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Counting Modular Tableaux

Nathan Meyer Daniel Mork Benjamin Simmons
Bjorn Wastvedt

Abstract. In this paper we provide a bijection between all modular tableaux of
size kn and all partitions of n labeled with k colors. This bijection consists of a
new function proven in this paper composed with mappings given by Garrett and
Killpatrick in [3] and Stanton and White in [4]. We also demonstrate the novel
construction and proof of a mapping essentially equivalent to Stanton and White’s,
but more useful for the purposes of the bijection mentioned above. By using the
generating function for the number of k-colored partitions of n in conjunction with
our bijection, we can count the number of modular tableaux of size kn.
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1 Introduction

We solve the problem of counting the number of modular tableaux by establishing a one-to-
one correspondence between modular tableaux of size kn and k-colored partitions of n. This
correspondence, actually a mapping composed of several bijections, establishes the equality
of the size of its domain and codomain. Using generating functions to count k-colored
partitions then allows us to count modular tableaux.

In [3], Garrett and Killpatrick prove a bijection Φ between modular tableaux of size
kn and k-rim hook tableau shapes of size kn. Stanton and White’s paper [4] establishes
the equality of the number of k-rim hook tableaux and the number of k-tuples of standard
tableaux of total size kn using the mapping Π. We complete the composition by giving
a bijection α between k-tuples of standard tableau shapes of total size kn and k-colored
partitions of n.

The only problem with the composition of these mappings is that the shapes constituting
both the domain and the codomain of Stanton and White’s bijection are tableaux, while the
other two bijections use shapes without content in the relevant sets. Though we show that
this problem can easily be rectified as it stands, we also provide a bijection Π′ that functions
similarly to Stanton and White’s Π (though Π′ is defined much differently) and maps between
tableau shapes, instead of tableaux with content. This bijection composes nicely with the
first (Φ) and last (α) bijections of the composition. Figure 1 shows the domain and codomain
of each bijection with an example object from each set, followed by a description of each set.
When the three bijections are composed, they provide a one-to-one correspondence between
modular tableaux of size kn and k-colored partitions of n.

Φ :

{ modular tableaux, }
⇔

{ k-rim hook tableau }
size kn shapes, size kn

Π′ :

{ k-rim hook tableau }
⇔

{ k-tuples of std. tableau}
shapes, size kn shapes, total size kn

α :

{ k-tuples of std. tableau}
⇔

{ }
shapes, total size kn 2c02c22c22c31c01c11c3

k-colored partitions of n

Figure 1: An illustration of the final composition, Φ ◦ Π′ ◦ α, presented in this paper.
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Sections 2 and 3 give a brief introduction to partition and tableau theory, along with a
theorem relating modular tableaux to their conjugates (Theorem 3.2). An explanation of
Stanton and White’s mapping follows in Section 4, which provides the context for Section 5’s
related mapping. This related mapping is our first main result (Theorem 5.11). With our
newly-defined function Π′ in hand, we go on to show our second result, the final bijection in
the composition (Theorem 6.1).

2 Partitions and Tableaux

Let n be a positive integer. A partition λ of n is a non-increasing sequence of positive
integers (λ1, λ2, . . . λk) that sum to n. A Ferrers shape graphically represents this partition
using a collection of cells constructed such that row i is λi cells long. We write the shape of
a partition λ as 1i12i2 · · ·mim , where m = λ1 and there are ij j’s in the partition λ. When its
cells are each contain some symbol, called their content and usually an integer, the Ferrers
shape is called a tableau. We call a tableau with integer content that increases west to east
and north to south a standard tableau. In a tableau, if there are ij cells with content j, then
the tableau has content 1i12i2 · · ·mim . Figure 2 illustrates a partition, its Ferrers shape, and
a standard tableau of the same shape. For more comprehensive introductions to partition
and tableau theory see [1] and [2], respectively.

(4, 3, 1)

1 2 7 5

6

3 4 8

Ferrers Shape Standard TableauPartition

Figure 2: A partition λ = (4, 3, 1), its Ferrers shape, and a standard tableau of shape λ.
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We now proceed to define several additional terms useful for the purposes of this paper.
Figure 3 gives an illustration of the following two definitions: shell and diagonal. In Figure 3,
the diagonals of the Ferrers shape have been labeled with their integer values. The label of
the dashed line cutting through any cell is the diagonal of that cell.

Definition 2.1. We refer to each cell in a Ferrers shape F with an ordered pair (c, r) repre-
senting the cell’s column and row respectively, which both equal zero in the northwesternmost
cell. A cell (c, r) in F has shell shF ((c, r)) = min(c, r).

Definition 2.2. The diagonal of a cell c in a shape F , denoted diagF (c), is an integer
value describing the location of cell c within the shape. The central diagonal (northwest-
to-southeast running), on which the northwesternmost cell of the shape lies, is numbered 0.
Adjacent diagonals to the right are incremented by 1 and diagonals below are decremented
by 1.

0 1 2 3-1-2

c

Figure 3: An example showing the shell (min(2, 1) = 1) and diagonal (1) of cell c.

Definition 2.3. A Ferrers shape S ′ is conjugate to a Ferrers shape S when S ′ is obtained
by reflecting S over the 0 diagonal. A tableau T ′ is conjugate to a tableau T if the shape of
T ′ is conjugate to the shape of T and the content of cell (j, i) of T ′ is equal to the content
of cell (i, j) of T for all i and j.

2.1 Hooks and Orientation

Definition 2.4. In a shape, two cells are contiguous if they share an edge. Within a Ferrers
shape or a tableau, a hook is a set of contiguous cells with no two cells on the same diagonal.
If the hook is in a tableau, its cells must have identical content. Figure 4 gives an example
of a typical hook within a Ferrers shape of the partition λ = (5, 5, 4, 4, 2).

The head cell of a hook is the northeasternmost cell in the hook, and the tail cell of a
hook is the southwesternmost cell in the hook. The diagonal of the head cell of a hook is the
hook’s diagonal. A hook has an illegal head if its head’s row is not 0 and the cell directly
north of its head is not part of the shape. Similarly, a hook has an illegal tail if its tail’s
column is not 0 and the cell directly west of its tail is not part of the shape. A collection of
hooks is a Ferrers shape λ if and only if no hook in λ has an illegal tail or an illegal head.
Figure 5 gives examples of legal and illegal heads and tails: by the definitions above the cells
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* * *

* *

Figure 4: A Ferrers shape of λ = (5, 5, 4, 4, 2), containing a hook with content *.

in Figure 5 (i) with content * are a hook with a legal head and a legal tail. In Figure 5 (ii)
the cells with content * are a hook with illegal head and an illegal tail. In the latter case, the
head of the hook (in position (4, 3)) is illegal because it is not in row 0, and the cell directly
north of its head (in position (4, 2)) is not in the collection of cells.

* * *

* *

a a a a c

b

b b c c

a b b c c

i) a a a a c

b * * * *

*

b b c c

a b b c c

ii)

Figure 5: Examples of legal and illegal heads and tails.

In some shape λ, two hooks are overlapping if they share at least one diagonal. Two
hooks are head-to-tail if (1) they are not overlapping, and (2) the head cell of one hook and
the tail cell of the other hook are contiguous. Separated hooks are neither head-to-tail nor
overlapping.

Definition 2.5. The outside border of λ is all of the cells not in λ but below and to the
right of the cells in λ, as well as all of the cells not in λ but in row 0 or column 0. In Figure 6,
the outside border of the tableau consists of the cells outlined in black, including the cells
from the top row and left column that do not belong to λ. Also, any set of contiguous cells
in the outside border of a shape constitutes a hook. This is called a rim hook outside λ, as
discussed below.

A hook τ with cells only lying on the outside border of some shape λ, where τ and λ taken
together form another shape λ′, is called a rim hook outside λ. For example, in Figure 5
(i), the hook with content * is a rim hook outside of the rest of the tableau. Repeatedly
adjoining rim hooks with strictly increasing content to an empty (size 0) shape λ results in
a rim hook tableau.

Definition 2.6. If the rim hook tableau consists entirely of rim hooks of size k, it is a
k− rim hook tableau. Notice that, because of their construction method, k-rim hook
tableaux will have content weakly increasing to the south and east. Figure 7 gives an
example where k = 5. Note that the tableau can be constructed by adding the 4 5-rim hooks
to an empty shape one at a time, in alphabetical order of content.
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a a a a c

b d d d

d d

b b c c

a b b c c

Figure 6: An example showing the outside border of a tableau of shape λ.

Definition 2.7. The orientation i ≥ 0 of a k-rim hook is the number of the diagonal
mod k on which the head cell of the k-rim hook lies. A k-rim hook tableau is said to be
oriented if all of its hooks have the same orientation, i.

Take the 5-rim hook with content b in Figure 7 as an example. Its head cell is at position
(2, 1) with diagonal 1; thus the 5-rim hook has orientation 1, because 1 mod 5 = 1.

a a a a c

b d d d

d d

b b c c

a b b c c

a a a a

c

b

d d d

d d

b b
c c

a
b b

c c

5-rim hook tableau 5-rim hooks

Figure 7: A 5-rim hook tableau and its constituent 5-rim hooks.

3 Modular Tableaux

In this section we discuss modular tableaux (also called balanced tableaux) of size kn, which,
through a result proven by Garrett and Killpatrick [3], are in one-to-one correspondence with
the distinct shapes of k-rim hook tableaux of size kn.

Definition 3.1. A (size kn) modular tableau for k, a, and b, where (0 ≤ a, b ≤ n), is a
tableau with the following properties.

1. Any given cell ci,j = (i, j) has content ai+ bj mod k.

2. The tableau contains n 0’s, n 1’s, . . ., and n k − 1’s.

For the purposes of this paper, assume that k = a + b (Figure 8). Note that this condition
ensures that all cells in a given diagonal will have identical content. This restriction is in
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place because the relevant part of our final bijection restricts modular tableaux with this
criterion. See the concluding paragraph for discussion of the k 6= a + b case. A theorem
regarding the conjugates of modular tableaux follows from this definition (Theorem 3.2).

0 1 2 3 0 1

1

2

1

1

2 3 0

3 0

1

3 0 1

2

0

0

1 2

0 1 2

2

3

2 3 0

3 0

1 2 3

3 0 1 2 3

2 3

Figure 8: A modular tableau of size 44 with parameters a = 1, b = 3, k = 4, and n = 11.

Given a modular tableau λ and its conjugate tableau λ′, we define a new tableau λ̃′ by
modifying the content of the tableau λ′. To obtain λ̃′, we replace the content m = ai + bj

mod k of a given cell (j, i) in λ′ with the content m′ = aj + bi mod k in λ̃′. Given these

tableaux (λ, λ′, and λ̃′) we offer the following theorem:

Theorem 3.2. If a tableau λ is modular for k, a, and b with k = a + b, then the following
two conditions hold:

1. Its conjugate tableau λ′ is modular for k, b, and a.

2. The tableau λ̃′ is modular for k, a, and b.

Proof. Let λ be a modular tableau for k, a, and b with k = a+ b. Then the content m of cell
(i, j) in λ (and accordingly, cell (j, i) in the conjugate tableau λ′) is given by ai+ bj mod k.
Hence, λ′ is, by definition, modular for k, b, and a: the same parameters as for λ, with a and
b switched.

Our second claim is less trivially proven but more useful than the first. Because a given
cell (j, i) in λ̃′ has content m′ = aj + bi mod k, the first condition of λ̃′ being modular for

k, a, and b is met. It only remains to show that λ̃′ contains n 0’s, n 1’s, . . ., and n k − 1’s.
To this end, note that

m+m′ = (ai+ bj) + (aj + bi) = i(a+ b) + j(a+ b) = (i+ j)k ≡ 0 mod k.

Therefore m and m′ are additive inverses, and since additive inverses are unique in Zk,
λ̃′ has the same number of cells as λ for each content 0, 1, . . . , k − 1. By definition, λ̃′ is
modular for k, a, and b.
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In practice, to obtain the tableau λ̃′ one simply exchanges the content of each cell in λ′

with its additive inverse. Figure 9 illustrates the progression from λ to λ′ to λ̃′. By Theo-
rem 3.2, λ′ is modular for k, b, and a, and λ̃′ is modular for k, a, and b.

~’ λ’

0

2

2

3

2

1

3 0

0

1 3

1

conjugate swap inverses

0 1 2 3

3 0 1

2 3 0

1 2 3

2

1

0 3 1

0 3 2

01

2

λ λ

Figure 9: The tableau λ is modular for k = 4, a = 1, b = 3. Here, we show λ, λ′, and λ̃′.

This theorem, particularly the second part, is useful in counting the number of modular
tableaux of size kn with k = a+ b. In effect, it tells us that given a modular tableau λ, there
exists a tableau that (1) has a shape conjugate to λ and (2) is also modular for k, a, and b

(Figure 10). Note that the shapes on the right in Figure 10 are conjugate to those on the
left.

We move ahead now in our consideration of modular tableaux to a main result of Garrett
and Killpatrick in [3]. Garrett and Killpatrick present a bijection (which we will label) Φ
between all modular tableaux of size kn for some k, a and b, where k = a + b, and the
distinct shapes of all k-rim hook tableaux of size kn. Given a modular tableau λ, Φ(λ) is
the k-rim hook tableau shape λ, which can be filled with n hooks of size k. Note that the
power of the bijection here lies not with its actual function (which is quite trivial) but with
the fact that all modular tableau shapes are also k-rim hook tableau shapes. The inverse
mapping, of course, also preserves shape. Thus, any modular tableau of size kn has the
shape of a k-rim hook tableau with n hooks. We underscore the fact that the bijection Φ
establishes the equality of the number of distinct shapes of k-rim hook tableaux of size kn

and the number of modular tableaux of size kn, in anticipation of composing this bijection
with two others to prove our main result. The next section begins to deal with the first of
these other mappings.

4 Stanton and White: k-tuples of standard tableaux

In [4], Stanton and White present the mapping Π, a bijection between k-rim hook tableaux
and k-tuples of standard tableaux with distinct entries (Corollary 23). Here, we present an
explanation of the mapping. Refer to [4] for a proof and a more extensive discussion.

In our case, the two sets above (k-rim hook tableaux and k-tuples of standard tableaux)
have all content and k-rim hook structure removed. The bijection Π can still be applied to
these two sets, given (1) an algorithm to fill an empty shape of a k-rim hook tableau with
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Figure 10: All modular tableau shapes for k = 3, a = 1, b = 2.

k-rim hooks and content and (2) an algorithm to fill a k-tuple of standard tableaux with
distinct entries. Garrett and Killpatrick present a solution for the former problem in [3]. The
latter can be accomplished simply by filling each standard tableau in turn with consecutive
positive integers, moving across rows and then down columns.

Example 4.1. We will use tableau T (Figure 11) as a running example throughout this
section.

T:

1 1 1 5 5 6 6

3 3 3 8

11 11

8

4 7 11

9

4 7 7 8 9 9

6

10

10 10

4 7 11

4

10

2 2 3 5 8 9

1 2 2 5 6

Figure 11: The 4-rim hook example tableau T .
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4.1 Manipulating k-Rim Hook Tableaux

The mapping Π is actually a composition of two main functions, E and Γ. We begin by
describing the E function through a discussion of its three constituents, Ch, SE and Era.

The function Chc acts on a k-rim hook tableau P with content 1k2k · · ·mk, changing P

into a new k-rim hook tableau Q. Specifically, Chc adjusts the content of the cells of the
k-rim hook with content c, assigning c to a value between c and c+1. We note that tableaux
traditionally require integer contents; however for ease of description, we let the symbols in
the tableau be non-integer rationals as well. Therefore we have c ∈ Q.

Let Q be a k-rim hook tableau with content 1k2k · · · (i − 1)kck(i + 1)k · · ·mk, where c

holds a value between i and i + 1, and m is the greatest content in Q. As usual, all cells
in a given k-rim hook hold the same value, the content of each k-rim hook is distinct, and
the content of the cells in the tableau weakly increases to the south and east in the tableau.
Note that the tableau Q contains m k-rim hooks.

The function SEc maps Q to Q′, another k-rim hook tableau of the same shape but with
content 1k2k · · · (i− 1)k(i+1)k · · ·mkck (where c > m) as described below. In each iteration
of the process, the function adds 1 to the value of c, changing the content of the tableau. But
the content cannot be changed without also adjusting other content, as the tableau must
have weakly decreasing content. This step of adjusting other content, split into three cases,
is performed first. For each case, refer to Figure 12 for examples. In Figure 12, the original
content of the tableau is c42434 · · · 114. Several consecutive steps of the process are shown,
each of which is an example of one of the three cases enumerated below.

1. Adjust appropriate content of the tableau.

1. If (the k-rim hooks with content) c and i + 1 overlap, SEc swaps the contents c
and i+ 1 along the diagonals of Q′ common to c and i+ 1.

2. If c and i+ 1 are separated, SEc leaves the tableau unchanged.

3. Otherwise, c and i+1 are head to tail. In this case, SEc swaps all contents c and
i+ 1.

2. Now SEc adds 1 to the value of c, adjusting the content of the k-rim hook with content
c, and thus creating a different k-rim hook tableau.

This two-step process repeats until the content c is the largest in the tableau.
Note that SEc essentially migrates the k-rim hook with content c from its original position

in Q to a position adjacent to the outside border of Q′. Note also that SEc preserves
orientations: that is, if a k-rim hook r has orientation i in Q, r will also have orientation i

in Q′.
Next, we define one more mapping: Erac(P ). Let P be any k-rim hook tableau. The

mapping Erac(P ) erases the k-rim hook with content c in P by removing all of its cells from
P . Thus Erac(P ) will be a valid k-rim hook tableau if c is the largest content in P : in this
case, the k-rim hook r with content c is a k-rim hook outside the shape P − r (P , without
any of the cells in r).
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SEc ( ) = }
6 < c < 7 7 < c < 8 8 < c < 9

case 2

9 < c < 10

case 1case 3

c c c 5 5 6 6

3 3 3 8

11 11

8

4 7 11

9

4 7 7 8 9 9

6

10

10 10

4 7 11

4

10

2 2 3 5 8 9

c 2 2 5 6

2 2 5 5 5 8 8

3 3 6 9

11 c

9

4 7 11

c

4 7 7 11 c c

8

10

10 10

4 7 11

4

10

2 3 6 6 9 9

2 3 5 6 8

2 2 5 5 5 c c

3 3 6 8

11 11

8

4 7 11

9

4 7 7 8 9 9

c

10

10 10

4 7 11

4

10

2 3 6 6 8 9

2 3 5 6 c

2 2 5 5 5 8 8

3 3 6 c

11 11

c

4 7 11

9

4 7 7 c 9 9

8

10

10 10

4 7 11

4

10

2 3 6 6 c 9

2 3 5 6 8

2 2 5 5 5 8 8

3 3 6 9

11 11

9

4 7 11

c

4 7 7 c c c

8

10

10 10

4 7 11

4

10

2 3 6 6 9 9

2 3 5 6 8

2 2 5 5 5 c c

3 3 6 8

11 11

8

4 7 11

9

4 7 7 8 9 9

c

10

10 10

4 7 11

4

10

2 3 6 6 8 9

2 3 5 6 c

Figure 12: An example of the function SEc(T ).

4.2 Evacuating k-Rim Hook Tableaux

Let P be any k-rim hook tableau. Combining SEc, Chc, and Erac, for some content c in P ,
the mapping Ec(P ) effectively removes (or “evacuates”) the k-rim hook with content c in P

and repositions any other affected k-rim hooks so that Ec(P ) yields a k-rim hook tableau,
but with k fewer cells. We define Ec(P ) as follows:

Ec(P ) = Erac ◦ SEc ◦ Chc(P ).

The mapping Ec(P ) first changes the content of the cells in the k-rim hook with original
content c, then migrates this changed k-rim hook using SEc. Finally, as c is then the greatest
content of P , its k-rim hook can be erased, creating a new k-rim hook tableau P ′ (Figure 13).
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2 2 5 5 5 8 8

3 3 6 9

11

9

4 7 11

4 7 7 11

8

10

10 10

4 7 11

4

10

2 3 6 6 9 9

2 3 5 6 8

Figure 13: Example 4.1 continued: Ec(T ), c = 1.

We know that Ec(P ) preserves the orientation of each of the k-rim hooks in P . Suppose
that the k-rim hooks in P that have orientation i (0 ≤ i ≤ k − 1) have content c1, c2, . . . , cl
(1 ≤ c1 < c2 < · · · < cl ≤ m). Then the k-rim hook tableau given by

E(i)(P ) = Ec1 ◦ Ec2 ◦ · · · ◦ Ecl(P )

has no k-rim hooks of orientation i. Stanton and White prove that the Ecj ’s can be composed
in any order without changing the resulting tableau (Stanton and White, Lemma 10 and
Lemma 12). Regardless of the order of composition of the E(j)’s in the final evacuation
algorithm,

E(̃i)(P ) = E(0) ◦ E(1) ◦ · · · ◦ E(i−1) ◦ E(i+1) ◦ · · · ◦ E(k−1)(P ),

the result will be the same. The mapping E(̃i)(P ) evacuates all k-rim hooks without orien-
tation i, producing an i-oriented k-rim hook tableau (Figure 14). With the mapping E(̃i)

in hand, we note a crucial result from Stanton and White (Lemma 15): two k-rim hook
tableaux P and Q have the same shape if and only if E(̃i)(P ) and E(̃i)(Q) have the same
shape for all i.

1 1 1 6 6 6

7

7

7

7 8

1 8 8 8

6

Figure 14: Example 4.1 continued: E(̃i)(T ) with i = 2.

4.3 Completing the Bijection Π

Let P be an i-oriented k-rim hook tableau. Then the mapping Γ(P ) produces a standard
tableau: for every k-rim hook r with content c in P , if diagP (r) = ak+i (with i ≥ 0) for some
integer a, then diagΓ(P )(r) = a (Figure 15). If P (for example) has content 1k203k4k5060708k,
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then Γ(P ) has content 1120314150607081. Moreover, it is not hard to prove that two i-oriented
k-rim hook tableaux P and Q have the same shape if and only if Γ(P ) and Γ(Q) have the
same shape (Stanton and White, Lemma 16). With this result, we can combine Γ and E(̃i)

to arrive at the desired bijection Π.

1 6

7 8

Figure 15: Example 4.1 continued: the composition Γ ◦ E(̃i)(T ) for i = 2.

The mapping Π(P ) transforms any k-rim hook tableau P of size kn into a distinct k-
tuple of standard tableaux of total size n (Figure 16). Let 0 ≤ i ≤ k− 1. Then the mapping
Π(i)(P ) = Γ ◦ E(̃i)(P ) yields the standard tableau λi from the k-tuple:

Π(P ) = (λ0, λ1, . . . , λk−1) where λi = Π(i)(P ) = Γ ◦ E(̃i)(P ).

Let R be the set of all distinct shapes of k-rim hook tableaux of size kn, and let S be
the set of all the distinct k-tuples of shapes of standard tableaux that have sizes totalling n.
By previous results, two k-rim hook tableaux P and Q have the same shape if and only if
Π(i)(P ) and Π(i)(Q) have the same shape for all i. Therefore, the mapping Π is one-to-one
with R as its domain and S as its codomain. Stanton and White show that Π is a bijection
from k-rim hook tableaux to k-tuples of standard tableaux with distinct content (Corollary
23). Thus Π is onto. These two results imply that Π is also a bijection between R and
S. Using these two sets is important for the eventual composition of Π with Garrett and
Killpatrick’s Φ, above, and our α, below. Note that, though we have just proven the equality
of the sizes of the sets R and S, Π does not biject between them directly. To do so (as we
will need to do for Theorem 6.1), it is necessary to use either mappings to add and remove
content (specified at the beginning of this section) from the domain and range of Π) or to
provide a new bijection entirely without content. We pursue the latter approach below.

1 6

7 8

3 5

4

2 9 10

11
(T) =( ), , ,

Figure 16: Example 4.1 continued: Π(T ) = (λ0, λ1, λ2, λ3).

5 Mapping using k-Rim Hook Shapes: Π
′

The function Π = Γ◦E, explained above, maps each k-rim hook tableau of size kn to a k-tuple
of standard tableaux of total size n. As mentioned above, we will introduce the effectively
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similar but much differently defined Π′ in this section to facilitate function composition with
the mappings Φ (Section 3) and α (Section 6). Additionally, Π′ proves the equality of the
sizes of the domain and codomain of Stanton and White’s Π in a new manner. The function
Π′ maps from size kn k-rim hook shapes, instead of k-rim hook tableaux, to k-tuples of
Ferrers shapes (essentially 1-rim hook tableaux) with total size kn. We will define Π′ using
the Γ function (Section 4.3) composed with a new function E ′. Thus Π′ = Γ ◦ E ′.

5.1 Evacuating k-Rim Hooks

Though the function E ′ in Π′ takes the place of E in Π, E ′ is defined much differently than
its analogue. In the description of E ′ below, we define and compose the functions NW and
Era, and when showing E ′−1, the functions NW and Com are required. We begin with a
construction of E ′.

Let P be any k-rim hook shape (Figure 17). Then the mapping Era(̃i)(P ) erases all of
the cells of all k-rim hooks of orientation 6= i in P (Figure 18). The mapping NW moves all
(remaining) cells diagonally northwest as far as possible (Figure 19). Let i be an orientation
such that 0 ≤ i < k − 1. Using these two mappings, we can define the mapping E ′

(̃i)
(P ),

which removes all cells belonging to k-rim hooks of orientation 6= i in P , and then creates a
k-rim hook shape of orientation i with the remaining cells, as follows:

E ′

(̃i)
(P ) = NW ◦ Era(̃i)(P ).

By evacuating from a k-rim hook shape all of the k-rim hooks that have orientation not
equal to some integer i, the function E ′(P ) maps k-rim hook shapes of size kn to k-tuples
of i-oriented k-rim hook shapes of total size kn. Thus we define E ′(P ) by

E ′(P ) = (E ′

(0̃)
(P ), E ′

(1̃)
(P ), . . . , E ′

(k̃−1)
(P )).

Let c be any given cell in Era(̃i)(P ), and let r be the k-rim hook that contains c. Let
the nonnegative integer m be the number of cells s in Era(̃i)(P ) where shP (s) < shP (c)
and diagP (s) = diagP (c). Then shE′

(̃i)
(P )(c) = m. For example, within the 4-rim hook r in

Figure 18, the cell with content c satisfies diagP (c) = 1. To determine shE′

(2̃)
(P )(c), we find

the number m of cells directly northwest of c. Here, s is the only such cell, so m = 1.
Now all of the remaining k-rim hooks have the same orientation. Given any integer n,

the number of cells in Era(̃i)(P ) with diagonal j + n is equal for each 0 ≤ j < k. In other
words, the number m will be equal for each c in k-rim hook r. Thus, shE′

(̃i)
(P )(c) = m for all

cells c in r (Figures 18 and 19).

Example 5.1. Shown below, T is a 4-rim hook shape with 44 cells, an element of the domain
of Π′. Note that the shape T is the same as the shape of the tableau in Example 4.1 above.
We use T as a running example throughout this section.
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T:

Figure 17: An example 4-rim hook shape T , used throughout this section.

rc

s

}

Figure 18: Example 5.1 continued: the collection of cells Era(2̃)(T ).

Let P be any k-rim hook tableau. For any diagonal d in P , let the sets Sd+1 and Sd

consist of all the cells in P with diagonals d + 1 and d, respectively. Let nd be the number
of cells in P with diagonal d that are head cells of some k-rim hook (with diagonal d) in P .
Let the set S ′

d consist of all the cells in Sd that are not head cells of some k-rim hook (with
diagonal d) in P . So nd = |Sd| − |S ′

d|.

Lemma 5.2. Let A = {0, 1}. Let δ+ = |Sd+1| − |Sd| and δ− = |Sd−1| − |Sd|. Then there are
nd+k and nd−k k-rim hooks of diagonal d+ k and d− k, respectively, where:

1. nd+k = nd + δ+. 3. δ+ ∈ −A if d ≥ 0; δ+ ∈ A if d < 0.

2. nd−k = nd + δ−. 4. δ− ∈ −A if d− k + 1 < 0; δ− ∈ A if d− k + 1 ≥ 0.

Proof. Because P is a shape, d ≥ 0 implies δ+ = 0 or −1 and d < 0 implies δ+ = 0 or 1 (3).
By substitution in the definitions above, |Sd+1| − |S ′

d| = nd + δ+. If any cell in Sd+1 is not
a tail cell of some k-rim hook (which would have diagonal d+ k), then its k-rim hook must
contain a cell in S ′

d as well. Moreover, no cell in S ′

d is a head cell (by assumption), so each
must be in the same k-rim hook as some cell in Sd+1. In other words, the non-tail cells in
Sd+1 are all paired with a distinct cell in S ′

d. Because the sets differ in size by nd + δ+, there
must be exactly nd + δ+ cells in Sd+1 that are tail cells of k-rim hooks (with diagonal d+ k).
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c
s

Figure 19: Example 5.1 continued: NW ◦ Era(2̃)(T ) = E ′

(2̃)
(T ).

This conclusion implies (1). Parts (2) and (4) follow from similar arguments concerning
the tails of the k-rim hooks, or alternatively from the application of the proof above to the
conjugate of P . For a concrete application of this lemma, see Examples 5.3 and 5.4 and the
accompanying Figures 20 and 21.

Example 5.3. The collection of cells below (Figure 20) contains k-rim hooks of orientation
1 from some shape with k = 4. All 4-rim hooks are shown that have diagonal 5 or −3. We
use Lemma 5.2 to find how many 4-rim hooks of diagonal 9, 1, and −7 must belong in the
original shape. We know n5 = 2 and n−3 = 1.

Let d = 5. By Lemma 5.2 (3) and (4), we have δ+ ∈ −A and δ− ∈ A. By (1),
n9 = n5 + δ+ = 1 or 2. By (2), n1 = n5 + δ− = 2 or 3.

Let d = −3. Using Lemma 5.2 again, we get δ+ ∈ A and δ− ∈ −A. Then n1 = 1 or 2
and n−7 = 0 or 1. By the conclusions from both values of d, we know that n1 must be 2.

d = 1

d = -3

d = -7

d = 5 d = 9

Figure 20: Applying Lemma 5.2, we find that n9 = 1 or 2, n1 = 2, and n−7 = 0 or 1.

Example 5.4. In Figure 21 below, k = 4. Let d = 5. Then nd = n5 = 2. To show an
example of Lemma 5.2 (1), we must find n5+k = n9. From the proof of 5.2, we know that
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there must be exactly nd + δ+ = nd+k cells in Sd+1 that are tail cells of k-rim hooks with
diagonal d + k. Therefore, exactly n9 of the cells with content c1 through c6 (in S5) will be
tail cells of the n9 4-rim hooks with diagonal 9. But c7, c9, c10, and c12 cannot be head cells,
because (as mentioned above) all the 4-rim hooks with diagonal 5 are shown. If none of
these four cells are head cells, then the 4-rim hooks of which they are a part must also each
contain exactly one of c1 through c6. Therefore n9 ≤ 2 = 6 − 4. But if any cell c1 through
c6 is not a tail cell, its 4-rim hook will also contain a cell in diagonal 5. Therefore, n9 = 2.
Lemma 5.2 (1) finds this same result using δ+, which, in this case, is 6 − 6 = 0 ∈ −A, so
n9 = n5 + 0 = 2.

d = 1

d = -3

d = -2

c1

c2

c3

c4

c5

c6c12

c7

c8

c9

c10

c11

Figure 21: Example of Lemma 5.2 (1) when d = 5.

Corollary 5.5. If d ≥ 0 and δ+ = −1, then nd ≥ 1. If d < 0 and δ+ = 1, then nd+1 ≥ 1.

Proof. The proof of Lemma 5.2 states that when d ≥ 0 there must be nd + δ+ cells in Sd+1

that are tail cells of k-rim hooks (with diagonal d+ k). Of course, there cannot be −1 such
cells, as there would be if δ+ = −1 and nd = 0. Therefore, nd ≥ 1. Likewise, if δ+ = 1 and
d < 0, nd+1 ≥ 1 because nd ≥ 0. Note that a similar corollary can be drawn for δ−.

Next consider each nonempty set Shm of the remaining (i-oriented) k-rim hooks that
have shell m ≥ 0 in E ′

(̃i)
(P ). Let |Shm| = q and 0 ≤ j < q. Order the k-rim hooks in Shm by

their diagonal such that for all k-rim hooks rmj
∈ Shm (0 < j < q), diagE′

(̃i)
(P )(rmj

) >diagE′

(̃i)
(P )(rmj−1

).

No two k-rim hooks in Shm have the same diagonal, as they are all in the same shell and
therefore cannot overlap. Then the ordered set {diagE′

(̃i)
(P )(rmj

)} = k{cj} + i for some

integers cj ∈ Z.
Suppose, toward contradiction, that c0 > 0 (i.e. no k-rim hook in Shm contains a cell

with diagonal 0). By Lemma 5.2 (2) and (4), there is another k-rim hook in Shm that has
diagonal k(c0 − 1) + i and is head to tail with Shmj

. Thus c0 is not the smallest value in
Shm, a contradiction. So c0 ≤ 0.
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Likewise, assume cq−1 < 0. Then by Lemma 5.2 (1) and (3), Shmq−1 is head-to-tail with
another k-rim hook in Shm with diagonal k(c0 + 1) + i, and cq−1 is not the largest value in
Shm. Therefore, cq−1 ≥ 0, the set {cj} consists entirely of consecutive integers, and 0 ∈ {cj}.

Thus in E ′

(̃i)
(P ), each Shm is a collection of cells made up entirely of contiguous k-rim

hooks, making it an i-oriented k-rim hook shape of size kq.

Lemma 5.6. For anym ≥ 0, when |Shm| > 0 and |Shm+1| > 0, Shm∪Shm+1 is an i-oriented
k-rim hook shape.

Proof. Suppose max({diag(Shm)}) < max({diag(Shm+1)}). Then the rim hook with the
greatest diagonal, rmax ∈ Shm+1, would not satisfy shE′

(̃i)
(P )(rmax) = m + 1 because the

diagonal of the head cell of rmax does not include a cell in shell m, by hypothesis. Thus we
have shE′

(̃i)
(P )(rmax) ≤ m, a contradiction.

Suppose max({diag(Shm)}) = max({diag(Shm+1)}) = d. Then there are nd ≥ 2 k-
rim hooks of diagonal d in P . By Lemma 5.2, there must be at least nd − 1 k-rim hooks
of diagonal d + k in P . But then Shm contains a k-rim hook with diagonal d + k, and
max({diag(Shm)}) > d, a contradiction.

Therefore, max({diag(Shm)}) > max({diag(Shm+1)}). Moreover, |Shm| > 1 because
|Shm+1| > 0 and because each shell must contain a k-rim hook with a cell on the zero
diagonal. So max({diag(Shm)}) > 0, and there is a cell in shell m directly north of the head
cell of the k-rim hook with the greatest diagonal in shell m + 1. Thus there are no illegal
heads in Shm ∪ Shm+1.

Similar arguments applying to the inequality relating min({diag(Shm)}) and
min({diag(Shm+1)}) prove that there are no illegal tails in Shm ∪ Shm+1 either. Therefore,
Shm ∪ Shm+1 is a shape, and because both Shm and Shm+1 consist entirely of i-oriented
k-rim hooks, Shm ∪ Shm+1 is an i-oriented k-rim hook tableau.

Lemma 5.7. For any orientation i and any k-rim hook shape P , E ′

(̃i)
(P ) is an i-oriented

k-rim hook shape.

Proof. Consider each nonempty set Shm of the (i-oriented) k-rim hooks that have shellm ≥ 0
in E ′

(̃i)
(P ). Let the set containing k-rim hooks in the greatest shell be denoted Sht. We know

that Sh0 is an i-oriented k-rim hook shape. By Lemma 5.6, Sh0∪Sh1 and Sh1∪Sh2 are also
i-oriented k-rim hook shapes. Thus Sh0 ∪ Sh1 ∪ Sh2 forms an i-oriented k-rim hook shape.
Likewise, adding the cells of Shj to the i-oriented k-rim hook shape Sh0 ∪ Sh1 ∪ · · · ∪ Shj−1

creates a new i-oriented k-rim hook shape. When j = t, we see that Sh0 ∪ Sh1 ∪ · · · ∪ Sht

is an i-oriented k-rim hook shape as well.

Lemma 5.7 shows that E ′

(̃i)
(P ) is an i-oriented k-rim hook shape (see Figure 19 for an

example). Also by Lemma 5.7, E ′(P ) results in a k-tuple of i-oriented k-rim hook shapes
of the same total size as P . Figure 22 gives an example of E ′(P ), mapping the 4-rim hook
shape T (from Example 5.1) to a 4-tuple of i-oriented 4-rim hook shapes, for 0 ≤ i < 4.
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It is obvious but important to note that the set of all diagonals of the k-rim hooks in P is
identical to the set of all diagonals of the k-rim hooks in E ′(P ) (in other words, the k-rim
hooks do not change diagonal as they are moved around by E ′).

5.2 The Inverse Evacuation Algorithm, E ′−1

Let Q = (P0, P1, . . . , Pk−1) be a k-tuple of i-oriented k-rim hook shapes Pi for all 0 ≤ i < k

(Figure 22). The inverse evacuation algorithm, E ′−1, will rebuild the 4-rim hook shape T

(Figure 17) from these i-oriented k-rim hook shapes (Figure 22). The mapping Com(Q)
composes these tableaux into one collection of cells as follows: start with a collection of cells
of size 0. Then, for consecutive values of i, starting with i = 0, place Pi such that (1) its
northwesternmost cell lies on the 0-diagonal and (2) Pi occupies the lowest unused shell or
shells (Figure 23).

( )V =

, , ,

= (T0, T1, T2, T3)

Figure 22: Example 5.1 continued: E ′(T ) = V = (T0, T1, T2, T3).

T0

T1
T2

T3

Figure 23: Example 5.1 continued: Com(V ), with V as in Figure 22.

We then define the mapping E ′−1 = NW ◦Com, using the function NW . In Figure 24,
composing the mapping NW (see Section 5.1) with Com(V ) (Figure 23) results in E ′−1(V ) =
NW ◦ Com(V ), which has the same shape as T from Figure 17.
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Figure 24: Example 5.1 continued: E ′−1(V ) = NW ◦ Com(V ).

Lemma 5.8. For any Q = (P0, P1, . . . , Pk−1) as defined above, E ′−1(Q) is a k-rim hook
shape of the same size as the total size of the Pi.

Proof. We know that the 0-oriented k-rim hook shape (which occupies shells 0, 1, . . . in Com)
is a shape, and therefore has no illegal heads or tails. Now assume that, for orientation
0 < i < k, E ′−1((P0, P1, . . . , Pi−1)) = T is a shape. Then consider the collection of cells
E ′−1((P0, P1, . . . , Pi)) = T ′, formed by shoving all cells from the i-oriented k-rim hook shape
Pi northwest along their diagonals (the mapping NW accomplishes this). Consider the cells
in Pi by shell, starting with Pi’s lowest shell, denoted s (Example 5.9 provides an instance
of the following discussion).

There is a cell on the 0-diagonal of Pi by Lemma 5.6. This cell (s, s) will not move
under NW because Com assures that the cell (s− 1, s− 1) is part of T . Consider the cells
in the same shell, (c, s), for column numbers s < c ≤ m, where m is the easternmost column
in Pi. To preserve the k-rim hooks, each cell (c, s) can be shoved at most one more unit
northwest than its neighbor cell (c−1, s). Assume (without loss of generality) that (c−1, s)
cannot be shoved northwest at all; it is shoved 0 units. If (c, s) could be shoved more than
one unit northwest, then the cell (c − 2, s − 1) would be an illegal head. Since the cells in
shells < s constituted the shape T , this would be a contradiction. So, as the preceding proof
applies to all consecutive shells of Pi, all of the k-rim hooks with cells on diagonals ≥ 0 will
be intact in T ′, and (obviously) their diagonals and orientations will not change (Figure 25,
(1)).

Finally, consider the northeasternmost cell p in Pi, with position (m, s) in Com(Q).

In T ′, p = (m − n, s − n) for some integer n. Suppose that, in T ′, p is an illegal
head. Necessarily then, (m − n, s − n − 1) 6∈ T . Note that, by definition of NW , the cell
(m − n − 1, s − n − 1) ∈ T , and also (m − n − 1, s − n − 2) ∈ T because T is a shape by
assumption. Let d be the diagonal of p (d = (m − n) − (s − n)). We know d > 0 because
m− n > s− n. Let the sets Sd+1 and Sd consist of all the cells in T with diagonal d+1 and
d respectively, as in Corollary 5.5 above. Then we have |Sd+1| − |Sd| = −1 = δ+, because
the cells (m− n− 1, s− n− 2), (m− n− 1, s− n− 1) ∈ T , and T is a shape.

By Corollary 5.5, nd, the number of k-rim hooks of diagonal d in T , satisfies nd ≥ 1.
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Moreover, d mod k = i, because p is the head cell of an i-oriented k-rim hook in Pi, so there
are nd k-rim hooks of orientation i in T . But because the shell s of Pi is the lowest shell of
Pi and no oriented k-rim hook shape in Q besides Pi contains any k-rim hooks of orientation
i, this is a contradiction.

Therefore, (m, s) is not an illegal head in T ′. Because the cells in Pi remain contiguous,
the only possible illegal head in T ′ is (m, s). So T ′ has no illegal heads (Figure 25 (2)).
A similar argument (or the same argument, considering the conjugates of T and Pi) shows
that T ′ will have no illegal tails, that all k-rim hooks with cells on diagonals less than 0 will
be intact in T ′, and (obviously) that their diagonals and orientations will not change in the
shell s. Therefore, T ′ is a shape.

By induction, the function E ′−1(Q) results in a k-rim hook shape. Since E ′−1(Q) first
composes all of the cells from all Pi into one collection of cells, E ′−1(Q) must have the same
size as the total size of all Pi.

Example 5.9. Below (Figure 25) is an example of the impossibility of NW creating illegal
heads or illegal tails. The cell c1, under NW , cannot be shoved more than one unit diagonally
beyond the position of its neighboring cell c0. Were it was shoved more than one unit beyond
c0, leaving c0 as an illegal head, the cells c3, c4, and c5 would not exist, and c2 would be an
illegal head in the original shape. The algebra in the discussion above can be applied to the
case displayed here, where the shell and column of the cell in question (c1) are s = 2 and
c = 4, respectively.

Also note that if rQ is a k-rim hook in Pi for some i, then a k-rim hook rE′−1(Q) consists
of exactly the same cells as rQ. Moreover, diagQ(rQ) = diagE′−1(Q)(rE′−1(Q)).

NW ( ) =

(1) (2)

c0

c3

c2

c4 c5

c1 s = 2; c = 4

c1 =(4,2)

c2 =(2,1)

c0 =(3,2)

Figure 25: An illustration that NW results in no illegal heads or tails.

Lemma 5.10. The mapping E ′ is a bijection between the set of all k-rim hook shapes of
size kn and the set of all k-tuples of shapes of i-oriented k-rim hook tableaux (one for each
0 ≤ i < k) with total size kn.
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Proof. Since the diagonals of each k-rim hook in Q completely determine the Pi for all i,
and since these diagonals do not change either in E ′ or in E ′−1, Stanton and White’s Lemma
15 implies that E ′ ◦ E ′−1 = ǫ = E ′−1 ◦ E ′. As shown above, both E ′ and its inverse are
well-defined functions between the two finite sets (Lemmas 5.7 and 5.8). Therefore, E ′ is a
bijection.

Note that the domain of E ′ is all k-rim hook shapes, not k-rim hook tableaux. This
fact is one of the primary characteristics that differentiate Π′ from Π.

5.3 Completing the Bijection Π′

Having proven that E ′ is a bijection, we are ready to compose E ′ with Γ to complete our
proof of the mapping Π′. Define Γ as in Section 4.3. Note that, though the running example
in Section 4 was a tableau, the content of the tableau (which sets it apart from a mere
shape) is not necessary for the functioning of Γ. So here we consider as Γ’s domain all
shapes of i-oriented k-rim hook tableaux of size kn, and for its codomain the shapes of
standard tableaux of size n. As before, Γ is a bijection between these two sets.

The function Π′ itself is defined as before and has the same properties as before:

Π′(P ) = (λ0, λ1, . . . , λk−1) where λi = Π′

(i)(P ) = Γ ◦ E ′

(̃i)
(P ).

Theorem 5.11. The mapping Π′, as defined above, is a bijection between all modular
tableau shapes of size kn and all k-tuples of shapes of standard tableaux with total size n.

Proof. Both Γ and E ′

(̃i)
are bijections, as shown above, so their composition is a bijection as

well. Note that the function Π found by Stanton and White and described above (Section 4)
is proven with Π′: by adding appropriate content to the k-rim hook shapes in the domain
of Π′ and preserving the content of each cell throughout the bijection, Π′ can be used to
demonstrate Π.

6 Counting Modular Tableaux with Colored Partitions

In order to reach our final result, we define the bijection α between the set of k-tuples of λis
(standard tableau shapes) and the set of k-colored partitions of n. Note that, in a k-colored
partition of n, multiple rows of the same length hold a combination, not a permutation of
colors. Thus, swapping rows of the same length but of different colors in a k-colored partition
of n does not result in a different k-colored partition of n.

The bijection α maps any k-tuple of standard tableau shapes to a distinct colored
partition of n by coloring each row of the standard tableau shape λi with color i and then
creating a partition of n composed of all the row lengths and their colors from the k-tuple.
For example, if λ0 has a Ferrers shape of 2131 then the standard tableau shape λ0 contributes
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3c0 2c0 (where ci is a distinct color for each i) to the partition. Given this definition of α, we
can also define its inverse. The function α−1 maps any k-colored partition of n to a distinct
k-tuple of standard tableaux by separating the parts of the partition based on their color and
creating a distinct standard tableau shape out of each monochromatic group of row lengths.
Thus α−1 results in a k-tuple of standard tableau shapes of total size n. Because α and α−1

are well-defined, α is a bijection. Below, See Figure 26, below, for an example. The partition
on the right is colored with colors ci for 0 ≤ i < 4.

= 2 2 2 2 1 1 1

c0 c2 c3c1

c0 c1c2 c3c0c3c2
( ), , ,

Figure 26: An illustration of α ◦ Π(T ) with Π(T ) given as in Figure 16.

With α in hand, we are now ready to compose the bijections Φ, Π′, and α to attain our
final result, which allows us to count modular tableaux by counting partitions:

Theorem 6.1. The number of modular tableaux of size kn is equal to the number of k-
colored partitions of n for all k, n ∈ N.

Proof. Because Φ, Π′, and α are bijections, their composition is also a bijection. Therefore
the two sets (the domain of Φ and the codomain of α) have equal size.

Generating functions can be used to count the number of k-colored partitions of n.
See [1] for a thorough introduction to generating functions; here, we give a cursory explana-
tion. The number of k-colored partitions of n is

〈
qn |

∞∏

m=1

(
1

1− qm

)k
〉
.

That is, the coefficient of the qn term in the expansion of

∞∏

m=1

(
1

1− qm

)k

is the number of k-colored partitions of n. For example, let k = n = 3. Then the number of
3-colored partitions of 3 is 22, the coefficient of the q3 term in the equation

∞∏

m=1

(
1

1− qm

)3

= 1 + 3x+ 9x2 + 22x3 + 51x4 +O(x5).

Having established the equality of the number of k-colored partitions of n and the
number of modular tableaux of size kn (for a + b = k) in Theorem 6.1, we can use the
generating function above to enumerate the latter set as well.
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This result also prompts and renews interest in related questions. Here we offer three
subjects for further exploration. The first deals with tableaux that are modular when we
do not consider a collection of cells, known as a core, which remains after all possible k-
rim hooks have been removed from the tableau. For tableaux containing cores, we propose
that a result similar to Theorem 6.1 can be proven. A second open question arises from
patterns we have noted in the number of modular tableaux with other combinations of a
and b, where a + b 6= k. Some behave similarly to the a + b = k case, while others exhibit
recurring sequences that are unexplained. Explaining these sequences with a combinatorial
mapping should be possible; an attempt could follow the general structure of our results
above. Finally, though the composition given in Theorem 6.1 suffices to show the desired
correspondence, it seems plausible that a simpler combinatorial mapping exists. Research
could continue in this area as well.
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