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Abstract. In this article, we present general properties of �xed-point groups of the

automorphisms of �nite groups. Speci�cally, we determine the form of �xed-point

groups and partition Aut(G) according to the number of �xed points possessed by

each automorphism. A function θ records the size of each partitioning set; we �nd

properties for θ in general and develop formulae for θ with respect to certain classes

of �nite abelian groups.
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1 Introduction

An automorphism of a group G is an isomorphism whose domain and range are both G (see
[3]). Thus, an automorphism of G may be seen as permuting the elements of G in a way that
preserves the operation of G. The set of all automorphisms of G under function composition
forms a group, called the automorphism group of G (denoted Aut(G)) [3].

One may learn more about the structure of both Aut(G) and G by investigating the �xed
points of each automorphism α ∈ Aut(G). A �xed point of α is an element g ∈ G for which
α(g) = g. We begin by introducing the framework through which we will view �xed points.
In particular, we shall focus on the function θ that counts the number of automorphisms of
G with a given number of �xed points. We then explore how �xed points of G are related
to subgroups H ≤ G and how the �xed points of two groups A and B are related to those
of A × B. This theory is employed to determine formulae for θ for some classes of �nite
abelian groups. Some of our early results may be found elsewhere in the literature but were
included for the sake of completeness.

Note 1 We assume all groups discussed to be �nite and reserve ι as the identity automor-
phism (which maps each element of G to itself). We denote the identity in a general group
G by e.

2 Background Material

2.1 Fixed-Point Basics

For any group G, the �xed-point map FG : Aut(G)→ S(G) is de�ned by FG(α) = {g ∈ G :
α(g) = g} for each α ∈ Aut(G), where S(G) = {H : H ≤ G}. The set FG(α) is called the
�xed-point group of α. The following theorem proves that this map and terminology make
sense.

Theorem 1 For any group G, FG(α) ≤ G for all α ∈ Aut(G).

Proof: Let α ∈ Aut(G) and denote F = FG(α). Since α is an automorphism, α(e) = e,
so e ∈ F . Suppose g, h ∈ F . Then α(g) = g and α(h) = h, so α(gh) = α(g)α(h) = gh and
α(g−1) = α(g)−1 = g−1. Hence, gh, g−1 ∈ F and F ≤ G, as desired. �

Since FG(α) ≤ G for all automorphisms α, it follows by Lagrange's Theorem that the
order of FG(α) divides the order of G. Hence, it is reasonable to collect automorphisms
into subsets of Aut(G) based on how many �xed points each possesses (i.e., based on the
order of FG(α)). This motivates the following relation: let ∼ be a binary relation de�ned on
Aut(G) by α ∼ β if and only if |FG(α)| = |FG(β)|. Because integer equality is an equivalence
relation, so is ∼. Hence, the equivalence classes induced by ∼ partition Aut(G) and motivate
the following de�nition:
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De�nition 1 Let d divide |G|. Then the set of d-�xers is SGd = {α ∈ Aut(G) : |FG(α)| = d}
and θ(G, d) = |SGd |.

Note 2 Where no confusion will result, we denote FG(α) by F (α), SGd by Sd, and θ(G, d)
by θ(d).

Note that each automorphism α of G is in some Sd since |FG(α)| | |G|. Thus, α ∈ Sd if
and only if Sd = [α], the equivalence class of α under ∼. Hence, the collection of nonempty
Sd partition Aut(G) based on the number of �xed points of each automorphism. It follows

that |Aut(G)| =
∑
d||G|

θ(G, d).

We conclude with basic facts about �xed-point groups.

Lemma 1 Let G be a group and α ∈ Aut(G). Then we have the following:

• FG(α) = FG(α−1)

• FG(α) = G if and only α = ι, so S|G| = {ι} and θ(G, |G|) = 1

• Fix a ∈ G and let σa : g 7→ aga−1 for all g ∈ G. Then FG(σa) = C(a), the centralizer
of a in G.

Proof: Let G be a group and α ∈ Aut(G). If g ∈ FG(α), α(g) = g, so α−1(g) = g and
g ∈ FG(α−1). Since (α−1)

−1
= α, it follows that FG(α) = FG(α−1). Moreover, FG(α) = G

if and only if α �xes all g ∈ G, so by de�nition α = ι. Thus, SG = {ι} and θ(G, |G|) = 1.
If σa is de�ned as above, FG(σa) = {g ∈ G : aga−1 = g} = {g ∈ G : ag = ga} = C(a) by
de�nition. �

While we shall focus on �xed points, there is one interesting relationship between θ and
a related concept, the orbit number. For our purposes, the orbit of g ∈ G is the set of all
elements of G to which g is mapped by the automorphisms of G. It turns out that the orbits
form a partition of G [3], so the orbit number N of G is the number of orbits that partition
G.

Theorem 2 For any group G,

N =
1

|Aut(G)|
∑
d | |G|

θ(G, d)d (1)

Proof: One of Bernside's Lemmas [3] states

N =
1

|Aut(G)|
∑

α∈Aut(G)

|FG(α)|

Note that for each d | |G|, there will be θ(G, d) �xed-point groups of order d, and the result
follows. �
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2.2 Coprime Integers

Much of this paper is concerned with counting �xed points and automorphisms, so number
theory comes into play. In particular, we shall use the Euler totient function ϕ, which, for
each n ∈ N, counts the number of positive integers less than and coprime to n. Conveniently,
there is a formula for computing ϕ.

Fact 1 [1] If n = pk11 p
k2
2 · · · pktt is the prime factorization of n (for p1, . . . , pt distinct primes

and k1, . . . , kt ∈ Z+), then

ϕ(n) = n
t∏
i=1

(
1− 1

pi

)
(2)

Note 3 We reserve ϕ for the Euler totient function.

We also de�ne ϕ(1) = 1. Note that if n is itself a prime power pk, then (2) simpli�es
to ϕ(pk) = pk − pk−1. The coprime numbers counted by ϕ shall play an integral role in our
study of �xed points. In particular, we shall exploit the following fact frequently.

Fact 2 [1] If gcd(m,n) = 1 and if d | (mn), there exist unique d1 | m and d2 | n for which
d1d2 = d. In fact, d1 = gcd(m, d) and d2 = gcd(n, d).

2.3 Direct Products

As aforementioned, a question we shall explore is how the �xed points of automorphisms
α ∈ Aut(A) and β ∈ Aut(B) relate to those of an automorphism of A×B. To facilitate this
discussion, we review this group product.

Given two sets A and B, we may create a new set A × B, the Cartesian product of A
and B, de�ned by A × B = {(a, b) : a ∈ A, b ∈ B}. If in fact A and B are groups, we may
use their structure to de�ne such a structure on A × B. The most natural way to do this
is componentwise: (a, b)(a′, b′) = (aa′, bb′) for all a, a′ ∈ A and b, b′ ∈ B. If this structure
is imposed on A × B, we call A × B the direct product of A and B, a group with identity
(eA, eB) and inverses (a, b)−1 = (a−1, b−1).

3 General Theory of Fixed Points

In this section, we investigate the properties of �xed points of groups which are related to
each other. Many of the ideas explored here play major roles in our later study of speci�c
classes of groups.
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3.1 Isomorphic Groups

As may be suspected, �xed points are preserved under isomorphism.

Theorem 3 If G ∼= H, then Aut(G) ∼= Aut(H) and θ(G, d) = θ(H, d) for all d | |G|.

Proof: Let G,H be �nite groups and σ : G → H be an isomorphism. De�ne f :
Aut(G) → Aut(H) by f(α) = σασ−1 for all α ∈ Aut(G). Since α and σ are isomorphisms,
then σασ−1 : H → H is an isomorphism and hence an automorphism. Similarly, f is onto, for
if β ∈ Aut(H), then σ−1βσ : G→ G is an automorphism, and f(σ−1βσ) = β. Additionally,
suppose f(α) = f(α′) for some α, α′ ∈ Aut(G). Then σασ−1 = σα′σ−1, so α = α′ since σ is
bijective. Finally, let α, α′ ∈ Aut(G). Then f(αα′) = σαα′σ−1 = σασ−1σα′σ−1 = f(α)f(α′),
so f is a homomorphism. Therefore, Aut(G) ∼= Aut(H).

Let d | |G| and α ∈ Aut(G). We show now that FG(α) ∼= FH(f(α)). Consider
σ|FG(α) = σ̄ : FG(α)→ FH(f(α)). Now, σ̄ is well-de�ned, for if g ∈ FG(α), then f(α)(σ(g)) =
(σασ−1σ)(g) = (σα)(g) = σ(g), so σ(g) ∈ FH(f(α)). Moreover, σ̄ is a one-to-one homo-
morphism, so it remains to show that σ̄ is onto. If σ(g) ∈ FH(f(α)), then f(α)(σ(g)) =
(σασ−1σ)(g) = σ(α(g)) = σ(g), so since σ is one-to-one, α(g) = g, and g ∈ FG(α). There-
fore, σ̄ is an isomorphism. Since σ is bijective, α ∈ SGd if and only if f(α) ∈ SHd , and since
f is bijective, θ(G, d) = θ(H, d), as desired. �

We make note of a few facts present in the above proof:

Corollary 1 If σ, f are as de�ned in the proof of Theorem 3, then FG(α) ∼= FH(f(α)) for
all α ∈ Aut(G) and f(SGd ) = SHd .

While the converse of Theorem 3 need not be true, there is a partial converse:

Theorem 4 If for two groups G1 and G2, θ(G1, d) = θ(G2, d) for all d ∈ Z, then |G1| = |G2|
and |Aut(G1)| = |Aut(G2)|, but it need not be that G1

∼= G2.

Proof: Suppose that for two groups G1 and G2, θ(G1, d) = θ(G2, d) for all d ∈ Z,
and assume |G1| > |G2|. Then θ(G1, |G1|) = 1 but θ(G2, |G1|) = 0, a contradiction, so

|G1| = |G2|. Moreover, |Aut(G1)| =
∑

d | |G1|
θ(G1, d) =

∑
d | |G2|

θ(G2, d) = |Aut(G2)|. However,

as the reader can verify, for the groups Z2 × Z4 and D8, θ(Z2 × Z4, d) = θ(D8, d) for each
divisor d of 8 (and, in fact, their automorphism groups are isomorphic), yet Z2 × Z4 � D8.
�

3.2 Subgroups and Fixed Points

It is natural to ask whether the �xed points of automorphisms of a subgroup H of G are
related to the �xed points of the automorphisms of G. However, any answer to this question
is complicated by the fact that the automorphism groups of G and H need not be related.
Instead, more can be said about how the subgroup H and the �xed points of automorphisms
of G interact.
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De�nition 2 A subgroup H ≤ G is characteristic in G (and we write H J G) if α(H) = H
for all α ∈ Aut(G).

Clearly, if H J G, then H C G. Moreover, any automorphism of G restricts to an
automorphism of H J G.

We shall consider two ways of viewing the relationship between a subgroup H of G
and the �xed points of α ∈ Aut(G). The �rst method examines all automorphisms which
�x at least the elements of a subset X of G. That is, de�ne, for each X ⊆ G, the set
XF = {α ∈ Aut(G) : X ⊆ FG(α)}. This view is advantageous in that for each X ⊆ G,
XF ≤ Aut(G).

Lemma 2 For any X ⊆ G, XF ≤ Aut(G). In fact, if X ⊆ X ′ ⊆ G, then X ′F ≤ XF .
Moreover, for any subsets X,X ′ ⊆ G, (X ∪X ′)F = XF ∩X ′F .

Proof: Let X ⊆ G. Since ι �xes all of G pointwise, ι �xes X pointwise so X ⊆ FG(ι)
and ι ∈ XF . Let α, β ∈ XF and x ∈ X. Then (αβ)(x) = α(β(x)) = α(x) = x, so αβ ∈ XF ,
and α−1(x) = α−1(α(x)) = x, so α−1 ∈ XF . Thus, XF ≤ Aut(G).

If X ⊆ X ′ ⊆ G and α ∈ X ′F , then FG(α) ⊇ X ′ ⊇ X, so α ∈ XF , and X ′F ≤ XF . If
X,X ′ are any subsets of G, and α ∈ (X ∪X ′)F , then F (α) ⊇ X ∪X ′ so F (α) ⊇ X,X ′ and
α ∈ XF ∩X ′F . Conversely, if α ∈ XF ∩X ′F , then F (α) �xes every element of X and of X ′,
so it �xes every element of X ∪X ′ and α ∈ (X ∪X ′)F . �

If we assume X to be a subgroup of G, XF gains additional structure.

Lemma 3 If H J G, then HF C Aut(G). Moreover, if H,K ≤ G and H ∼= K, then
HF
∼= KF .

Proof: Suppose H J G. By Lemma 2, HF ≤ Aut(G). Let α ∈ Aut(G), β ∈ HF ,
and h ∈ H. Then (αβα−1)(h) = α(β(α−1(h))) = α(α−1(h)) = h since H J G. Thus,
αβα−1 ∈ HF , and HF C Aut(G).

Now let H,K ≤ G and suppose σ : H → K is an isomorphism. De�ne f : HF → KF

by f(β) = σβσ−1 for all β ∈ HF . To see that f is well-de�ned, let β ∈ HF and k ∈ K.
Then (σβσ−1)(k) = σ(β(σ−1(k))) = σ(σ−1(k)) = k, so σβσ−1 ∈ KF . Similarly, to see that
f is onto, let γ ∈ KF and h ∈ H. Then (σ−1γσ)(h) = σ−1(γ(σ(h))) = σ−1(σ(h)) = h
so σ−1γσ ∈ HF and f(σ−1γσ) = γ. Next, suppose f(β) = f(β′) for some β, β′ ∈ HF .
Then σβσ−1 = σβ′σ−1 so β = β′ and f is one-to-one. Finally, for any β, β′ ∈ HF , we have
f(ββ′) = σββ′σ−1 = σβσ−1σβ′σ−1 = f(β)f(β′), so HF

∼= KF , as desired. �

While viewing the �xed points in terms of XF provides group structure, it does not easily
permit counting �xed points, for X ∩X ′ = ∅ need not imply that XF ∩X ′F = ∅. A second
view, however, more readily lends itself to counting �xed points relative to subgroups. In
this view, we examine all automorphisms of G which �x exactly the elements of H ≤ G.
More formally, for any H ≤ G, the set of H-�xers is F−1G (H) = {α ∈ Aut(G) : FG(α) = H}.
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As the notation suggests, this set is the preimage of H under the map FG. Of course,
F−1G (H) ⊆ HF for any H ≤ G.

While F−1G (H) need not be a group, the concept does lend itself to counting automor-
phisms in that it a�ords another partition of Aut(G). De�ne the binary relation ≈ on Aut(G)
by α ≈ β if and only if FG(α) = FG(β) (i.e., α, β ∈ F−1G (H) for some H). It is clear that this
is an equivalence relation, and the partition induced by ≈ is �ner than that induced by ∼
(for if α ≈ β, then α ∼ β). Hence, for each d | |G|, Sd is itself partitioned by ≈. Therefore,
to determine θ(G, d), �rst count, for each H ≤ G of order d, the number of automorphisms
whose �xed-point group is H (i.e., �nd |F−1G (H)|), and then add these counts together. That
is,

θ(G, d) =
∑

H≤G,|H|=d

|F−1G (H)| (3)

This technique, combined with the following lemma, provides a powerful counting tool to
calculate θ-values, as we shall illustrate in our study of elementary abelian groups.

Theorem 5 Let H ≤ G and α ∈ Aut(G). Then |F−1G (H)| = |F−1G (α(H))| and FG(α)∩H ∼=
FG(α) ∩ α(H).

Proof: Let H ≤ G and α ∈ Aut(G). Since the map α|H : H → α(H) is an isomorphism,
H ∼= α(H). Now, de�ne τ : F−1G (H)→ F−1G (α(H)) by τ(β) = αβα−1 for all β ∈ F−1G (H). We
show that τ is a bijection. To see that τ is well-de�ned, let β ∈ F−1G (H) and α(h) ∈ α(H).
Now, αβα−1 ∈ Aut(G) since β, α ∈ Aut(G). Moreover (αβα−1)(α(h)) = α(β(h)) = α(h), so
α(h) ∈ FG(αβα−1). Suppose that (αβα−1)(g) = g for some g ∈ G. Then α(β(α−1(g))) =
α(α−1(g)) so as α is one-to-one, β(α−1(g)) = α−1(g). Thus, α−1(g) ∈ FG(β) = H so
g ∈ α(H), and αβα−1 ∈ F−1G (α(H)).

Let γ ∈ F−1G (α(H)). Then α−1γα ∈ Aut(G) since α, γ ∈ Aut(G). Additionally, for all
h ∈ H, (α−1γα)(h) = α−1(γ(α(h))) = α−1(α(h)) = h, so h is �xed by α−1γα. Suppose
(α−1γα)(g) = g for some g ∈ G. Then α−1(γ(α(g))) = α−1(α(g)) so as α−1 is one-to-one,
γ(α(g)) = α(g). Hence, α(g) is �xed by γ, so α(g) ∈ FG(γ) = α(H) and g ∈ H since α is
one-to-one. Therefore, α−1γα ∈ F−1G (H), and τ(α−1γα) = γ, so τ is onto.

Finally, suppose τ(β) = τ(β′) for some β, β′ ∈ F−1G (H). Then αβα−1 = αβ′α−1, so
β = β′, and τ is one-to-one. Therefore, τ is a bijection and |F−1G (H)| = |F−1G (α(H))|. The
�nal claim is easily shown by FG(α)∩H ∼= α(FG(α)∩H) = α(FG(α))∩α(H) = FG(α)∩α(H)
since α is one-to-one and since FG(α) is invariant under α. �

3.3 Direct Products and Fixed Points

Another natural question about �xed points involves the extent to which the �xed points
of automorphisms of A × B are related to those of A and of B. We shall see that this
relationship is strong indeed.

Theorem 6 For any groups A,B, Aut(A)× Aut(B) ≤ Aut(A×B).
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Proof: Let α ∈ Aut(A) and β ∈ Aut(B); we consider the map (α, β) naturally de-
�ned by (α, β)(a, b) = (α(a), β(b)) for all (a, b) ∈ A × B. Let (a, b), (a′, b′) ∈ A × B. Then
(α, β)[(a, b)(a′, b′)] = (α(aa′), β(bb′)) = (α(a)α(a′), β(b)β(b′)) = (α(a), β(b))(α(a′), β(b′)) =
(α, β)[(a, b)](α, β)[(a′, b′)], so (α, β) is a homomorphism. If (a′, b′) ∈ A× B, there are a ∈ A
and b ∈ B such that α(a) = a′ and β(b) = b′, so (α, β)[(a, b)] = (a′, b′), and (α, β) is onto.
Moreover, suppose (α, β)[(a, b)] = (α, β)[(a′, b′)] for some (a, b), (a′, b′) ∈ A × B. It follows
that α(a) = α(a′) and β(b) = β(b′), so a = a′, b = b′, and (a, b) = (a′, b′). Thus, (α, β) is an
automorphism of A×B. �

This link between the automorphisms of the two factors A and B and those of A × B
implies a connection between their �xed points.

Lemma 4 For any groups A,B and any α ∈ Aut(A) and β ∈ Aut(B), FA×B((α, β)) =
FA(α)× FB(β).

Proof: Let α ∈ Aut(A) and β ∈ Aut(B). Suppose (a, b) ∈ FA×B((α, β)). Then
(α, β)[(a, b)] = (α(a), β(b)) = (a, b), so α(a) = a, β(b) = b, and (a, b) ∈ FA(α)×FB(β). Con-
versely, suppose (a′, b′) ∈ FA(α)×FB(β). Then α(a′) = a′ and β(b′) = b′, so (α, β)[(a′, b′)] =
(α(a′), β(b′)) = (a′, b′), and (a′, b′) ∈ FA×B((α, β)). �

Since the �xed-point group of (α, β) is simply the direct product of the �xed-point groups
of α and β, we may begin to relate the θ-values of A×B to those of A and of B.

Lemma 5 Let A,B be groups, dA | |A|, and dB | |B|. Then SAdA × SBdB ⊆ SA×BdAdB
and

θ(A, dA)θ(B, dB) ≤ θ(A×B, dAdB).

Proof: If (α, β) ∈ SAdA×S
B
dB
, then |FA(α)| = dA and |FB(β)| = dB. Thus, |FA×B((α, β))| =

|FA(α)×FB(β)| = dAdB, so (α, β) ∈ SA×BdAdB
. Then θ(A, dA)θ(B, dB) = |SAdA×S

B
dB
| ≤ |SA×BdAdB

| =
θ(A×B, dAdB). �

Combining the theory of �xed points for subgroups and direct products demonstrates
some fairly intuitive results.

Lemma 6 If X ⊆ A and Y ⊆ B, then XF × YF = (X × Y )F . Moreover, if H ≤ A and
K ≤ B, then F−1A (H)× F−1B (K) ⊆ F−1A×B(H ×K).

Proof: Suppose (α, β) ∈ XF × YF . Then for all x ∈ X and y ∈ Y , α(x) = x and
β(y) = y, so (α, β)[(x, y)] = (x, y). Thus, (α, β) ∈ (X × Y )F by de�nition. Conversely, let
(α, β) ∈ (X × Y )F . Then for all (x, y) ∈ X × Y , (α, β)[(x, y)] = (α(x), β(y)) = (x, y), so
α(x) = x and β(y) = y. Hence, α ∈ XF and β ∈ YF , so (α, β) ∈ XF × YF .

Let (α, β) ∈ F−1A (H)×F−1B (K) and (h, k) ∈ H×K. Then (α, β)[(h, k)] = (α(h), β(k)) =
(h, k). If (α, β)[(a, b)] = (a, b) for any (a, b) ∈ A× B, it follows that α(a) = a and β(b) = b,
so that a ∈ H and b ∈ K. Thus, (α, β) ∈ F−1A×B(H ×K), as desired. �
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The relationship between the automorphisms of A×B and those of A and B is strength-
ened if we require that |A| and |B| be coprime. This assumption enhances our ability to
describe A×B, per the following lemma.

Lemma 7 Suppose gcd(|A|, |B|) = 1. Then for all (a, b) ∈ A × B, |(a, b)| = |a||b|, and
A′ := A× {e}, B′ := {e} ×B J A×B.

Proof: For any a ∈ A and b ∈ B, gcd(|a|, |b|) = 1, so |(a, b)| = lcm(|a|, |b|) = |a||b|. We
prove the second statement for A′; the proof for B′ is similar. Let σ ∈ Aut(A × B) and
(a, e) ∈ A′. Then σ(a, e) = (a′, b′) for some a′ ∈ A, b′ ∈ B. But |(a′, b′)| = |a′||b′| = |(a, e)| =
|a|, so since gcd(|a|, |b′|) = 1, |a′| = |a| and |b′| = 1. Thus, b′ = e, and (a′, b′) ∈ A′. So,
σ(A′) ⊆ A′ and A′ J A×B. �

To facilitate the discussion below, we consider A,B ≤ A × B by associating a ↔ (a, e)
and b↔ (e, b) for all a ∈ A and b ∈ B. With this, we may replace A′ and B′ with A and B
(respectively) and write A,B J A×B. By Lemma 7, any automorphism of A×B restricted
to either A or B is itself an automorphism.

Theorem 7 If A,B are groups for which gcd(|A|, |B|) = 1, Aut(A)×Aut(B) = Aut(A×B).

Proof: By Theorem 6, it su�ces to show that Aut(A × B) ⊆ Aut(A) × Aut(B). Let
σ ∈ Aut(A × B) and de�ne ασ = σ|A and βσ = σ|B. By Lemma 7, ασ ∈ Aut(A) and
βσ ∈ Aut(B). Let (a, b) ∈ A × B. It follows that (ασ, βσ)(a, b) = (ασ(a), βσ(b)) = σ(a, b).
Therefore, σ = (ασ, βσ), and these ασ, βσ are uniquely determined by (and uniquely deter-
mine) σ. �

The equality of the automorphism group of A × B and Aut(A) × Aut(B) provides in
turn stronger relationships between the �xed points of A × B and those of A and B. The
following corollary is quite powerful, for it allows us to compute the θ-values of A×B using
the θ-values of A and B when gcd(|A|, |B|) = 1. This fact shall be employed extensively in
our investigation of cyclic and abelian groups.

Theorem 8 Let A,B be groups for which gcd(|A|, |B|) = 1. Then for all dA | |A| and
dB | |B|, SA×BdAdB

= SAdA × S
B
dB

and θ(A×B, dAdB) = θ(A, dA)θ(B, dB).

Proof: Let A,B be groups for which gcd(|A|, |B|) = 1, let dA | |A|, and let dB | |B|.
By Lemma 5, it remains to show that SA×BdAdB

⊆ SAdA × S
B
dB
. Suppose (α, β) ∈ SA×BdAdB

. Then
by Lemma 4, |FA×B((α, β))| = |FA(α) × FB(β)| = |FA(α)||FB(β)| = dAdB, so by Fact 2,
|FA(α)| = dA and |FB(β)| = dB. Hence, α ∈ SAdA and β ∈ SBdB , so (α, β) ∈ SAdA × S

B
dB

and

SA×BdAdB
= SAdA×S

B
dB
. It follows that θ(A×B, dAdB) = |SA×BdAdB

| = |SAdA×S
B
dB
| = θ(A, dA)θ(B, dB).

�

The assumption that the orders of A and B are coprime also strengthens the results
regarding direct products and subgroups.



Page 58 RHIT Undergrad. Math. J., Vol. 11, No. 2

Lemma 8 If gcd(|A|, |B|) = 1 and if H ≤ A and K ≤ B, then F−1A×B(H ×K) = F−1A (H)×
F−1B (K).

Proof: By Lemma 6, it remains to show that F−1A×B(H ×K) ⊆ F−1A (H)× F−1B (K). Let
(α, β) ∈ F−1A×B(H ×K). Since for all h ∈ H and all k ∈ K, (α, β)[(h, k)] = (h, k), it follows
that α(h) = h and β(k) = k. If α(a) = a for some a ∈ A, then (α, β)[(a, e)] = (a, e), so
a ∈ H, and if β(b) = b for some b ∈ B, then (α, β)[(e, b)] = (e, b), so b ∈ K. Therefore,
α ∈ F−1A (H) and β ∈ F−1B (K), so (α, β) ∈ F−1A (H)× F−1B (K), as desired. �

4 Cyclic Groups

Through the remainder of this paper, we determine formulae for θ for a few classes of �nite
abelian groups. In this section, we consider the �nite cyclic groups, presented as the additive
groups Zn, and determine how to calculate their θ-values. We �rst �nd the �xed-point groups
and then use this information to compute the θ-values.

The �nite cyclic groups have a particularly straightforward automorphism group. Since
Zn is generated by 1, any automorphism of Zn must map 1 to another generator of Zn,
namely another element of Zn that is coprime to n. Since these are exactly the elements in
Un (the group of units modulo n), we have the following result.

Theorem 9 For any cyclic group Zn, Aut(Zn) ∼= Un, so |Aut(Zn)| = ϕ(n). Speci�cally, we
may write Aut(Zn) = {αr : 1 7→ r | r ∈ Un}.

Proof: De�ne f : Aut(Zn) → Un by f(α) = α(1) for all α ∈ Aut(Zn). For any
α ∈ Aut(Zn), |1| = n = |α(1)|, so gcd(α(1), n) = 1 and f(α) = α(1) ∈ Un. Conversely,
if r ∈ Un, de�ne the homomorphism αr : 1 7→ r. Then Zn = 〈r〉, so αr is onto and hence
(as Zn is �nite) one-to-one. Thus, αr is an automorphism and f(αr) = r (so f is onto).
If f(α) = f(β) for some α, β ∈ Aut(Zn), then α(1) = β(1). So, α = β, and f is one-to-
one. Finally, f(αβ) = (αβ)(1) = α(β(1)) = α(1)β(1) = f(α)f(β). Hence, we may write
Aut(Zn) = {αr : 1 7→ r | r ∈ Un} and |Aut(Zn)| = ϕ(n). �

Note 4 When discussing cyclic groups, αr is reserved as αr : 1 7→ r, for r ∈ Un.

Now that we know the form of each automorphism of Zn, we can determine the �xed-point
groups.

Theorem 10 Let αr ∈ Aut(Zn). Then F (αr) = 〈n/dr〉 where dr = gcd(r − 1, n). So,
|F (αr)| = dr.

Proof: Let αr ∈ Aut(Zn) and dr = gcd(r − 1, n). If r = 1, α1 is the identity map, so
F (α1) = Zn = 〈n/dr〉. Suppose r 6= 1. Then m ∈ F (αr) if and only if mr ≡ m (mod n),
which occurs if and only if m ≡ 0 (mod n/dr). This is equivalent to m ∈ 〈n/dr〉, so it follows
that F (αr) = 〈n/dr〉, as desired. �



RHIT Undergrad. Math. J., Vol. 11, No. 2 Page 59

Example 1 The automorphism group of Z9 is isomorphic to U9 = {1, 2, 4, 5, 7, 8}, so the
automorphisms are α1, α2, α4, α5, α7, α8. The automorphism α4 sends 1 7→ 4, 2 7→ 8, 3 7→ 3,
4 7→ 7, 5 7→ 2, 6 7→ 6, 7 7→ 1, and 8 7→ 5, so the �xed-point group is F (α4) = {0, 3, 6} = 〈3〉.
Indeed, gcd(4− 1, 9) = 3, so by Theorem 10, F (α4) = 〈9/3〉 = 〈3〉. In a similar manner, we
�nd F (ι) = Z9, F (α2) = F (α5) = F (α8) = {0}, and F (α4) = F (α7) = 〈3〉.

Now that we know the �xed point sets of the automorphisms of Zn, we may classify the
automorphisms according to the number of �xed points each has. That is, we compute the
θ-values for cyclic groups. However, by Theorem 8 and the following well-known result, it
su�ces to consider cyclic p-groups (a �nite p-group is one of prime power order).

Fact 3 [3] Let n = pk11 p
k2
2 · · · pktt be the prime factorization of n, where the primes pi are

distinct and ki ∈ Z+ for all 1 ≤ i ≤ t. Then Zn ∼= Z
p
k1
1
× Z

p
k2
2
× · · · × Z

p
kt
t
.

As such, we now explicitly compute the θ-values for groups of the form Zpk , for p a prime.

Theorem 11 Let p be a prime and k ∈ Z+. For any 0 ≤ l ≤ k:

θ(Zpk , pl) =

{
pk − 2pk−1 for l = 0

ϕ(pk−l) otherwise
(4)

Proof: Let p be prime and k ∈ Z+. Any divisor of pk is of the form pl, where 0 ≤ l ≤ k.
If k = l, then pk = pl and θ(pl) = 1. We now show that for all 0 < l < k, Spl = {αplx+1 :
x ∈ Upk−l}. Let x ∈ Upk−1 and d = gcd(plx, pk). Since gcd(x, pk−l) = 1, it must be that
gcd(x, pk) = 1, so gcd(x, d) = 1. Since d | (plx), it follows that d | pl, but as pl | d, we have
d = pl. Let gcd(plx + 1, pk) = d′. If p | d′, then p | 1, a contradiction, so d′ = 1. Hence,
plx+ 1 ∈ Upk and αplx+1 ∈ Aut(Zn). Moreover, by Theorem 10, |F (αplx+1)| = gcd(plx, pk) =
pl, so αplx+1 ∈ Spl .

Conversely, suppose αr ∈ Spl . Then gcd(r−1, pk) = pl. This gives gcd((r−1)/pl, pk−l) =
1, so (r − 1)/pl ∈ Upk−l and r = pl((r − 1)/pl) + 1, as desired. Finally, we must show
that |Spl | = ϕ(pk−l). Suppose plx1 + 1 ≡ plx2 + 1 (mod pk) for some x1, x2 ∈ Upk−l . Then
plx1 ≡ plx2 (mod pk), but since (without loss of generality) x1, x2 < pk−l, it follows that
plx1, p

lx2 < pk so plx1 = plx2 and x1 = x2. Hence, |Upk−l | = |Spl | = ϕ(pk−l). So, θ(pl) =
ϕ(pk−l) = pk−l − pk−l−1.

Finally, all automorphisms (of which there are ϕ(pk) total) for which we have not yet
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accounted must be in S1. Thus,

θ(Zpk , 1) = ϕ(pk)−
k∑
l=1

θ(Zpk , pl)

= pk − pk−1 − 1−
k−1∑
l=1

(pk−l − pk−l−1)

= pk − pk−1 − 1−
k−1∑
l=1

(pk−l) +
k−1∑
l=1

(pk−l−1)

= pk − pk−1 − 1−
k−1∑
l=1

(pk−l) +
k∑

L=2

(pk−L) (where L = l + 1)

= pk − pk−1 − 1− pk−1 + 1 = pk − 2pk−1

as desired. �

Example 2 Returning again to Z9, from Example 1, we see that there are three auto-
morphisms which �x only one point, two automorphisms which �x three points, and one
which �xes all nine points, so θ(1) = 3, θ(3) = 2, and θ(9) = 1. Indeed, by Theorem 11,
θ(1) = 9− 6 = 3, θ(3) = 3− 1 = 2, and θ(9) = 1.

As aforementioned, we now exploit Fact 3 and Theorem 8 to compute θ for general �nite
cyclic groups.

Theorem 12 Let n = pk11 , p
k2
2 · · · pktt be the unique prime factorization of n and let d | n,

i.e. d = pl11 p
l2
2 · · · pltt with 0 ≤ li ≤ ki for all 1 ≤ i ≤ t. Then

θ(Zn, d) =
t∏
i=1

θ(Z
p
ki
i
, plii ) = ϕ(n/d)

∏
li=0

θ(Z
p
ki
i
, 1) (5)

Proof: By Fact 3, Zn ∼= Z
p
k1
1
×· · ·×Z

p
kt
t
, so by Theorems 3 and 8, since gcd(|Z

p
ki
i
|, |Z

p
kj
j

|) =

1 for all i 6= j, the �rst equality holds. If we collect all li 6= 0, we have∏
li 6=0

θ(Z
p
ki
i
, plii ) =

∏
li 6=0

ϕ(pki−lii ) = ϕ

(∏
li 6=0

(pki−lii )

)
= ϕ(n/d)

since ϕ is multiplicative [1]. Hence, the second equality holds. �

Example 3 Since Z18
∼= Z2 × Z9, we have for instance θ(Z18, 2) = θ(Z2, 2)θ(Z9, 1) =

(1)(3) = 3, θ(Z18, 3) = θ(Z2, 1)θ(Z9, 3) = (0)(2) = 0, and θ(Z18, 6) = θ(Z2, 2)θ(Z9, 3) =
(1)(2) = 2.

To underscore the relationship between θ(Zn) and ϕ, the following corollary is worthy of
note.

Corollary 2 Let d | n. If for all p | n, p | d, then θ(Zn, d) = ϕ(n/d).
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5 Elementary Abelian Groups

We now turn to more complicated �nite abelian groups. All �nite abelian groups can be
expressed as the direct product of cyclic groups of prime power order [3]. However, by
Theorem 8, it su�ces to consider �nite abelian p-groups (i.e., groups of the form Zpk1 ×
Zpk2 × · · · × Zpkt for prime p), for, as we shall explain in detail later, the values of θ for any
other abelian group can be computed by multiplying the θ-values of the relevant p-groups.

Thus, we begin by examining elementary abelian p-groups, of the form Znp = Zp×Zp×· · ·×
Zp for some prime p (note that, as with cyclic groups, we consider these groups additively).
These groups are a convenient starting point for many reasons: Znp may be viewed as a vector
space over Zp, any subgroup of order pk is isomorphic to Zkp, and all nonidentity elements of
Znp are of order p. As such, we shall view Znp both as a group and as a vector space over Zp
and let ei denote the ith standard basis vector of Znp .

The group of automorphisms of Znp is isomorphic to GLn(Zp), the group of n×n matrices
whose entries are in Zp and which are invertible (i.e., their determinant is nonzero modulo
p) [2]. These automorphisms, however, are di�cult to analyze on an individual basis, so we
take a more indirect route to compute θ for Znp . Speci�cally, for each subgroup H of Znp ,
we count the number of automorphisms of Znp whose �xed-point group is exactly H (i.e.,
|F−1(H)|). As discussed above, for each d | pn, we can then compute θ(Znp , d) by adding
|F−1(H)| over all subgroups H of Znp of order d. The key to this approach lies the following
lemmas, which show that it su�ces to consider, for each divisor d of pn, one representative
subgroup of order d, greatly simplifying our task.

Lemma 9 If H,K ≤ Znp and |H| = |K|, then there is an automorphism α ∈ Aut(Znp ) such
that α(H) = K.

Proof: Since H,K ≤ Znp and |H| = |K|, H ∼= Zkp ∼= K for some 0 ≤ k ≤ n. If

|H| = |K| = 1, then H = K = {~0}, and any automorphism satis�es α(H) = K. Otherwise,
view H and K as vector spaces over Zp and let BH = {a1, . . . , ak} and BK = {b1, . . . , bk} be
bases for H and K, respectively. There are MH ,MK ∈ GLn(Zp) for which column i of MH

is ai and column i of MK is bi for all 1 ≤ i ≤ k. It follows that MHei = ai and MKei = bi
for all 1 ≤ i ≤ k. De�ne αH and αK to be the automorphisms corresponding to MH and
MK , respectively, so αH(ei) = ai and αK(ei) = bi for all 1 ≤ i ≤ k. Then the automorphism
αKα

−1
H satis�es (αKα

−1
H )(ai) = bi for all 1 ≤ i ≤ k. It follows that (αKα

−1
H )(H) ⊆ K, but

since α is bijective and |H| = |K|, (αKα
−1
H )(H) = K, as desired. �

Corollary 3 If H,K ≤ Znp and |H| = |K|, then |F−1(H)| = |F−1(K)|.

Proof: Since H,K ≤ Znp and |H| = |K|, H ∼= Zkp ∼= K for some 0 ≤ k ≤ n. Then
there is an automorphism α ∈ Aut(Znp ) for which α(H) = K by Lemma 9. By Theorem 5,
|F−1(H)| = |F−1(K)|, as desired. �
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Suppose that for each 1 ≤ k ≤ n, we may �nd the number of automorphisms whose �xed-
point group is Hk (i.e., |F−1(Hk)|) where Hk

∼= Zkp. By Corollary 3, any other subgroup K
of Znp of order pk would satisfy |F−1(K)| = |F−1(Hk)|. Thus, if there are Nk subgroups of
Znp of order pk, it follows that θ(Znp , pk) = Nk · |F−1(Hk)|. Because we seek these θ-values,
we begin by computing Nk.

Lemma 10 For each 1 ≤ k ≤ n, the number of subgroups of order pk is

Nk =
k−1∏
i=0

(pn − pi)
(pk − pi)

(6)

and N0 = 1.

Proof: Let n be given. Of course, the only subgroup of order p0 = 1 is the trivial
subgroup, so N0 = 1. Now let 1 ≤ k ≤ n be given, de�ne Bn(k) as the collection of all
ordered sets of k linearly independent vectors from Znp , let Sn(k) = {H ≤ Znp : H ∼= Zkp}, and
consider the map f : Bn(k) → Sn(k) de�ned by f({v1, . . . , vk}) = span{v1, . . . , vk}. Since
the span of k linearly independent vectors is of dimension k, f maps Bn(k) into Sn(k), and
since every subspace Zkp has a basis of size k, the map f is onto. In fact, each subspace
will have an equal number of possible bases. Speci�cally, given a subspace H ∼= Zkp, to form
a basis of H, we may choose linearly independent vectors one by one, as follows. For the
�rst basis vector b1, we may select any nonzero vector in H, so there are pk − 1 choices for
b1. Since the second vector b2 must be linearly independent from b1, we may choose any
vector in H not in span{b1} (which contains the p scalar multiples of b1), so there are pk− p
options for b2. Similarly, the third basis vector b3 may be chosen to be any vector in H
not in span{b1, b2} (which contains the p2 linearly combinations of b1 and b2), so there are
pk − p2 options for b3. We proceed in this manner until we have pk − pk−1 choices for the
last basis vector. To obtain the total number of ordered bases possible, we multiply together

the number of choices for each of the vectors in the basis, so there are
k−1∏
i=0

(pk − pi) possible

ordered bases for H.
Now we �nd |Bn(k)| in an argument similar to that above. In constructing an arbitrary

element of Bn(k), we have pn − 1 choices for the �rst vector, pn − p choices for the second

vector, and so on, up to pn − pk−1 choices for the last vector. Thus, there are
k−1∏
i=0

(pn − pi)

elements of Bn(k). Hence, since f is onto and each element of Sn(k) is the span of an equal
number of bases, we have

Nk = |Sn(k)| =

k−1∏
i=0

(pn − pi)

k−1∏
i=0

(pk − pi)
=

k−1∏
i=0

(pn − pi)
(pk − pi)

as desired. �
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Example 4 In Z3
3, any nontrivial subgroup is isomorphic to one of Z3, Z2

3, or Z3
3. Using

Lemma 10, the number of subgroups isomorphic to Z3 is N1 = (33 − 1) / (31 − 1) = 13, the
number of subgroups isomorphic to Z2

3 is N2 = (33 − 1)(33 − 3) / (32 − 1)(32 − 3) = 13, and
the number of subgroups isomorphic to Z3

3 is N3 = (33 − 1)(33 − 3)(33 − 32) / (33 − 1)(33 −
3)(33 − 32) = 1.

It remains to �nd, for each 1 ≤ k ≤ n, |F−1(H)| for some representative H ∼= Zkp. For
each 1 ≤ k ≤ n, the �simplest� subspace isomorphic to Zkp (for our purposes) is 〈e1, e2, . . . , ek〉.
Thus, we shall compute |F−1(〈e1, . . . , ek〉)|, the number of automorphisms which �x exactly
〈e1, . . . , ek〉. To do this, we count the number of automorphisms which �x at least 〈e1, . . . , ek〉
and then subtract o� the automorphisms which �x additional vectors.

Lemma 11 For each 1 ≤ k ≤ n− 1, the number of automorphisms of Znp which �x at least

〈e1, . . . , ek〉 is |〈e1, . . . , ek〉F | =
n−1∏
i=k

(pn − pi). Also, |〈e1, . . . , en〉F | = 1.

Proof: First, note that since 〈e1, . . . , en〉 = Znp , the only automorphism to �x at least
Znp is ι, so it must be that |〈e1, . . . , en〉F | = 1. Now, let 1 ≤ k ≤ n− 1, let α ∈ Aut(G), and
consider Mα, the corresponding matrix in GLn(Zp). For any 1 ≤ i ≤ n, Mα �xes ei if and
only if the ith column ofMα is ei. SupposeMα �xes e1, . . . , ek (and hence all of 〈e1, . . . , ek〉).
The �rst k columns ofMα are then e1, e2, . . . , ek, so we have freedom to choose the remaining
n− k columns of Mα (so long as Mα remains invertible). Proceeding as in Lemma 10, then,
there are pn−pk choices for the (k+1)th column, pn−pk+1 choices for the (k+2)th column,

and so on, up to pn − pn−1 choices for the last column. Thus, in total there are
n−1∏
i=k

(pn − pi)

invertible matrices (i.e., automorphisms) which �x at least 〈e1, . . . , ek〉. �

Example 5 In Z3
3, Lemma 11 tells us that the number of automorphisms which �x at least

〈e1〉 is (33 − 31)(33 − 32) = 432. Similarly, the number of automorphisms which �x at least
〈e1, e2〉 is (33 − 32) = 18.

We desire to subtract from the result of Lemma 11 the number of subgroups which �x
not only 〈e1, . . . , ek〉, but also other vectors in Znp . To do this, we need to know how many
subgroups are of the form 〈e1, . . . , ek, a1, . . . , al〉, where {e1, . . . , ek, a1, . . . , al} is a minimal
generating set, 1 ≤ k ≤ n− 1, and 1 ≤ l ≤ n− k.

Lemma 12 The number of subgroups of Znp of the form 〈e1, . . . , ek, a1, . . . , al〉 for any 1 ≤
k ≤ n− 1 and any 1 ≤ l ≤ n− k is

σn(k, l) =
l−1∏
i=0

(pn − pk+i)
(pk+l − pk+i)

(7)
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Proof: This proof mimics that of Lemma 10 above. Fix k and l, de�ne Bn(k, l) as the
collection of all ordered sets of k + l linearly independent vectors containing e1, . . . , ek, and
de�ne Sn(k, l) as the the collection of all subgroups of Znp of the form 〈e1, . . . , ek, a1, . . . , al〉,
where {e1, . . . , ek, a1, . . . , al} is a minimal generating set. Consider the map f : Bn(k, l) →
Sn(k, l) de�ned by f({e1, . . . , ek, a1, . . . , al}) = span{e1, . . . , ek, a1, . . . , al}. Each element of
Bn(k, l) generates a subspace in Sn(k, l), so f maps Bn(k, l) into Sn(k, l), and each subspace
in Sn(k, l) has a basis in Bn(k, l), so f is onto. For a given subspace H of the speci�ed form,
a basis of the given form must contain e1, . . . , ek, but we may freely choose the remaining
vectors a1, a2, . . . , al from those in H. There are pk+l − pk choices for a1, pk+l − pk+1 choices

for a2, and so on, up to pk+l−pk+l−1 choices for al. Hence, there are
l−1∏
i=0

(pk+l−pk+i) possible

ordered bases of the given form for H.
The size of Bn(k, l) may be determined in a similar way. We construct any given element

ofBn(k, l) by starting with e1, . . . , ek and choosing the remaining vectors a1, a2, . . . , al. There
are pn − pk choices for a1, p

n − pk+1 choices for a2, and so on, until there are pn − pk+l−1

choices for al. Hence, there are
l−1∏
i=0

(pn − pk+i) ordered bases in Bn(k, l). Thus, the number

of subgroups is

σn(k, l) = |Sn(k, l)| =

l−1∏
i=0

(pn − pk+i)

l−1∏
i=0

(pk+l − pk+i)
=

l−1∏
i=0

(pn − pk+i)
(pk+l − pk+i)

as desired. �

Example 6 Continuing to work in Z3
3, we apply Lemma 14 to �nd that the number of

subgroups of the form 〈e1, a1〉 is σ3(1, 1) = (33− 3) / (32− 3) = 4. The number of subgroups
of the form 〈e1, a1, a2〉 is σ3(1, 2) = (33 − 3)(33 − 32) / (33 − 3)(33 − 2) = 1 and the number
of subgroups of the form 〈e1, e2, a1〉 is σ3(2, 1) = (33 − 3) / (33 − 3) = 1.

We are now in a position to �nd the number of automorphisms whose �xed-point group
is exactly 〈e1, . . . , ek〉 (i.e., |F−1(〈e1, . . . , ek〉)|. Since we know that |F−1(〈e1, . . . , en〉)| = 1
(as only ι �xes the whole group), we use the above lemmas to compute |F−1(〈e1, . . . , ek〉)|
recursively for each 1 ≤ k ≤ n.

Lemma 13 For each 1 ≤ k ≤ n− 1, in Znp ,

|F−1(〈e1, . . . , ek〉)| = |〈e1, . . . , ek〉F | −
n−k∑
l=1

(σn(k, l) · |F−1(〈e1, . . . , ek+l〉)|) (8)

Also, |F−1(〈e1, . . . , en〉)| = 1.



RHIT Undergrad. Math. J., Vol. 11, No. 2 Page 65

Proof: Per the above discussion, |F−1(〈e1, . . . , en〉)| = 1. Now let 1 ≤ k ≤ n − 1. By
de�nition, |〈e1, . . . , ek〉F | is the number of automorphisms which �x at least 〈e1, . . . , ek〉. For
each 1 ≤ l ≤ n− k, |F−1(〈e1, . . . , ek+l〉)| is the number of automorphisms whose �xed-point
group is exactly 〈e1, . . . , ek+l〉. By Corollary 3, this count is equal to the number of auto-
morphisms which �x any subgroup isomorphic to Zk+lp , and there are σn(k, l) such subgroups
containing e1, . . . , ek. So, σn(k, l) · |F−1(〈e1, . . . , ek+l〉)| is the number of automorphisms
which �x at least e1, . . . , ek and whose �xed-point group is of order pk+l. Since we wish to
subtract such automorphisms for each 1 ≤ l ≤ n − k from our initial count |〈e1, . . . , ek〉F |,
we obtain the desired formula. �

Example 7 From our previous examples, in Z3
3, |F−1(〈e1, e2〉)| = |〈e1, e2〉F | −

1∑
l=1

(σ3(2, l) ·

|F−1(〈e1, . . . , e2+l〉)|) = 18 − (1 · 1) = 17. Similarly, |F−1(〈e1〉)| = |〈e1〉F | −
2∑
l=1

(σ3(1, l) ·

|F−1(〈e1, . . . , e1+l〉)|) = 432− (4 · 17 + 1 · 1) = 363.

Now that we know the values of Nk and |F−1(〈e1, . . . , ek〉)| for each 1 ≤ k ≤ n, we are
able to compute θ(Znp , pk), as we shall do below. However, we must also �nd θ(Znp , 1), which
requires the order of the automorphism group of Znp .

Theorem 13 For any n ∈ N and prime p, |GLn(Zp)| =
n−1∏
i=0

(pn − pi).

Proof: Consider Znp as a vector space over Zp, so that dim(Znp ) = n, and consider any
ordered basis B = {b1, b2, . . . , bn}. There are pn−1 choices for b1, p

n−p choices for b2, and so

on, up to pn−pn−1 choices for bn. The number of possible ordered bases is then
n∏
i=1

(pn−pi−1).

Let M ∈Mn(Zp) (the set of n× n matrices with entries from Zp). By the invertible matrix
theorem, the columns of M form a basis for Znp if and only if M is invertible. That is, the
elements of GLn(Zp) are exactly those matrices whose columns form a basis for Znp over Zp.

Hence, |GLn(Zp)| =
n−1∏
i=0

(pn − pi), as desired. �

Example 8 In Z3
3, |GL3(Z3)| = (33 − 30)(33 − 31)(33 − 32) = 11, 232.

Finally, we have all the tools necessary to compute the θ-values of Znp .

Theorem 14 For any n ∈ N and prime p,

θ(Znp , pk) =

|GLn(Zp)| −
n∑
k=1

θ(Znp , pk) if k = 0

|F−1(〈e1, . . . , ek〉)| ·Nk if 1 ≤ k ≤ n
(9)
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Proof: Let 1 ≤ k ≤ n be given. Then |F−1(〈e1, . . . , ek〉)| gives the number of auto-
morphisms which �x exactly any given subgroup of Znp of order pk, and there are Nk such
subgroups. So, θ is as speci�ed above. To obtain θ(Znp , 1), we simply subtract from the
total number of automorphisms (namely, |GLn(Zp)|) the number of automorphisms which
�x more elements than the identity. �

Example 9 Continuing in Z3
3, θ(Z3

3, 3
1) = 363 · 13 = 4, 719. Similarly, θ(Z3

3, 3
2) = 17 · 13 =

221, θ(Z3
3, 3

3) = 1 (for only the identity �xes the whole group), and θ(Z3
3, 3

0) = 11, 232 −
(4, 719 + 221 + 1) = 6, 291.

As aforementioned, we may use Theorems 8 and 14 to compute θ values for groups of
the form Zn1

p1
× Zn2

p2
× · · · × Znt

pt for distinct primes p1, . . . , pt, per the below corollary.

Corollary 4 If p1, . . . , pt are distinct primes, n1, . . . , nt ∈ N, and 0 ≤ mi ≤ ni for each i,
then

θ(Zn1
p1
× · · · × Znt

pt , p
m1
1 pm2

2 · · · pmt
t ) =

t∏
i=1

θ(Zni
pi
, pmi

i ) (10)

6 Conclusion

We have investigated the general properties of �xed points and determined θ-formulae for
cyclic groups and elementary abelian groups. Moreover, we have proposed (but have not
proved) the following θ-formula for groups of the form Zp × Zp2 (for p a prime):

Conjecture 1 For Zp × Zp2 where p is any prime:

θ(Zp × Zp2 , d) =


p3(p− 2)2 for d = 1

p(2p3 − 4p2 + 1) for d = p

p3 − p− 1 for d = p2

1 for d = p3

(11)

In this paper, we lay out two strategies for computing θ. The �rst is straightforward: �nd
the general form of the �xed-point groups and count the automorphisms according to how
many �xed points each has. The second approach is more indirect. Here, for each subgroup
H of G, we count the number of automorphisms whose �xed-point group is H (often, this
can be done by counting the number of automorphisms which �x at least H pointwise and
then subtracting those which �x more than H). It follows then that for any d | |G|, θ(G, d)
is the sum of these counts over all subgroups of order d. These approaches can potentially be
applied to �nd θ-values for more classes of groups, such more general �nite abelian groups
(it is worth noting that in working toward a solution to general �nite abelian groups, by
Theorem 8, it su�ces to consider �nite abelian p-groups).
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