of SU(1, 1), we end this paper
by constructing an inner product which is invariant under the action of SU(1, 1): that
is, one satisfying 〈ρ(γ)f, ρ(γ)g〉 = 〈f, g〉 for all γ ∈ SU(1, 1). However, V itself cannot
possess an SU(1, 1)-invariant inner product, for if it did, the orthogonal complement of
a subrepresentation would also be a subrepresentation. But, as we proved in Section 3,
the only subrepresentations of V are Vh, Vah and their intersection Vc. In particular, every
subrepresentation intersects the proper subrepresentation Vh non-trivially, so Vh cannot have
a closed SU(1, 1)-invariant orthogonal complement. Consequently, we must define a slightly
modified version of our vector space for use in this section.

Definition 5.1. We denote by Ṽ the vector space of complex-valued functions f which are
harmonic on some neighborhood Uf of the closed unit disk D ⊂ C modulo the equivalence
relation of differing by a constant:

Ṽ =

{
f : Uf → C : D ⊂ Uf ,

∂2f

∂x2
(z) +

∂2f

∂y2
(z) = 0 ∀z ∈ Uf

}
/{constant functions}.
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For each γ ∈ SU(1, 1), ρ(γ) preserves the subspace of constant functions in V , and the set
of functions which are harmonic on a neighborhood of D is a subset of V . Therefore our
representation restricts to a well defined representation of SU(1, 1) on Ṽ .

Define the degree operator from Ṽ to Ṽ by deg(f)(x+iy) =
(
x∂f
∂x

(x+ iy) + y ∂f
∂y

(x+ iy)
)

.

Since the partial derivatives of a constant are zero, deg is well-defined on Ṽ . Moreover, if pn
is the equivalence class of z 7→ zn in Ṽ , for each n = 1, 2, 3, ... we have

deg(pn)(x+ iy) = nx(x+ iy)n−1 + niy(x+ iy)n−1 = n(x+ iy)n = npn

and, similarly,
deg(pn)(x+ iy) = npn.

Proposition 5.2. Define an operator 〈., .〉 on Ṽ × Ṽ by

〈f, g〉 =
1

2π

∫ 2π

0

deg(f)(eiφ)g(eiφ)dφ.

Then 〈., .〉 is a hermitian inner product on Ṽ, and {p1, p1, p2, p2, ...} is orthogonal with respect
to 〈., .〉.

Proof. Linearity in the first argument and anti-linearity in the second are obvious. To show
that 〈., .〉 is an inner product, we must show that it is well defined on Ṽ (i.e. adding a
constant to one or the other input function doesn’t change the operator’s value), and we
must check positive definiteness and symmetry. Since any element of Ṽ can be written as a
power series in zn and zn, n = 1, 2, ..., valid on all of D, it suffices to verify these properties
only for elements of {p1, p1, p2, p2, ...}. The relevant properties can then be generalized to
arbitrary elements of Ṽ using the fact that power series can be integrated term by term.

From the computations given after the definition of the degree operator, we obtain that
if f(z) = c is constant, then for any positive integer n,

〈pn, f〉 =
1

2π

∫ 2π

0

neniφcdφ = −iceniφ |2π0 = 0,

since the period of eiφ is an integer fraction of 2π. Similarly, 〈pn, f〉 = 0. Since deg(f) = 0,
〈f, g〉 = 0 for any g ∈ Ṽ . Therefore 〈., .〉 is well defined on Ṽ : it does not matter which
representatives of the equivalence classes of functions which differ by a constant we choose
in computing the inner product.

Moreover, for any positive integers n and m,

〈pn, pm〉 =
1

2π

∫ 2π

0

neniφe−miφdφ =
n

2π

∫ 2π

0

ei(n−m)φdφ =

{
n if m = n;

0 if m 6= n.

Similar computations show that 〈pn, pm〉 = nδn,m and 〈pn, pm〉 = 〈pn, pm〉 = 0. This implies
that {p1, p1, p2, p2, ...} is orthogonal with respect to 〈., .〉, and that 〈., .〉 is both symmetric
and positive definite on powers of z and z.
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Thus, if f =
∑∞

n=1 anpn +
∑∞

n=1 bnpn and g(z) =
∑∞

n=1 cnpn +
∑∞

n=1 dnpn are elements of
Ṽ ,

〈f, g〉 = 〈
∞∑
n=1

anpn,
∞∑
n=1

cnpn〉+ 〈
∞∑
n=1

anpn,
∞∑
n=1

dnpn〉+ 〈
∞∑
n=1

bnpn,
∞∑
n=1

cnpn〉+ 〈
∞∑
n=1

bnpn,
∞∑
n=1

dnpn〉

=
∞∑
n=1

ancn〈pn, pn〉+
∞∑
n=1

bndn〈pn, pn〉 =
∞∑
n=1

nancn +
∞∑
n=1

nbndn = 〈g, f〉

and

〈f, f〉 =
∞∑
n=1

n|an|2 +
∞∑
n=1

n|bn|2 ≥ 0,

so 〈., .〉 is an inner product. The fact that {p1, p1, p2, p2, ...} is orthogonal was established
above.

Unlike V under the maximum norm, Ṽ is not complete with respect to the norm induced
by this inner product. However, Ṽ can be completed to a Hilbert space, or a complete inner
product space with Hilbert basis {p1, p1, p2, p2, ...}.

Proposition 5.3. The inner product 〈., .〉 is SU(1, 1)-invariant, i.e. for all f, g ∈ Ṽ, for all
γ ∈ SU(1, 1), 〈f, g〉 = 〈ρ(γ)f, ρ(γ)g〉.

Proof. Let γ̃ = az+b
bz+a

be the Möbius transformation associated with γ ∈ SU(1, 1). We must

show that 〈f ◦ γ̃, g ◦ γ̃〉 = 〈f, g〉 for all f, g ∈ Ṽ . By linearity and term-by-term integration
of power series, it suffices to show this only for the cases where f(z) = zn and f(z) = zn,
n ∈ N. Define f(z) = zn. We first compute deg(f ◦ γ̃). Writing z = x+ iy,

∂

∂x

(
a(x+ iy) + b

b(x+ iy) + a

)n
= n

(
a(x+ iy) + b

b(x+ iy) + a

)n−1(
1

(b(x+ iy) + a)2

)
and

∂

∂y

(
a(x+ iy) + b

b(x+ iy) + a

)n
= n

(
a(x+ iy) + b

b(x+ iy) + a

)n−1(
i

(b(x+ iy) + a)2

)
.

Thus,

deg(f ◦ γ̃)(z) = n

(
a(x+ iy) + b

b(x+ iy) + a

)n−1(
x

(b(x+ iy) + a)2
+

iy

(b(x+ iy) + a)2

)
=
nγ̃(z)n−1z

(bz + a)2
.

For all g ∈ Ṽ , we therefore have

〈f ◦ γ̃, g ◦ γ̃〉 =
1

2π

∫ 2π

0

nγ̃(eiφ)n−1
(

eiφ

(beiφ + a)2

)
g(γ̃(eiφ))dφ.
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Let eiσ = γ̃(eiφ). Then eiσdσ =
(

eiφ

(beiφ+a)2

)
dφ, so substitution gives

〈f ◦ γ̃, g ◦ γ̃〉 =
1

2π

∫ 2π+ψ

ψ

n(eiσ)ng(eiσ)dσ =
1

2π

∫ 2π

0

deg(f)(eiσ)g(eiσ)dσ = 〈f, g〉,

where eiψ = γ̃(1) and the equivalence of the different limits of integration follows because
both correspond to integrating exactly once around the unit circle in the same direction. A
similar computation shows that 〈f ◦ γ̃, g ◦ γ̃〉 = 〈f, g〉 for f(z) = zn, and we thus conclude
that 〈f ◦ γ̃, g ◦ γ̃〉 = 〈f, g〉 for all f, g ∈ Ṽ .
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[4] L. Hörmander. The Analysis of Linear Partial Differential Operators I: Distribution
Theory and Fourier Analysis. Springer, 2nd edition, 2004.

[5] T. Kobayashi and B. Ørsted. Analysis on the Minimal Representation of O(p, q), I. Adv.
Math. 180 (2002), no. 2, 486-512.

[6] S. Lang. Complex Analysis. Springer. 4th edition, 1998.

[7] S. Lang. SL2(R). Springer, 1985.

[8] H.L. Royden and P.M. Fitzpatrick. Real Analysis. Prentice Hall, 4th edition, 2010.

[9] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill Sci-
ence/Engineering/Math, 3rd edition, 1976.

[10] W.Schmid and M.Libine. Geometric methods in representation theory (lecture notes
from a minicourse at the PQR2003 Euro school in Brussels). Proceedings of the Inter-
national Euroschool and Euroconference PQR2003, also math.RT/0402306.

[11] E. M. Stein and G. Weiss. Introduction to Fourier analysis on Euclidean spaces. Prince-
ton Mathematical Series, Vol. 32, Princeton University Press, Princeton, NJ, 1971.


	The Poisson Integral Formula and Representations of SU(1,1)
	Recommended Citation

	tmp.1484499245.pdf.ekTmZ

