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Abstract 
 

A perfect distance tree is a weighted tree with n vertices in which the set of distances 
between vertices is . We define a weighted tree with n vertices to be a 
perfect distance tree mod m 1,2,3, … , (mod m) can be obtained. In 
this paper, we find that every weighted star wi where m is odd, labeled 
with 0, 1, 2, 3… m-1 is a perfect distance tree m obtained from this star 
by removing the edge labeled 0 or by changing the weight 0 to another weight are also 
perfect distance trees mod m. By combining stars, we show that every star with km+j 
vertices can be labeled to be a perfect distance tree mod m, where m is odd, k  1 and 
-1 4. Finally, we show that certain twin-stars (trees of diameter 3) can be labeled 
as perfect distance trees mod m. 

oduction 

 1,2,3, … ,
 if the distances 

th m+1 vertices, 
od m. The stars 

 

1. Intr
 graph consists of a finite set of vertices and a set of unordered pairs of distinct 

ertices x and y are adjacent if {x, y} is an edge. A path is a finite 
ertices x0, x1, …, xn and edges a1, a2, …, an, where the endpoints of 

refer to a distinct distance tree on n vertices as a perfect distance tree if the set of 

stars.  

A
vertices called edges. V
sequence of distinct v
ai are xi-1 and xi for each i. A tree is a graph in which there is a unique path between any 
two distinct vertices. A star is a tree with a center vertex adjacent to all the other 
vertices. A weighted tree is a tree in which each edge is labeled with a positive integer, 
called the weight of the edge. The distance between two vertices in a weighted tree is 
the sum of the weights on the edges of the unique path connecting the pair. Since each 

pair of vertices determines a distance, there are a total of  distances in a tree with n 

vertices. If all of these distances are distinct, we call the tree a distinct distance tree. We 

distances 1,2,3, … ,  can be achieved. In the next section we will define a perfect 

distance tree mod m. The goal of this paper is to show that various trees that are labeled 
appropriately are perfect distance trees mod m. Most of the trees we will consider are 
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ees, known as

with n vertices cannot be labeled as a perfect distance tree unless n = k  or n = k +2 

over, Calhoun, Ferland, Lister and Polhill showed 
at for n = 11, 16 there is no perfect distance tree, see [2]. We still do not know whether 

2. Perfect Distance Tree mod m 
Definition: A tree with n vertices is a perfect distance tree mod m if the distances 

1,2,3, … , (mod m) can be obtained. We use the notation 1,2,3, … , (mod m) to 

dicate the multi-set {1 mod m, 2 mod m, 3 mod m, …,  mod m}.  

heorem 1: If m |m  and T is a perfect distance tree mod m , then T is a perfect 
and m |n. 

distances 1,2 |n , we hav

(mod m ), which means that in the multi-set 1,2,3, … , (mod m ) the number of 

e 0, 1, 2, …, 
 m -1}(mod  m ) has equally many 0’s, 1’s, 2’s, …,  m -1’s. So 

od m -

plicity, the previous theorem was stated in the special case that m  is odd 
. W

 

A major result on perfect distance tr  Taylor’s Condition, states that a tree 

for some integer k, see [5] or [8]. It has been proved that there is a perfect distance tree 
for n = 2, 3, 4, 6. Also, by computer search, Shen Lin showed there is no perfect 
distance tree with n = 9, see [9]. More
th
there exists a perfect distance tree for n = 18. Figure 1 shows the only perfect distance 
trees on 6 or fewer vertices. 
 

 
 Figure 1: All Known Perfect Distance Trees
 

in

T
distance tree mod m , where m  is odd 
 

Proof: Since T is a perfect distance tree mod m , T can be labeled to achieve the 

,3, … , (mod m ). In the case m  is odd and m e ≡ 0 

0’s, 1’s, 2’s, …,  m -1’s are equal. And since m |m , th multi-set {

1,2,3, … , (m ) has equally many 0’s, 1’s, 2’s, …,  m 1’s, which makes T a 

perfect distance tree mod m .  ■ 
 
For sim
and m |n. However, the theorem holds generally e omit the proof.   
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3. Perfect Distance Star mod m 

tree mod m. 
 

m-1 is a perfect distance star mod m.  

Proof: All the distances we can get f  the star are the single edges’ weights and all the 
sums of any two edges’ weights.  Below is the table that shows all the sums of any two 

 weights: 

We call a weighted star a perfect distance star mod m if this star is a perfect distance 

Theorem 2:  Every star with m+1 vertices, where m is odd, labeled with 0, 1, 2, 3… 

 
rom

edges’
 

0 + 0 1 + 0 … … (m – 1) + 0 

0 + 1 1 + 1 … … (m – 1) + 1 

… … … … … 

0 + (m – 1) 1 + (m – 1) … … (m – 1) + (m – 1) 

 
Since we are working mod m, we are adding weights in the group . So every column 

ives us the distances 0, 1, 2 … m-1 (mod m). There are total of m many 0’s, 
s, … ,m-1’s (mod m) in the table.  Each column is the edge’s weight plus all the 

t a distance by adding an edge to itself, the 

od m), since m is odd. However, each distance appears twice in the 

g
1’
other edges’ weights. Since we can’t ge
diagonal of the table above is eliminated, which gives us m-1 many 0’s, 1’s … (m-1)’s. 
This follows because the diagonal contains {2*0, 2*1… 2*(m-1)}(mod m) = {0, 1, 

 … (m-1)}(m2

table because a + b = b + a (a, b are the weights of those edges). So we have   

any 0’s, 1’s … (m-1)’s without counting the 

 

single edges. Including the single edges, m

there are 1 +   many 0’s, 1’s … (m-1)’s. And the multi-set {1, 2 … }(mod 

m) can be achieved from the star. Hence the star is a perfect distance tree mod m.  ■ 
 
Corollary 3:  e m is odd, labeled with 1, 2, 3… m-1 is 
a perfect distance s od m. 
 
Proof: The star is o ined from the one from Theorem 2 by removing the edge labeled 
zero.  The m ance ingle edg ight … 0+(m-1), 

hich is 0, 1, 2 … m-1. So after removing the edge there are 

Every star with m vertices, wher
tar m  

bta
issing dist s are the s e’s we  0 and 0+1, 0+2 

w  -1 many 0’s, 1’s … 

(m-1)’s. Then {1, 2, 3 … }(mod m) can be obtained. Hence, the star is a perfect 

distance tree mod m.  ■ 
 
So the star with m vertices labeled with 1, 2, 3 … m-1, where m is odd, is a perfect 
distance star mod m. We refer such a star as a PDSm. 
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x (0 x m 1), is a perfect distance star mod m. 

Proof: As we proved above, if a star is a PDSm, then there are 

Corollary 4: Every star with m+1 vertices, where m is odd, labeled with 1, 2, 3… m-1, 

 0’s, 1’s, 2’s …. 

the star to obtain a star with m+1 vertices. We get extra distances {x, x+1, x+2 … 
m-1’s distances in the star. Now we add another edge labeled with x (0 x m 1) to 

x+m-1}(mod m) ≡ {0, 1, 2 …. m-1}(mod m). Then there are (  + 1= ) 0’s, 1’s, 

  ■ 

ote that the star in Theorem 2 is a special case of Corollary 4. 

e m is odd, can be labeled to be a 
erfect distance star mod m. 

perfect distance star mod m. 

m 1
2 = 

2’s …. (m-1)’s. So the new star with m+1 vertices is still a perfect distance star mod m.

 
N
 
Corollary 5: Every star with m-1 vertices, wher
p
 
Proof: Suppose we remove one edge labeled with x from a PDSm and this new star is a 

Since m is odd, 

 =  + 1 ≡ 1 (mod m)     

orm
edge labeled with x, the distances x+0, x+1, x+2…x+x-1, x+x+1… x+m-1 are removed. 

em d is x+x. Since we must have an extra distance 1 
r the new star, we must have x+x ≡ 1 (mod m). 

ce star m

Proof: From Corollary 5, we know that after we removed the edge labeled with x from a 
. 

Now suppose we remove the edge labeled x and also remove another edge labeled y 
 

2

We must have an extra distance 1 to f  a perfect distance star. When we remove the 

So the only distance that is not r ove
fo
So x ≡ 2 (mod m). Since m is odd, we can always find an x satisfying x ≡ 2 (mod 
m).  ■ 

 
Corollary 6: Every star with m-2 vertices, where m is odd and m 3, can be labeled to 
be a perfect distan od m. 
 

PDSm, where x ≡ 2 (mod m), the resulting star is still a perfect distance tree mod m

from a PDSm. We will show that we can choose y so the resulting star is also a perfect
distance star mod m.    

m 2  =  = 3 ≡ 3 (mod m), since m is odd.   

We must have extra distances of 1, 2, and 3 to obtain a perfect tance s

x ≡ 2 (mod m), since x+x ≡1 (mod m). So let y+y ≡ 3(mod m) and x+y ≡ 2 (mod m

.e.
2y

dis tar. 
The distances we did not remove are x+x, y+y, and x+y. From corollary 2, we know that 

).  
3 mod m

y x 2 mod m    y ≡ 3×2 (mod m)  i
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(Note: from the first congruence, 3 2 mod m . Plug this into the second 
ongruence, we have 3× 2 2 4 2 mod m 2 mod m . So y also 

nd since m is odd, we can always find a y satisfying y ≡ 3× 2 (mod m). 

Theorem 7: If we start with a perfect distance star mod m, where m is odd, and add m 
edges labeled with 0, 1, 2 … m ect distance star mod m. 
 

 is perfect distance star, so, for s  can be obtained. 

When  is added to , the extra distances we get are the D( ) (mod m) (distances 
te that, in 

c
satisfies the second congruence.)  ■ 
 
A
Hence, every star with m-2 vertices, where m is odd and m 3, can be labeled to be a 
perfect distance star mod m. 
 

-1, the result is a perf

Proof: Let’s first look at a Perfect Distance Star mod m (P.D.S. mod m) with k vertices, 
call it . 

It is a P.D.S. mod m, so according to the definition {1, 2, 3… }(mod m) can be 

achieved. Now add a star  with m edges labeled with 0, 1, 2, 3… m-1 to this P.D.S. 
mod m, call the new star . 

 
The new star  now has k+m vertices. To prove  is a P.D.S. mod m, we must show 

that {1, 2, 3… }(mod m) can be achieved.  

tar , {1, 2, 3… }(mod m)

we get in ) and D( , )(mod m) (the lengths of paths from  to ). No

,  .  To show  is a perfect distance 

star mod , we must prove that the extra distances from D( ) (mod m) and 
D( , )(m

 m
od m) have equal 0’s, 1’s, 2’s… m-1’s. We will show that the number of 

a 0’s, 1’s, 2’s, 3’s… is extr or m-1’s  in each case.  From Theorem 2 we know 

 has 
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 0’s, 1’s, 2’s, …, m-1’s. Now let’s look at D( , ) (mod m). The distances 

e edges in  added
 to all the edges in  gives us the distance

e k-1 edges. Hence the distances in D( , 

from  to  are the weights of th  to the weights of the edges 
in . One edge in  added s 0, 1, 2, 3… 
m-1(mod m). In , there ar ) (mod m) are 
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(k-1) 0’s, 1’s, 2’s, 3’s… m-1’s. 

hus, when we add   to , we get  + k-1 = T  extras of each of the 

, w
labeled with k 0’s, 1’s, 2’s … m-1’s, the result is a perfect 

istance star mod m. 

he base 
ase is just Theorem 7.   Now we assume the statement holds for some 1.  Thus 

… m-1’s, the result is a perfect distance star mod m. If we add m 
c re labeled with 0, 1, 2 … m-1, we will have added a total of 1 

0’s, 1’s, 2’s … m-1’s and, by Theorem 7, the result is a perfect distance star mod m. 

 

l y 8 to Theorem 2, and Corollaries 3, 4, 5 and 6, every star 
with km+1, km, km-1, or km-2 vertices, where m is odd and k  can be labeled to 
be a perfect distance tree mod m. Moreover, from [2] we already know that the star 
labeled 1, the star labeled 1 and 2, and the star labeled 1, 2, and 4 are perfect distance 
stars. Using Corollary 8, we can conclude that every star with km+2, km + 3, and km 
+ 4 vertices can be labeled to be a perfect distance star mod m.  ■ 
 
Conjecture: A perfect distance star mod m with m vertices must be a PDSm. Any 
perfect distance star mod m with n vertices, where n>m, must have a PDSm as a 
sub-star. 

4. Perfect Distance Twin-Star 
twin-star.

Figure 2: a twin-star 
r i re an

without the center edge in this twin-star are called the sub-stars of it.  
 

numbers 0, 1, 2, 3… m-1.  ■ 
 
Corollary 8: If we start with a perfect distance star mod m here m is odd, and, for 
some  , add km edges 
d
 
Proof: We prove this using mathematical induction based on Theorem 7.  T
c
when we start with a perfect distance star mod m and add km edges which are labeled 
with k 0’s, 1’s, 2’s 
more edges whi h a

 ■ 

Theorem 9: Every star with km-1, km-2, km, km+1, km+2, km+3 or km + 4 vertices, 
where k  and m is odd, can be labeled to be a perfect distance star mod m. 
 
Proof : Applying the Coro lar

 

We refer to the tree, whose diameter is three, as a 

The edge in the cente s ferred to as the center edge of the twin-star, d the two stars 
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Theorem 10: If a twin-star with two PDSm’s mod m as its sub-stars, and the center edge 
is labeled with x, where 0 1, then it is a perfect distance tree mod m. 
 
Pro f:

 

In this twin- , we call one of its sub-stars, toge  center-edge , .  The 
other sub-star is called . The distances we g t in this twin-star are those in the 
multi-set D( )(mod m) ∩ D( )(mod m) ∩ D( )(mod m). 

o   

                            
star ther with the

e
 ,

From Theorem 2, we know the distances in  (mod m) are  0’s, 1’s, 2’s… m-1’s 

and  has  0’s, 1’s, 2’s… m-1’s.  

For D(  , )(mod m), the distances we can get are 

 x + 2, 2 + x + 1, 2 + x + 2, 2 + x + 3… 2 + x + m-1, 

-1, m-1 + x + 1, m-1 + x + 2, m-1 + x + 3… m-1 + x + m-1}(mod m) 

D(S  , S )(mod m) contains m-1 0’s, 1’s, 2’s … m-1’s. 

{x + 1, 1 + x + 1, 1 + x + 2, 1 + x + 3… 1 + x + m-1, 

… 
 x + m
 
For a=1,2, …m-1, we have {x+a, a+x+1, a+x+2, a+x+3… a+x+m-1}(mod m). If we let 
y=a+x, it becomes {y+0, y+1, y+2, y+3… y+m-1}(mod m) = {0, 1, 2, … m-1}.  Since 
there are m-1 choices for a, 

Hence, there are a total of + m-1= 2m-1 0’s, 1’s, 2’s … m-1’s in the twin star. 

The twin star has 2m vertices. Since    = 2m-1, the tw tar is a 

perfect distance tree mod m.  ■ 
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