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Abstract

Hölder’s formula for the number of groups of a square-free order is an early advance in
the enumeration of finite groups. This paper gives a structural proof of Hölder’s result that
is accessible to undergraduates. We introduce a number of group theoretic concepts such as
nilpotency, the Fitting subgroup, and extensions. These topics, which are usually not covered
in undergraduate group theory, feature in the proof of Hölder’s result and have wide applicability
in group theory. Finally, we remark on further results and conjectures in the enumeration of
finite groups.

1 Introduction

How many non-isomorphic groups are there of order n? This is one of the simplest yet most
mysterious questions in group theory. Groups of order 16 or less were classified in the late nineteenth
century as part of early advances in group theory. It has been clear from even earlier that for any
prime p, there is only one group of order p. In general, however, the tabulation of the non-
isomorphic groups of order n requires careful consideration of the prime-power factorization of n,
and the constraints on group structure imposed by the relationships between the divisors of n. Up
to date, the groups of order less than 2048 have been tabulated [2].

Throughout this paper, f(n) denotes the number of groups, up to isomorphism, of order n.
Group theorists agree that there is no hope for a precise formula for the group number function
f(n) in general. Nonetheless, there has been a remarkable asymptotic estimate due to Pyber which
uses the classification of finite simple groups, Hall systems, and combinatorial approximations [17].
Moreover, for certain types of orders it is possible to determine explicit formulas, precise estimates,
or other characterizations of f(n). Much of the current research in the enumeration of finite groups
attempts to extend the known results to more types of orders [1, Chapter 22].

One of the first mathematicians to make advances in the enumeration of finite groups was Otto
Hölder. In 1893, he described groups of order p3 and p4 [11]. Shortly thereafter, he derived a
remarkable formula for the number of groups of order n when n is square-free [12]:

f(n) =
∑
m|n

∏
p

pc(p) − 1
p− 1

where p is a prime divisor of n/m and c(p) is the number of prime divisors q of m that satisfy q ≡ 1
(mod p).
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The aim of this paper is to elucidate Hölder’s classical result through a modern, structural
approach. A group of square-free order has restricted structure as a Sylow tower group; we demon-
strate that this crucial property makes the formula possible. At the same time, our approach
renders Hölder’s result more accessible to undergraduates. We include introductory explanations
of several topics that are beyond a standard undergraduate group theory course, such as nilpotency,
the Fitting subgroup, and extensions. These notions have wide application in other areas of group
theory and relate to open research problems. We begin with an overview of basic definitions and
results concerning solvable groups and nilpotent groups.

2 Commutators and Solvable Groups

Let G be a group. For any two elements x and y in G, the commutator of x and y is defined to
be [x, y] := x−1y−1xy = x−1xy. Similarly, if H and K are subgroups of G then [H,K] denotes the
subgroup of G generated by all commutators [h, k] with h ∈ H and k ∈ K. Since [h, k] = [k, h]−1,
we have that [H,K] = [K,H]. The commutator subgroup G′ := [G,G] of G is generated by the set
{[x, y] | x, y ∈ G}. This subgroup is also known as the derived subgroup of G.

Proposition 1. The derived subgroup G′ of a group G is characteristic (hence normal) in G.
Furthermore, for any normal subgroup N in G, G/N is abelian if and only if G′ ⊆ N . In other
words, G′ is the smallest normal subgroup in G with an abelian factor group.

Proof. To prove that G′ is characteristic in G, we show that any automorphism φ of G maps
elements of the generating set {[x, y] | x, y ∈ G} for G′ to other elements in the generating set:

φ([x, y]) = φ(x−1y−1xy) = φ(x)−1φ(y)−1φ(x)φ(y) = [φ(x), φ(y)].

Taking φ to be conjugation by an element of G verifies that G′ is normal.
Let N be a normal subgroup of G and suppose that G/N is abelian. Then, for any x, y ∈ G,

we have xN ·yN = yN ·xN , so x−1y−1xyN = N , which means that [x, y] ∈ N . Therefore, G′ ⊆ N .
Conversely, suppose G′ ⊆ N . Then, for all x, y ∈ G, the commutator [x, y] is an element of N ,

so x−1y−1xyN = N . Hence xN · yN = yN · xN and G/N is abelian.

For a group G, the derived series {G(i)}i∈N is a descending sequence of successive commutators
defined as

G(0) := G, G(1) := G′, G(2) := [G′, G′], . . . , G(i) := [G(i−1), G(i−1)], . . . .

If G is finite, then the orders of the groups in this sequence are finite and non-increasing. Hence
there exists an integer d such that G(d) = G(d+1), and consequently G(d) = G(s) for all s ≥ d. If this
G(d) is the trivial subgroup {1}, then the original group G is called solvable. The derived length
of G is the smallest positive integer d for which G(d) = {1}. Note that any subgroup of a solvable
group is solvable.

Proposition 2. Let N be a normal subgroup of a group G. If N is solvable and G/N is solvable,
then G is solvable.

Proof. Let h : G→ G/N be the natural homomorphism. We first show that h(G(i)) = h(G)(i) for
each nonnegative integer i. Indeed, h(G(0)) = h(G) = h(G)(0) and, proceeding by induction,

h(G)(i+1) = [h(G)(i), h(G)(i)] = [h(G(i)), h(G(i))],
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which is generated by the set

{[h(x), h(y)] : x, y ∈ G(i)} = h({[x, y] : x, y ∈ G(i)}).

This set also generates h(G(i+1)), and our preliminary result follows.
Now let c be the derived length of G/N . Then

G/N ⊇ (G/N)′ ⊇ (G/N)′′ ⊇ · · · ⊇ (G/N)(c) = {1G/N}.

Since (G/N)(i) = h(G)(i) = h(G(i)), we have

h(G) ⊇ h(G′) ⊇ h(G′′) ⊇ · · · ⊇ h(G(c)) = {1G/N}.

Therefore, the derived series for G enters N (the pre-image of the 1G/N under h) after at most
c steps. Let d be the derived length of N . It follows that the derived series of G includes the
identity:

G, G′, G′′, . . . , G(c) ⊆ N, G(c+1) ⊆ N ′, . . . , G(c+d) ⊆ N (d) = {1}.

Hence G is solvable with derived length at most c+ d.

The solvable radical of a finite group G is the largest normal solvable subgroup of G. It was
recently proved that the solvable radical of a finite group G is equal to the set of all elements g ∈ G
such that for any x ∈ G, the subgroup generated by g and x is solvable [10]. The solvable radical
also occurs and has an important role in the theory of linear groups.

3 Nilpotent Groups and the Fitting Subgroup

Another important descending sequence for a group G is the lower central series

G = γ1(G) ⊇ γ2(G) ⊇ · · · ⊇ γi(G) ⊇ · · ·

where γi+1(G) := [γi(G), G] = 〈x−1y−1xy | x ∈ γi(G), y ∈ G〉. Note that γ2(G) = G′.

Proposition 3. For each i, γi(G) is a characteristic subgroup of G.

Proof. We argue by induction on i. Clearly γ1(G) = G is characteristic in G.
Suppose γi(G) is characteristic inG for some i ≥ 1. The generating set for γi+1(G) is {[x, g] | x ∈

γi(G), g ∈ G}. Similar to the proof of Proposition 1, we show that any automorphism φ of G maps
elements of this set to other generators. Let φ ∈ Aut(G), x ∈ γi(G), and g ∈ G. Then

φ([x, g]) = φ(x−1g−1xg) = φ(x)−1φ(g)−1φ(x)φ(g) = [φ(x), φ(g)].

Since γi(G) is characteristic, φ(x) ∈ γi(G), so φ([x, g]) is in the generating set for γi+1(G).

Proposition 4. The group γi(G)/γi+1(G) is central in G/γi+1(G), i.e. all of its elements commute
with all other elements of the factor group.

Proof. For any x ∈ γi(G) and g ∈ G, we have [x, g] ∈ γi+1(G). This implies equality between the
cosets (xg)γi+1(G) and (gx)γi+1(G) in G/γi+1(G).

3



Proposition 4 explains the name “lower central series”: each member is central in G modulo
its successor. If G is finite, then the orders of the groups γi(G) are finite and non-increasing. If
there exists a d such that γd+1(G) = {1}, then G said to be nilpotent. The nilpotency class of a
nilpotent group G is the smallest such d, and we write nc(G) = d. Note that nilpotent groups are
solvable, and that subgroups of nilpotent groups are also nilpotent.

Lemma 5. If G is nilpotent and N EG, then G/N is nilpotent.

Proof. Let h : G → G/N be the natural homomorphism. We first show that h(γi(G)) = γi(G/N)
for each positive integer i. This proof is analogous to the proof of Proposition 2. Now, h(γ1(G)) =
h(G) = γ1(h(G)) and, proceeding by induction,

γi+1(h(G)) = [γi(h(G)), h(G)] = [h(γi(G)), h(G)],

which is generated by the set

{[h(x), h(y)] : x ∈ γi(G), y ∈ G} = h({[x, y] : x ∈ γi(G), y ∈ G}).

This set also generates h([γi(G), G]) = h(γi+1(G)), and it follows that h(γi+1(G)) = γi+1(h(G)) =
γi+1(G/N).

Hence, if γd+1(G) is trivial for some d, then γd+1(G/N) = h(γd+1(G)) is also trivial. In addition,
this shows that nc(G/N) ≤ nc(G).

A characterization of finite nilpotent groups is given in the following theorem, whose proof is
omitted here. See Rotman [18, Theorem 5.39].

Theorem 6. A finite group G is nilpotent if and only if it is the direct product of its Sylow
subgroups. That is G is nilpotent if and only if G = Sp1 × Sp2 × · · · × Spr , where p1, p2, . . . , pr are
the prime divisors of |G| and Spi are Sylow subgroups of G.

The product of two subgroups N and M of G is defined to be NM = {ab | a ∈ N, b ∈ M}.
If N is a normal subgroup of G, then the set NM is a subgroup. To see why, let x1, x2 ∈ N and
y1, y2 ∈M . Then, since N EG, we have

x1y1(x2y2)−1 = x1y1y
−1
2 x−1

2 = (x1x
(y2y

−1
1 )

2 )(y1y
−1
2 ) ∈ {xy | x ∈ N, y ∈M}.

Moreover, if both N and M are normal in G, then NM is also normal in G. Indeed, if g ∈ G,
x ∈ N , and y ∈ M , then (xy)g = g−1xyg = (g−1xg)(g−1yg) = xgyg ∈ NM since both subgroups
are normal.

Lemma 7. For normal subgroups A, B, and C, of a group G,

(i) [AB,C] = [A,C][B,C]

(ii) [A,BC] = [A,B][A,C].

Proof. Let a, b, and c be elements of A, B, and C, respectively. Then

[ab, c] = b−1a−1c−1abc = b−1a−1c−1acbb−1c−1bc = [a, c]b[b, c] ∈ [A,C]b[B,C].

Now, both A and C are normal, so [A,C]b = [A,C], giving the inclusion [AB,C] ⊆ [A,C][B,C].
Conversely, [A,C] and [B,C] are both contained in [AB,C], so the product [A,C][B,C] is contained
in [AB,C] as well, giving the first result.
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The second identity follows from the first:

[A,BC] = [BC,A] = [B,A][C,A] = [A,B][A,C].

We have used the observation made in section 2 that [H,K] = [K,H] for any subgroups H and K
of G.

This operation of taking products of groups preserves normality and nilpotency, as verified in
the next theorem. In proving the result, we will use “left-normed commutators”:

[X1, X2, X3, . . . , Xn] := [. . . [[X1, X2], X3], . . . , Xn].

In this notation, γi(G) = [G,G, . . . , G] (i times).

Theorem 8. If N and M are nilpotent normal subgroups of a group G, then NM is nilpotent and
normal in G. Moreover, nc(NM) ≤ nc(N) + nc(M).

Proof. We already seen that NM EG. Let c and d be the nilpotency classes of M and N , respec-
tively, and let r = c+ d. Then, applying Lemma 7,

γr+1(MN) = [MN,MN, . . . ,MN ]

=
∏

[X1, X2, . . . , Xr+1],

where the product includes all tuples

(X1, X2, . . . , Xr+1) ∈ {M,N}r+1 = {M,N}c+d+1.

In each term, either at least c+1 of the Xi’s are equal to M or at least d+1 of them are equal to
N . In the first case, the corresponding group is contained in γc+1(M) = {1}; in the second case, it
is contained in γd+1(N) = {1}. Therefore, nc(NM) ≤ c+ d = nc(N) + nc(M).

Using this result, we can find a unique maximal nilpotent normal subgroup F (G) in a finite
group G, which is referred to as the Fitting subgroup of G. Equivalently, F (G) is the subgroup
generated by the maximal normal p-subgroups of a finite group G, where p runs over all prime
divisors of |G|.
Theorem 9. If G is a finite solvable group, then CG(F (G)) = Z(F (G)).

Proof. For convenience, let F = F (G), C = CG(F (G)), and Z = Z(F (G)). Now, ZEC and ZEG.
The former follows since Z ≤ F and elements in C commute with those in F . To see why ZEG, let
z ∈ Z, f ∈ F , and g ∈ G. Because F is normal in G, zg and f1 := fg

−1
belong to F . Meanwhile,

zg ∈ C since
zgf = g−1zgfg−1g = g−1zf1g = g−1f1zg = g−1f1gg

−1zg = fzg.

Thus, zg ∈ C ∩ F = Z.
Suppose, for a contradiction, that Z is strictly contained in C and let M/Z be a minimal

nontrivial normal subgroup of G/Z that is contained in C/Z. Since G is solvable, M/Z is solvable.
We show that (M/Z)′ E G/Z. Since M/Z is normal in G/Z, conjugation by an element

g ∈ G/Z is an automorphism of M/Z. Also, (M/Z)′ is characteristic in M/Z (Proposition 1) , so
conjugation by g maps (M/Z)′ to itself.

Therefore, (M/Z)′EG/Z. By the minimality of M/Z, (M/Z)′ must equal either 1G/Z or M/Z.
But M/Z is solvable, so (M/Z)′ = 1G/Z and M ′ ≤ Z. Since M ⊆ C and M ′ ⊆ Z ⊆ F , we have
that γ3(M) = [M ′,M ] ⊆ [C,F ] = 1. Therefore M is nilpotent and normal in G, which implies that
M ⊆ F from the definition of the Fitting subgroup. But M ≤ C, so M ⊆ C ∩ F = Z. Then M/Z
is trivial, contradicting the choice of M . This means that there are no nontrivial normal subgroups
between Z and C, giving the result Z = C.
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4 Split Extensions

Let H and K be groups. The direct product H × K of H and K is the set of ordered pairs
{(h, k) | h ∈ H, k ∈ K} with operation (h1, k1)·(h2, k2) = (h1 ·h2, k1 ·k2). In terms of presentations,
if

H = 〈h1, h2, . . . | r1, r2, . . . 〉 and K = 〈k1, k2, . . . | s1, s2, . . . 〉,
then a presentation for H ×K is

〈h1, h2, . . . , k1, k2, . . . | r1, r2, . . . , s1, s2, . . . , hikj = kjhi for all i, j〉.

More generally, let φ : H → Aut(K) be a homomorphism1. The semidirect product H n K
with respect to φ is defined as the set {(h, k) | h ∈ H, k ∈ K} with operation (h1, k1) · (h2, k2) =
(h1 · h2, k

φ(h2)
1 · k2).

If G = H nK, then G is also known as a split extension of K by H. By means of the natural
embeddings K → G, k 7→ (1, k), and H → G, h 7→ (h, 1) we may regard K and H as subgroups
of G. Then K is a normal subgroup of G, H is a subgroup of G disjoint from K except for the
identity, and H and K generate the entire group G. The subgroup H is called a complement of K
in G, while the normal subgroup K is called a normal complement of H in G.

Note that extensions of groups need not be split. If K is a normal subgroup of group G, then
K may or may not admit a complement2 in G.

5 The Transfer Homomorphism

Suppose we want to know whether a nontrivial group G is solvable. Clearly we must search for a
proper, nontrivial normal subgroup in G (unless G ∼= Cp). If G can be written as the split extension
of a normal subgroup K by a complement Q, then according to Proposition 2, we can reduce to
studying K and Q ∼= G/K. Therefore, a common strategy to prove that a group is solvable is
to begin with an accessible subgroup Q and, if possible, construct a homomorphism from G to Q,
whose kernel will be a normal complement of Q in G. This homomorphism is known as the transfer.
For the next few results, let Q be a subgroup of G with finite index n. Although the proofs are
straightforward, we will not prove all the results of this section for the sake of brevity; please refer
to [18, Chapter 7] for a more detailed explanation.

Lemma 10. Let {l1, . . . , ln} and {h1, . . . , hn} be two left coset representatives of Q in G. For any
fixed g ∈ G and each i ∈ {1, ..., n}, there is a unique σ(i) ∈ {1, .., n} and a unique xi ∈ Q such that
ghi = lσ(i)xi. Moreover, σ is a permutation of {1, ..., n} (i.e. σ ∈ Sym(n)).

In the case where the two coset representatives are the same (li = hi for all i ∈ {1, ..., n}), the
previous lemma guarantees a unique xi such that xi = l−1

σ(i)gli for each g ∈ G and i ∈ {1, ..., n}.
With this xi in mind, define the function V : G→ Q/Q′ where

V (g) =
n∏
i=1

xiQ
′.

This function is known as the transfer 3 and it turns out that it is a homomorphism whose definition
does not depend on the choice of a left transversal of Q in G.

1A remark on notation: here φ is written on the left as φ(h), while elements in Aut(K) are written on the right,
so if σ ∈ Aut(K), then we write kσ for the image of k under σ.

2In infinite polycyclic groups one finds almost complements and almost split extensions.
3The letter V abbreviates the original German term V erlagerung.
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Lemma 11. Let Q be a subgroup of G with finite index n and left coset representatives {l1, . . . , ln}.
For any fixed g ∈ G, there exist m ∈ N; h1, . . . , hm ∈ G; and positive integers n1, . . . , nm with

(i) hi ∈ {l1, . . . , ln} for all i;

(ii) h−1
i gnihi belongs to Q;

(iii)
∑m

i=1 ni = n; and

(iii) V (g) =
∏m
i=1(h−1

i gnihi)Q′.

Proposition 12. Let Q be a subgroup of G of finite index n. If Q ≤ Z(G), then V (g) = gn for all
g ∈ G.

Proposition 13. Let Q be a Sylow subgroup of a finite group G, and let h and k be elements of
CG(Q). If h and k are conjugate in G, then they are conjugate in NG(Q).

Theorem 14 (Burnside, 1900). Let G be a finite group and let Q be an abelian Sylow subgroup
with the property that Q ≤ Z(NG(Q)), i.e. Q is contained in the center of its normalizer. Then Q
has a normal complement K in G.

Proof. Since Q is abelian, Q′ = {1} and we may regard the transfer as a homomorphism V : G→ Q.
We will show that V is surjective and that K = ker(V ) is the desired complement.

Let g ∈ Q. Then, using Lemma 11,

V (g) =
m∏
i=1

h−1
i gnihi

with
h−1
i gnihi ∈ Q

for all i ∈ {1, . . . ,m}. For any i, gni and h−1
i gnihi are elements of Q which are conjugate in Q.

Note that gni and h−1
i gnihi belong to CG(Q). This is because Q is abelian, and hence Q ≤ CG(Q).

By Proposition 13, gni and h−1
i gnihi are already conjugate in NG(Q), i.e. there exists ci ∈ NG(Q)

with h−1
i gnihi = c−1

i gnici. But Q ≤ Z(NG(Q)), so gni commutes with ci and, combining several
steps,

V (g) =
m∏
i=1

h−1
i gnihi =

m∏
i=1

c−1
i gnici =

m∏
i=1

gni = g
Pm
i=1 ni = gn,

where n = [G : Q], as before. Let |Q| = q. Then gcd(n, q) = 1, since Q is a Sylow subgroup. There
are integers a and b such that an + bq = 1. V is surjective because for any g ∈ Q, we have that
g = gan+bq = gangbq = (ga)n = V (ga).

By the First Isomorphism Theorem, G/K ∼= Q. It remains to show that K ∩ Q is trivial.
Indeed, as seen above, V restricted to Q is exponentiation by n. Since n is relatively prime to
q = |Q|, this shows that V restricted to Q is injective, hence K ∩ Q = 1. We conclude that
G = QnK and K is the desired complement of Q in G.

Theorem 15. Let G be a finite group, and let p be the smallest prime divisor of |G|. Let Q be a
Sylow p-subgroup of G. If Q is cyclic, then Q has a normal complement in G.
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Proof. Let N = NG(Q) and C = CG(Q). By the N/C Lemma, C EN and N/C is isomorphic to
a subgroup of Aut(Q) [1, Theorem 7.1]. What can we say about |N/C|?

Say |Q| = pm for some m. Then Aut(Q) ∼= U(pm) because Q is cyclic, and it is easy to show
that |U(pm)| = pm−1(p− 1). Thus, |N/C| divides pm−1(p− 1). Since Q is abelian, Q ≤ C and Q
is the Sylow p-subgroup of C. Hence p does not divide |N/C| and so |N/C| divides p− 1. Finally,
N ≤ G, and therefore |N/C| = |N |/|C| divides |G|. But p is the smallest prime divisor of |G|;
therefore |N/C| = 1, which means N = C.

Because Q is abelian, Q ≤ Z(C), which implies Q ≤ Z(N). By Theorem 14, Q has a normal
complement in G.

Corollary 16. Let G be a finite group, and let p be the smallest prime divisor of |G|. Let Q be a
Sylow p-subgroup of G. If Q is cyclic, then G is a split extension of a normal subgroup by Q.

6 Groups of a Square-Free Order

As mentioned in the Introduction, it is a difficult task in general to determine f(n), the number of
groups of finite order n. In this section, we restrict our attention to cases when n is square-free. In
other words, n = p1p2 · · · pr where the pi’s are distinct primes. This is a very special situation of
the broader problem, and lends itself to relatively straightforward results, most notably Hölder’s
formula. We begin with an algebraic classification of groups whose order is the product of two
primes, then prove two general results for groups of square-free order before considering Hölder’s
formula.

Example. Let G be a group of square-free order n = p1p2 · · · pr. If r = 1, then f(n) = 1 since
n = p1 is prime and G ∼= Cn.

For the case when r = 2, denote p := p1 and q := p2 where p < q. By the third Sylow Theorem,
the number of Sylow q-subgroups of G has the form qa+ 1 for some integer a with qa+ 1 dividing
the order of the group. Thus qa+ 1 must equal one of 1, p, q, or pq, the divisors of pq. But since
q > p, it follows that there is precisely one (normal) Sylow q-subgroup. (We will see below by a
different argument that in a group G of square-free order, the largest prime divisor of the order of
the group always has a unique Sylow subgroup.)

Similarly, the number of p-subgroups of G has the form pa+ 1 for some integer a with pa+ 1
dividing the order of the group. Thus pa + 1 must equal one of 1, p, q, or pq, the divisors of pq.
Here we have two cases: (i) p divides q − 1 and (ii) p does not divide q − 1.

In the second case, a = 0 is the only possibility, and G has only one Sylow p-subgroup. Both
Sylow subgroups are normal as a consequence of the third Sylow Theorem, and both are cyclic, so
let x and y be a their respective generators. Also note that their intersection 〈x〉 ∩ 〈y〉 is trivial.
But

[x, y] = x−1y−1xy = x−1(xy) ∈ 〈x〉,
[x, y] = x−1y−1xy = (yx)y ∈ 〈y〉.

So [x, y] = {1}. Therefore, xy = yx so the order of xy is pq, the product of the orders of x and y.
Hence G is cyclic and f(pq) = 1 when p < q and p does not divide q − 1.

In the other case, if p divides q − 1 then f(pq) = 2. This is because there is either 1 Sylow
p-subgroup, which leads to the cyclic group of order pq, as above; or there are q Sylow p-subgroups.

Extensions give another approach to classify groups with order pq. Since there is a unique
normal Sylow q-subgroup Sq, we may regard G as the extension of Sq by a Sylow p-subgroup Sp.
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To determine the isomorphism class, we must specify a corresponding map φ : Sp → Aut(Sq). One
option is that φ maps Sp to the identity; this possibility gives the cyclic group Cpq. The other
possibility is for the image of Sp in Aut(Sq) to be a subgroup of size p. Since Aut(Sq) ∼= Aut(Cq)
∼= U(q) is cyclic of order q − 1, it has a subgroup of order p if and only if p divides q − 1. This
subgroup of order p, if it exists, is unique in Aut(Sq). Since it has several generators, the group Sp
can be mapped to it in different ways, but up to composition with an automorphism of Sp there is
only one choice. Therefore, if p divides q− 1, there is a second, non-abelian, isomorphism class for
groups of order pq in addition to the cyclic one. �

Let G be a group of square-free order n. All Sylow subgroups have prime order and are
therefore cyclic. Also, if G is abelian, it must be the product of cyclic groups of prime order by the
Fundamental Theorem of Finite Abelian Groups [9, Theorem 11.1]. Hence G is abelian if and only
if it is cyclic.

Before continuing the classification of groups of square-free order, we now prove that such
groups are solvable (a result due to Frobenius [8]) and that they are so-called Sylow tower groups.

Proposition 17. Every group of square-free order is solvable.

Proof. Let p be the smallest prime divisor of |G| with Sp a Sylow p-subgroup of G. Then Sp is
cyclic, solvable, and has a normal complement K in G (Theorem 15). Then |K| is square-fee, and,
by induction on the order of the group, K is solvable. Also, G/K ∼= Sp is solvable, so by Proposition
2, G is solvable.

We remark that this proposition is consistent with the Classification of Finite Simple Groups.
In particular, from the classification one can deduce that 4 divides the order of any non-abelian
finite simple group4. Let G be a group of square-free order. Clearly 4 cannot divide |G|. So if G is
simple, G must be abelian and hence solvable. If G is not simple, it has a proper normal subgroup
N such that |G/N | and |N | are square-free, and it follows by induction that G is solvable.

If G is abelian with square-free order it may be simple (e.g. G ∼= Cp for a prime p) but it is
solvable. Clearly 4 cannot divide the square-free order of G, so a nonabelian group of square-free
order isn’t simple. Thus it has a normal subgroup whose factor group has square-free order and
the result follows by induction.

A finite group G is a Sylow tower group if there exists a series of normal subgroups of G

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gr = {1},

such that Gi−1/Gi is a Sylow pi-subgroup of G/Gi where pi is the largest prime divisor5 of |G/Gi|.

Theorem 18. Groups of square free order are Sylow tower groups.

Proof. Let |G| = p1p2 · · · pr with pi < pi+1. By Theorem 15 a Sylow p1-subgroup Sp1 has a normal
complement G1 in G, with |G1| = p2 · · · pr. Similarly, a Sylow p2-subgroup of G1 has a normal
complement G2 in G1, with |G2| = p3p4 · · · pr. For i = 1, . . . , r − 1 define Gi to be the normal

4By the Feit-Thompson Theorem, 2 divides the order of any non-abelian finite simple group, so groups of odd
order are not simple.

Suppose G is a non-abelian group such that 2 divides its order but 4 does not. Then its Sylow 2-subgroup is cyclic
and has a normal complement in G by Theorem 15. Hence G is not simple. Another way to arrive at this result is
to show that the set of elements of G with odd order form a normal subgroup.

5A weaker formulation of this definition does not require pi to be the largest prime divisor of |G/Gi|. Here, we
follow Blackburn et al. [1] and adopt the stronger formulation.

9



complement of a Sylow pi-subgroup of Gi−1, where G0 = G. Then Gi E Gi−1 and in particular
G1 EG0 = G. Also, |Gi| = pi+1pi+2 . . . pr. We prove by induction that Gi EG.

Suppose Gi−1 is normal in G for some i ≥ 1. Then conjugation by g ∈ G is an automorphism
of Gi−1. Therefore, the image of Gi under conjugation by g ∈ G, denoted γg(Gi), is a subgroup
of Gi−1 with order pi+1pi+2 . . . pr. Now consider γg(Gi)Gi/Gi, the corresponding subgroup of
Gi−1/Gi. The order of the subgroup γg(Gi)Gi/Gi must divide pi+1pi+2 . . . pr (the order of γg(Gi)
in Gi−1) as well as pi (the order of the group Gi−1/Gi). But gcd(pi+1pi+2 . . . pr, pi) = 1 implies
that γg(Gi)Gi/Gi is trivial, hence γg(Gi) ⊆ Gi. Since this is true for all g ∈ G, Gi is normal in G
for i ∈ {1, 2, . . . r − 1}.

For each i, 1 ≤ i ≤ r, pi is the largest prime divisor of |G/Gi| = p1p2 · · · pi, while |Gi−1/Gi| = pi.
Hence Gi−1/Gi is the Sylow pi-subgroup of G/Gi and the result follows.

The proof of the theorem shows that for the largest prime factor p of |G|, the Sylow p-subgroup
Sp is unique in G. Also, one can algebraically build groups of square-free order as iterated split
extensions by cyclic groups of prime order.

Finally, we turn our attention to Hölder’s classical result [12]:

Theorem 19 (Hölder, 1895). The number of groups of order n, where n is square-free is given by

f(n) =
∑
m|n

∏
p

pc(p) − 1
p− 1

where p runs over all prime divisors of n/m and c(p) is the number of prime divisors q of m that
satisfy q ≡ 1 (mod p).

We explain the derivation of this formula expanding on the comments given by Blackburn et al.
[1]. Let G be a group of square-free order n and let m be the order of the Fitting subgroup F (G).
Since F (G) is nilpotent, it is the product of its Sylow subgroups by Theorem 6. But these are all
cyclic and their orders are distinct primes, so F (G) is cyclic by the Chinese Remainder Theorem.

Lemma 20. In a group G of square-free order, F (G) admits a cyclic complement H.

Proof. By the above comments, F (G) is cyclic and, in particular, Aut(F (G)) is abelian. Let
γg : F (G) → F (G) denote conjugation by g ∈ G — an automorphism since F (G) is a normal
subgroup of G. Consider the map φ : G→ Aut(F (G)) with g 7→ γg. The kernel of φ is

{g ∈ G | x = g−1xg for all x ∈ F (G)} = CG(F (G)) = Z(F (G)) = F (G),

the penultimate equality following from Theorem 9 (G is solvable). Hence G/F (G) is isomorphic
to a subgroup of the abelian group Aut(F (G)). This makes G/F (G) abelian, and it is also cyclic
since it is of square-free order (see above).

Choose an element g ∈ G such that G/F (G) = 〈g〉. As G/F (G) and F (G) have coprime orders
we may replace g by a suitable power of g so that 〈g〉 ∩ F (G) = 1. Then H = 〈g〉 is the desired
complement of F (G) in G.

Since F (G) is cyclic, CG(F (G)) = F (G) (Theorem 9) and Aut(F (G)) is abelian. Consider a
map φ from H to Aut(F (G)) in which h is mapped to conjugation by h, denoted γh : F (G)→ F (G).
We show that the kernel of the map φ is trivial. Indeed, if h ∈ ker φ, then γh = id, so h−1xh = x
for all x ∈ F (G). As a consequence, h ∈ CG(F (G)) = F (G). So, h ∈ F (G) ∩H = {1}.

Therefore, the map φ is injective, and embeds G into the holomorph Aut(F (G)) n F (G). We
need to understand the isomorphism classes of certain subgroups of this holomorph.
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Proposition 21. Suppose K is a finite cyclic group (equivalently K is abelian with Aut(K)
abelian). Let H1 and H2 be subgroups of Aut(K), and consider H1 nK and H2 nK as subgroups
of Aut(K) nK. Then an isomorphism

φ : H1 nK
∼=−→ H2 nK with φ(K) = K

exists if and only if H1 = H2.

Proof. (⇐) This direction is trivial.
(⇒) Conversely, suppose there exists an isomorphism

φ : H1 nK
∼=−→ H2 nK with φ(K) = K.

Step 1: We may assume that φ|K = idK .
Subproof. Write α := φ|K ∈ Aut(K), and consider

φ̃ : H1 nK
φ−→ H2 nK

ψ−→ αH2α
−1 nK

where ψ(h, k) = (αhα−1, kα
−1

). As Aut(K) is abelian, we have αH2α
−1 = H2. Moreover,

φ̃ : H1 nK
∼=−→ H2 nK with φ̃|K = idK , for φ̃(k) = ψ(φ(k)) = (kα)α

(−1)
= k.

Step 2: For h ∈ H1 we have φ(h) = ψ(h) · xh where

ψ : H1 ↪→ H1 nK
φ−→ H2 nK

proj−→ H2

and xh ∈ K. Since K is abelian we deduce that kh = φ(kh) = (φ(k))φ(h) = kψ(h)xh = kψ(h) for all
k ∈ K. Thus h = ψ(h), and consequently H1 = H2.

Therefore the isomorphism class of the extension G = H n F (G) is determined by the image
of H in Aut(F (G)). In other words, the number of non-isomorphic groups of square-free order n
whose Fitting subgroup has order m is the number of distinct groups of size n/m in Aut(F (G))
∼= U(m). Now, write m = q1q2 . . . qk where each distinct prime qj equals pi for some i. Then, using
the Chinese Remainder Theorem,

Aut(F (G)) ∼= U(m) ∼= U(q1)× U(q2)× · · · × U(qk)
∼= Cq1−1 × Cq2−1 × · · · × Cqk−1.

Suppose p divides n/m. How many subgroups of size p does Aut(F (G)) have? A factor Cqj−1 has
a subgroup of size p if and only if p divides qj − 1, i.e. if and only if qj ≡ 1 (mod p) and these
subgroups are unique. For each prime divisor p of n/m, let c(p) denote the number of primes q
dividing m such that q ≡ 1 (mod p). Hence Aut(F (G)) has a subgroup isomorphic to

Cp × Cp × · · · × Cp = Cc(p)p

and all subgroups of Aut(F (G)) with order p are contained in this subgroup. This subgroup has
pc(p)−1
p−1 subgroups of order p. This is because any of the pc(p)−1 nonzero elements in Cc(p)p generates

a subgroup of order p, but each such subgroup has p − 1 generators. Hence we obtain Hölder’s
formula.

Hölder’s original proof is similar in some ways. He uses the maximal normal cyclic subgroup
H of G, which turns out in this case to coincide with the Fitting subgroup F (G), and establishes
that G/H is cyclic. From there he determines the possible relations for generators of G. The
explanation given in Conway et al. [3] also focuses on the generators and relations of a group.

11



7 Further Results and Conjectures

A natural question that arises from Hölder’s formula is: for n square-free, can we relate f(n) to n
more explicitly? McIver and Neumann [14] determined that f(n) ≤ n4 for n square-free. A better
bound, given in [15], is f(n) ≤ φ(n), where φ is Euler’s function. For square-free n = p1p2 · · · pr
and greater than 1, this last result implies that

f(n) ≤ φ(n) = (p1 − 1)(p2 − 1) · · · (pr − 1) < n.

Furthermore, if n is even and square-free, then p1 = 2 and f(n) ≤ φ(n) = 1(p2−1) · · · (pr−1) < n/2.
Let g and h be nonnegative functions from N to R. We write g ≤ O(h) if there exist positive

constants K and N such that g(n) ≤ K h(n) for all n ≥ N . Murty and Srinivasan [16] have shown
there exist real numbers A, B > 0 such that

f(n) ≤ O
(

n

(log n)A log log logn

)
for all square-free n and

f(n) >
n

(log n)B log log logn

for infinitely many square-free n. Such results are based on our understanding of the distribution
of prime numbers. In this sense they are more number theoretic than the arguments presented in
this report.

A positive integer n is cube-free if no cube divides n. Similarly, a positive integer n is (k+1)-free
if it is not divisible by any (k + 1)-th power greater than 1. It is tempting to think that Hölder’s
result generalizes in some way to groups of cube-free order, or even to groups whose order is a
(k + 1)-free integer. A general explicit formula is very unlikely, however, since such groups are not
necessarily solvable, and if solvable need not be Sylow tower groups. A more promising direction,
therefore, is to understand the asymptotic behavior of f(n) when n is (k + 1)-free. In this light,
define

M(k) := lim sup
n→∞

log f(n)
log n

where the limit superior ranges just over (k + 1)-free integers n. For the square-free case (k = 1),
Erdös, Murty, and Murty [6] have shown that M(1) = 1; their proof uses Dirichlet’s Theorem
on primes in arithmetic progressions, among other techniques. The following conjecture for the
cube-free case (k = 2) was communicated to the author in an email from Peter Neumann.

Conjecture 22. With M(k) defined as above, M(2) = 2.

A proof of Conjecture 22 may also use Dirichlet’s Theorem, and will likely invoke several
known properties of groups of cube-free order. For a start, McIver and Neumann have shown that
f(n) ≤ n8 for n cube-free [14]. In any group, the solvable residual is the smallest normal subgroup
with solvable factor group, and recall that the solvable radical is that largest normal subgroup.
Although groups of cube-free order are not solvable in general, they are the product of the solvable
radical and the solvable residual [1, Proposition 21.15], so their structure can be studied through
these two subgroups. It may be feasible to determine estimates for the number of groups of cube-free
order since a large part of any such group is normal with a Sylow tower structure.

A natural extension of Conjecture 22 is to find the value of M(k) for other small k. Such
results may provide insight into another problem: what are good bounds for M(k)? For general k,
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one can verify that M(k) ≤ k2 + k + 2 using results of McIver and Neumann [14]. Also, Pyber’s
Theorem [17] gives M(k) ≤ 2

27k
2 +O(k3/2), which may turn out to be the best asymptotic bound.

Another, more significant conjecture in the enumeration of finite groups is Graham Higman’s
PORC conjecture. In order to describe it, let us first define a polynomial on residue classes (PORC).
The residue class of k with respect to N is RN (k) = {n ∈ Z | n ≡ k (modN)}. Let f be a function
defined on a set of integers. Suppose that for some integer N and for each k, there is a polynomial
fk such that whenever n ∈ RN (k) ∩ dom(f), we have fk(n) = f(n). Then the function f is said to
be PORC. Now we state the conjecture:

Conjecture 23 (Higman’s PORC conjecture [13]). Let gn(p) = f(pn) where p is a prime and f is
the group number function. For a fixed n, the function gn is PORC as a function of p.

The result has been verified in some limited cases. Combining the work of several researchers, it
can be shown by means of sophisticated computation that gn is PORC for n less than or equal to 7.
Using cohomology theory and algebraic representations of algebraic groups, Evseev has verified the
result for a related function φn(p), which counts the number of groups of order pn whose Frattini
subgroup is central [7]. (The Frattini subgroup of a group G is the intersection of all maximal
subgroups of G.) Marcus du Sautoy has applied zeta functions of finitely generated torsion-free
nilpotent groups to this problem [5]. His approach features algebraic groups, p-adic Lie groups,
p-adic integration, among others. Based on these advances, it is clear that the techniques necessary
to prove the PORC conjecture would have a profound impact on several areas of mathematics. If
f(pk) is confirmed PORC, there will likely be relevant implications for f(n). Maybe there are other
classes of orders for which f(n) is PORC? It has also been suggested that the function that counts
metabelian or even metacyclic groups of a given order is PORC.

We mention one final, curious conjecture in the enumeration of finite groups:

Conjecture 24. The group enumeration function is surjective.

That is, for every positive integer m, the conjecture asserts that there exists n such that
f(n) = m. This conjecture may well be resolved through consideration of square-free n, largely
because of Hölder’s formula. Indeed, it has been verified that every m less than 10,000,000 is equal
to f(n) for some square-free n, and a forthcoming paper by R. Keith Dennis promises to shed more
light on the topic [2, 4].

Hölder’s formula was a ground-breaking result in the early development of group theory, and
it continues to influence research today. In this paper, we have seen how a structural approach to
the formula can be used to re-interpret the classical result using more recent ideas. In addition,
understanding the formula can serve as an introduction to topics in graduate-level group theory
and to current research topics.
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