Rose-Hulman Undergraduate Mathematics Journal

Volume 11
Issue 1

Cut-sets and Cut-vertices in the Zero-Divisor Graph of Π Zni

Benjamin Coté
University of Idaho Caroline Ewing
Caroline Ewing
Colorado College
Michael Huhn
University of St. Thomas, mahuhn@stthomas.edu
Chelsea Plaut
University of Tennessee-Knoxville
Darrin Weber
Millikin University

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation

Coté, Benjamin; Ewing, Caroline; Huhn, Michael; Plaut, Chelsea; and Weber, Darrin (2010) "Cut-sets and Cut-vertices in the Zero-Divisor Graph of Π Zni," Rose-Hulman Undergraduate Mathematics Journal: Vol. 11 : Iss. 1 , Article 4.
Available at: https://scholar.rose-hulman.edu/rhumj/vol11/iss1/4

CUT-SETS AND CUT-VERTICES IN THE ZERO-DIVISOR GRAPH OF $\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}$

B. COTÉ, C. EWING, M. HUHN, C. M. PLAUT, D. WEBER

Abstract

We examine minimal sets of vertices which, when removed from a zero-divisor graph, separate the graph into disconnected subgraphs. We classify these sets for all direct products of $\Gamma\left(\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}\right)$.

1. Introduction and Definitions

All rings in the paper are commutative with unity. An element $a \in R$ is a zerodivisor if there exists a nonzero $r \in R$ such that $a r=0$; we denote the set of all zerodivisors in R as $Z(R)$. For a graph G, define $V(G)$ as the set of vertices in G, and $E(G)$ as the set of edges in G. We define a path between two elements $a_{1}, a_{m} \in V(G)$ to be an ordered sequence of distinct vertices $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of G such that there is an edge incident to a_{i-1} and a_{i}, denoted $a_{i-1}-a_{i}$ for each i. For $x, y \in V(G)$, the number of edges crossed to get from x to y in a path is called the length of the path; the length of the shortest path between x and y, if it exists, is called the distance between x and y and is denoted $d(x, y)$. If such a path does not exist then $d(x, y)=\infty$. The diameter of a graph is $\operatorname{diam}(G)=\max \{d(x, y) \mid, y \in V(G)\}$. A graph is connected if a path exists between any two distinct vertices.

A zero-divisor graph, denoted $\Gamma(R)$, is a graph whose vertices are all the nonzero zero-divisors of R. Two vertices a and b are connected by an edge in $\Gamma(R)$ if and only if $a b=0$. In R, we define the annihilator of a, $\operatorname{ann}(a)$, by $\operatorname{ann}(a)=\{b \in R \mid b a=0\}$, so that the neighbors of a in $\Gamma(R)$ are the nonzero elements of ann (a). A vertex a is looped if and only if $a^{2}=0$. By [1], we know that $\Gamma(R)$ is always connected and $\operatorname{diam}(\Gamma(R)) \leq 3$ for any ring R.

Definition 1.1. A vertex, a, in a connected graph G is a cut-vertex if G can be expressed as a union of two subgraphs X and Y such that $E(X) \neq \emptyset, E(Y) \neq \emptyset$, $E(X) \cup E(Y)=E(G), V(X) \cup V(Y)=V(G), V(X) \cap V(Y)=\{a\}, X \backslash\{a\} \neq \emptyset$, and $Y \backslash\{a\} \neq \emptyset$.
Definition 1.2. A set $A \subseteq Z(R)^{*}$, where $Z(R)^{*}=Z(R) \backslash\{0\}$, is said to be a cutset if there exist $c, d \in Z(R)^{*} \backslash A$ where $c \neq d$ such that every path in $\Gamma(R)$ from c to d involves at least one element of A, and no proper subset of A satisfies the same condition.

Another way to define a cut-set is as a set of vertices $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ in a connected graph G where G can be expressed as a union of two subgraphs X and Y

[^0]such that $E(X) \neq \emptyset, E(Y) \neq \emptyset, E(X) \cup E(Y)=E(G), V(X) \cup V(Y)=V(G)$, $V(X) \cap V(Y)=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}, X \backslash\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \neq \emptyset, Y \backslash\left\{a_{1}, a_{2}, a_{3}, \ldots\right\} \neq \emptyset$, and no proper subset of $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ also acts as a cut-set for any choice of X and Y. A cut-vertex can be thought of as a cut-set with only one element. For a cut-set A in $\Gamma(R)$, a vertex $a \notin A$ is said to be isolated, or an isolated point, if $\operatorname{ann}(a) \backslash\{0\} \subseteq A$.

Example 1.3. Consider $\Gamma\left(\mathbb{Z}_{12}\right)$ shown in Figure 1. In this graph, 6 is a cut-vertex isolating 2 and 10 . In addition, $\{4,8\}$ is a cut-set isolating 3 and 9 .

Figure 1. $\Gamma\left(\mathbb{Z}_{12}\right)$ generated using [6].

Example 1.4. Consider $\Gamma\left(\mathbb{Z}_{30}\right)$ shown in Figure 2. In this graph, 15 is a cut-vertex isolating 2 among other vertices. Observe that the set $\{6,12,18,24\}$ is a cut-set isolating 5 and 25 . In addition, $\{10,20\}$ is a cut-set isolating $3,9,21$ and 27 .

Figure 2. $\Gamma\left(\mathbb{Z}_{30}\right)$ generated using [6].
The study of cut-vertices in a zero-divisor graph began in [3], where it was proven that if a vertex, a, is a cut-vertex of $\Gamma(R)$ for any commutative ring, R, then $\{0, a\}$
forms an ideal in R. We will generalize this notion and expand on many of the results from [3].

This paper will classify cut-vertices and cut-sets of zero-divisor graphs of finite commutative rings of the form $\Pi\left(\mathbb{Z}_{n_{i}}\right)$. In section 2 we classify $\Gamma\left(\mathbb{Z}_{n}\right)$, and apply our findings to cut-vertices of $\Gamma\left(\Pi\left(\mathbb{Z}_{n_{i}}\right)\right)$. Section 3 classifies cut-sets of $\Gamma\left(\Pi\left(\mathbb{Z}_{n_{i}}\right)\right)$ by examining cut-sets of $\Gamma\left(\mathbb{Z}_{n}\right)$.

$$
\text { 2. Cut-Vertices in } \Gamma\left(\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}\right)
$$

This section begins with an examination of cut-vertices in the ring \mathbb{Z}_{n} in preparation for generalizing to direct products.

Recall that for a commutative ring R, if $a, b \in R^{*}$, where R^{*} is $R \backslash\{0\}$, such that $a b=0$, then $a(-b)=0$. Also, in \mathbb{Z}_{n}, let $p \in \mathbb{Z}$ be a prime that divides n. Then $\operatorname{ann}(p) \subseteq \operatorname{ann}(a p)$ for any $a \in \mathbb{Z}$.

Theorem 2.1. An element a is a cut-vertex of $\Gamma\left(\mathbb{Z}_{n}\right)$ if and only if $2 a=n$ with $n \geq 6$.

Proof. (\Rightarrow) Observe that $\Gamma\left(\mathbb{Z}_{n}\right)$ has no cut-vertex for $n<6$ [5]. So let $n \geq 6$, and assume that a is a cut vertex of $\Gamma\left(\mathbb{Z}_{n}\right)$. Then $\Gamma\left(\mathbb{Z}_{n}\right)$ is split into two subgraphs X and Y, which are distinct except for their common vertex a. Let $V(X)=$ $\left\{a, x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $V(Y)=\left\{a, y_{1}, y_{2}, \ldots, y_{l}\right\}$. Since a is a cut vertex, there exists some $x_{i} \in V(X)$ and some $y_{j} \in V(Y)$ such that $x_{i}-a-y_{j}$. Since $x_{i} a=0$, $x_{i}(-a)=0$. Similiarly, $y_{j} a=0$ and $y_{j}(-a)=0$, so there is a path $x_{i}-a-y_{j}$. Since a is a cut-vertex, $a=-a$ or $2 a=0$ in \mathbb{Z}_{n}. Thus, $2 a=n$.
(\Leftarrow) It suffices to show $\operatorname{ann}(2)=\{0, a\}$ in $\mathbb{Z}_{2 a}$ with $a \geq 3$. Assume $2 m=0$. This implies $m=0$ or $m=a$. Since $a \neq 2,2$ is a vertex isolated by the cut-vertex a.

Theorem 2.2. Let $\mathbb{Z}_{n} \times \mathbb{Z}_{m} \not \not \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then $(a, 0)$ is a cut-vertex of $\Gamma\left(\mathbb{Z}_{n} \times \mathbb{Z}_{m}\right)$ if and only if $2 a=n$.

Proof. (\Rightarrow) Assume $(a, 0)$ is a cut-vertex of $\Gamma\left(\mathbb{Z}_{n} \times \mathbb{Z}_{m}\right)$ separating subgraphs X and Y. There exists some $\left(x_{i_{1}}, x_{i_{2}}\right) \in V(X)$ and some $\left(y_{j_{1}}, y_{j_{2}}\right) \in V(Y)$ such that $\left(x_{i_{1}}, x_{i_{2}}\right)-(a, 0)-\left(y_{j_{1}}, y_{j_{2}}\right)$. But then, $\left(x_{i_{1}}, x_{i_{2}}\right)-(-a, 0)-\left(y_{j_{1}}, y_{j_{2}}\right)$. Since $(a, 0)$ is a cut-vertex, $(a, 0)=(-a, 0)$, which means $a=-a$. This implies $2 a=0$, in \mathbb{Z}_{n}, so $2 a=n$.
(\Leftarrow) Assume $2 a=n$. In the case that $n=2$, there is a cut-vertex at $(1,0)$ since it is the only element adjacent to $(0,1)$ and it is also adjacent to $(0,2)$ since $\mathbb{Z}_{n} \times \mathbb{Z}_{m} \not \neq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. For the last case assume that $n>2$ and consider $\operatorname{ann}((2,1))$. Clearly, $\operatorname{ann}((2,1))=\{(0,0),(a, 0)\}$. Therefore, $(a, 0)$ isolates $(2,1)$ and is a cutvertex by definition.

Theorem 2.3. Consider $R=\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}$ for $m \geq 3$. Then $\left(0,0, \ldots, a_{i}, \ldots, 0\right)$ is a cut-vertex of $\Gamma\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{i}} \times \cdots \times \mathbb{Z}_{n_{m}}\right)$ if and only if $2 a_{i}=n_{i}$.

Proof. (\Rightarrow) Assume $\left(0,0, \ldots, a_{i}, \ldots, 0\right)$ is a cut-vertex of $\Gamma(R)$. Then $\Gamma\left(\mathbb{Z}_{n_{1}} \times\right.$ $\mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{i}} \times \cdots \times \mathbb{Z}_{n_{m}}$) is split into two subgraphs X and Y, which are distinct except for their common vertex $\left(0,0, \ldots, a_{i}, \ldots, 0\right)$. There exists some
$\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{m}\right) \in V(X)$ and $\left(y_{1}, y_{2}, \ldots, y_{i}, \ldots, y_{m}\right) \in V(Y)$ such that $\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{m}\right)-\left(0,0, \ldots, a_{i}, \ldots, 0\right)-\left(y_{1}, y_{2}, \ldots, y_{i}, \ldots, y_{m}\right)$. Hence the following path must also exist: $\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{m}\right)-\left(0,0, \ldots,-a_{i}, \ldots, 0\right)-$ $\left(y_{1}, y_{2}, \ldots, y_{i}, \ldots, y_{m}\right)$. Since $\left(0,0, \ldots, a_{i}, \ldots, 0\right)$ is a cut-vertex, $\left(0,0, \ldots, a_{i}, \ldots, 0\right)=$ $\left(0,0, \ldots,-a_{i}, \ldots, 0\right)$, which implies $a_{i}=-a_{i}$, or $2 a_{i}=0$ in $\mathbb{Z}_{n_{i}}$. Therefore $2 a_{i}=n_{i}$.
(\Leftarrow) Without loss of generality, let $n_{1}=2 a_{1}$. It suffices to show that $\operatorname{ann}((2,1, \ldots$, $1))=\left\{(0, \ldots, 0),\left(a_{1}, 0, \ldots, 0\right)\right\}$. Assume $(2,1, \ldots, 1)(b, 0, \ldots, 0)=(0, \ldots, 0)$. This implies $b=0$ or $b=a_{1}$.

The next theorem shows that for $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where each R_{i} is any finite commutative ring, all cut-vertices are of the form $\left(0,0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$

Theorem 2.4. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$. If a is a cut-vertex of $\Gamma(R)$ then there exists some $i, 1 \leq i \leq n$, such that $a=\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$.

Proof. Let a be a cut-vertex of R with $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Assume $a_{i}, a_{j} \neq 0$ with $i \neq j$. Since a is a cut-vertex, there exists $\alpha, \beta \in Z(R)$ such that the only path between them is $\alpha-a-\beta$. Consider the ring element $b=\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$. Then $\alpha-b-\beta$, a contradiction.

The next corollary follows from Theorems 2.3 and 2.4.
Corollary 2.5. Let $R=\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}$ for $m \geq 3$. Then $a=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is a cut-vertex if and only if $a=\left(0,0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$ where $2 a_{i}=n_{i}$, for some i, $1 \leq i \leq m$.
Proof. Let $R=\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}$ for $m \geq 3$.
(\Rightarrow) Let $a=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ be a cut-vertex. Then by Theorem 2.4, $a=$ $\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$ for some $1 \leq i \leq m$. Since $a=\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$ is a cut-vertex, then by Theorem 2.3, $2 a_{i}=n_{i}$.
(\Leftarrow) Let $a=\left(0,0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$ where $2 a_{i}=n_{i}$. Then by Theorem $2.3 a$ is a cut-vertex.
3. Cut-Sets in $\Gamma\left(\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}\right)$

In this section we generalize the idea of a cut-vertex to that of a cut-set. Many results on cut-vertices generalize to cut-sets, and we may consider all theorems in the previous section as corollaries to the following theorems on cut-sets.

Note that when $n=p, p$ a prime, the ring \mathbb{Z}_{n} is a field so $\Gamma\left(\mathbb{Z}_{n}\right)$ is empty. When $n=2 p, p>2, \Gamma\left(\mathbb{Z}_{n}\right)$ is a star-graph, where the only cut-set is $A=$ $\operatorname{ann}(2) \backslash\{0\}=\{p\}$. For example, Figure 3 shows $\Gamma\left(\mathbb{Z}_{14}\right)$. Notice that ann $(p) \backslash\{0\}=$ $V\left(\Gamma\left(\mathbb{Z}_{n}\right)\right) \backslash\{p\}$. When $n=p^{2}, \Gamma\left(\mathbb{Z}_{n}\right)$ is a complete graph; whence there are no cutsets.
Theorem 3.1. Let $n \in \mathbb{Z}^{+}$such that $n \neq p, 2 p, p^{2}$ for any prime p. A set A is a cut-set of $\Gamma\left(\mathbb{Z}_{n}\right)$ if and only if $A=\operatorname{ann}(p) \backslash\{0\}$ for some prime p which divides n.
Proof. (\Leftarrow) Let $A=\operatorname{ann}(p) \backslash\{0\}$ for some prime $p \in \mathbb{Z}$ that divides n. Observe that $p \notin \operatorname{ann}(p)$ since $n \neq p^{2}$. Then p is only connected to A in $\Gamma\left(\mathbb{Z}_{n}\right)$, so when A is removed, p is isolated.

Figure 3. $\Gamma\left(\mathbb{Z}_{14}\right)$ generated using [6].

Notice that $n-p \neq p$, and $n-p$ is connected to all elements in A, but $(n-p) p \neq 0$ since $n \neq p^{2}$. This implies that A splits $\Gamma\left(\mathbb{Z}_{n}\right)$ into two subgraphs.

Suppose some subset B of A splits the graph similarly, and let $a \in A \backslash B$. Then $p-a-(n-p)$, a contradiction.
(\Rightarrow) Assume A is a cut-set of $\Gamma\left(\mathbb{Z}_{n}\right)$ separating subgraphs X and Y. Take any $x \in X \backslash A$ and $y \in Y \backslash A$ where $x-a_{i}$ and $y-a_{j}$, with $a_{i}, a_{j} \in A$. Rewrite x and y as $x=r p_{x}$ and $y=q p_{y}$ where p_{x} and p_{y} are primes dividing n.

First assume that $p_{x} \neq p_{y}$, where p_{x} does not divide y and p_{y} does not divide x, and take any nonzero element of $\operatorname{ann}\left(p_{x}\right)=\left\{k\left(n / p_{x}\right) \mid k \in \mathbb{Z}_{p_{x}}\right\}$, say, $c\left(n / p_{x}\right)$. This is a multiple of p_{y}, so we have that $\operatorname{ann}\left(p_{y}\right) \subseteq \operatorname{ann}\left(c\left(n / p_{x}\right)\right)$ and that $x \in$ $\operatorname{ann}\left(c\left(n / p_{x}\right)\right)$, since x is a multiple of p_{x}. Thus for any nonzero $\beta \in \operatorname{ann}\left(p_{y}\right)$ we have $y-\beta-c\left(n / p_{x}\right)-x$. Since A is a cut-set separating X and $Y, \beta \in A$ or $c\left(n / p_{x}\right) \in A$. If $\beta \in A$ this implies that $\operatorname{ann}\left(p_{y}\right) \backslash\{0\} \subseteq A$, and if $c\left(n / p_{x}\right) \in A$ this implies that $\operatorname{ann}\left(p_{x}\right) \backslash\{0\} \subseteq A$. Since p_{x} does not divide y and p_{y} does not divide x, x is not connected to any element of $\operatorname{ann}\left(p_{y}\right) \backslash\{0\}$ and y is not connected to any element of $\operatorname{ann}\left(p_{x}\right) \backslash\{0\}$. If $\operatorname{ann}\left(p_{y}\right) \backslash\{0\} \subseteq A$, then since x is connected to an element of A and not to any element of $\operatorname{ann}\left(p_{y}\right) \backslash\{0\}$, there is at least one additional element in A. Similarly, if $\operatorname{ann}\left(p_{x}\right) \backslash\{0\} \subseteq A$, then since y is connected to an element of A and not to any element of $\operatorname{ann}\left(p_{x}\right) \backslash\{0\}$, there is at least one additional element in A. Since $\operatorname{ann}\left(p_{x}\right) \backslash\{0\}$ and $\operatorname{ann}\left(p_{y}\right) \backslash\{0\}$ are cut-sets, in either case A would contain a cut-set as a proper subset, a contradiction.

We may therefore assume that $p_{x}=p_{y}$. Then since $\operatorname{ann}\left(p_{x}\right) \subseteq \operatorname{ann}(x)$ and $\operatorname{ann}\left(p_{x}\right) \subseteq \operatorname{ann}(y)$, for any nonzero $\alpha \in \operatorname{ann}\left(p_{x}\right)$ we have $x-\alpha-y$, which implies that $\operatorname{ann}\left(p_{x}\right) \backslash\{0\} \subseteq A$. Since $\operatorname{ann}\left(p_{x}\right) \backslash\{0\} \subseteq A$ and $\operatorname{ann}\left(p_{x}\right) \backslash\{0\}$ is a cut-set by the first direction of this proof, then $\operatorname{ann}\left(p_{x}\right) \backslash\{0\}=A$ by definition of a cut-set.

Lemma 3.2. In \mathbb{Z}_{n}, let $p \in \mathbb{Z}$ be a prime that divides n. Then $|\operatorname{ann}(p)|=p$.
Proof. In the ring \mathbb{Z}_{n}, ann $(p)=\left\{a(n / p) \mid a \in \mathbb{Z}_{p}\right\}$ since $p(n / p)=0,(p+1)(n / p)=$ n / p, and so on. There are p distinct elements in this set.

Because every cut-set of $\Gamma\left(\mathbb{Z}_{n}\right)$ is an annihilator of some prime that divides n, by Lemma 3.2, the size of any cut-set in $\Gamma\left(\mathbb{Z}_{n}\right)$ is known. The following lemmas and corollaries will be useful in the proofs of some of the next theorems in this section.

Lemma 3.3. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$. If $a \in R$ with $a=\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)$ and $a^{\prime}=\left(a_{1}, \ldots, 0, \ldots, a_{n}\right)$ then ann $(a) \subseteq \operatorname{ann}\left(a^{\prime}\right)$.

Proof. Let $b \in \operatorname{ann}(a)$. Then $b_{l} a_{l}=0$ for all $1 \leq l \leq n$, and $b_{i} \cdot 0=0$. Thus $b \in \operatorname{ann}(a)$.

Corollary 3.4. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$. Let A be a cut-set of R. If $a \in A$ with $a=\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)$ and $a^{\prime}=\left(a_{1}, \ldots, 0, \ldots, a_{n}\right)$, then $a^{\prime} \in A$.

Proof. Assume $a^{\prime} \notin A$. Observe that for $b \in Z(R)^{*}$, if $b-a$, then $b-a^{\prime}$ by Lemma 3.3. Thus $A \backslash\{a\}$ is (or contains) a cut-set - a contradiction.

Lemma 3.5. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$. If $a \in R$ with $a=\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right)$ and $a^{\prime}=\left(a_{1}, \ldots, 1, \ldots, a_{n}\right)$ then ann $\left(a^{\prime}\right) \subseteq \operatorname{ann}(a)$.

Proof. Let $b \in \operatorname{ann}\left(a^{\prime}\right)$. Then $b_{l} a_{l}=0$ for all $1 \leq l \leq n$ and in particular $b_{i}=0$. This implies $b_{i} a_{i}=0$, and thus $b \in \operatorname{ann}(a)$.

Theorem 3.6. Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ with $n \geq 2$. If A is a cut-set of $\Gamma(R)$ then there exists some $i, 1 \leq i \leq n$ such that $a=\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$ for every $a \in A$.

Proof. Let A be a cut-set of R which splits $\Gamma(R)$ into X and Y. Without loss of generality, assume there exists some $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in A$ with $b_{1} \neq 0, c=$ $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in A$ with $c_{2} \neq 0$.

Consider the set of all elements in $Z(R)$ with a 0 -entry in the $1^{\text {st }}$ position; let this set be denoted by $\left\{0_{1}\right\}$. Let 1_{1} denote the element $(1,0, \ldots, 0)$ and similarly denote 1_{2}, and so on. Notice $\operatorname{ann}\left(1_{1}\right)=\left\{0_{1}\right\}$. Denote by $\left(1_{1}\right)^{*}$ all elements with 0 everywhere except the $1^{\text {st }}$ position; i.e., $\left(1_{1}\right)^{*}$ is the ideal generated by 1_{1}, omitting 0 . If $1_{1} \in A$ then $\left(1_{1}\right)^{*} \in A$ since any element which annhilates 1_{1} also annhilates any element in $\left(1_{1}\right)^{*}$.

Consider the element $\overline{1_{1}}=(0,1, \ldots, 1)$. Notice ann $\left(\overline{1_{1}}\right)=\left(1_{1}\right)^{*} \cup\{0\}$. Therefore, $\left(1_{1}\right)^{*}$ forms a cut-set by isolating $\overline{1_{1}}$. Notice $\left(1_{1}\right)^{*} \subsetneq A$ since $c \in A$, a contradiction. Therefore, $1_{1} \notin A$ and we can similarly show $1_{i} \notin A$ for every $1 \leq i \leq n$. Without loss of generality, $1_{1}, 1_{2} \in X \backslash A$ since $1_{1}-1_{2}$. Similarly every $1_{i} \in X \backslash A$ for $1 \leq i \leq n$. This implies that if $y \in Y \backslash A$ then $y_{i} \neq 0$ for any $1 \leq i \leq n$, since otherwise it would be connected to an element in $X \backslash A$, namely 1_{i}.

Consider $\alpha=\left(b_{1}, 0, \ldots, 0\right)$ and $\beta=\left(0, c_{2}, 0, \ldots, 0\right)$. Notice $\alpha, \beta \in A$ by Corollary 3.4 since $b, c \in A$. This implies b_{1} and c_{2} are not units, since otherwise we reach the contradiction shown in the previous paragraph.

Since $\alpha \in A$, there exists $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in Y \backslash A$ such that $y-\alpha$. Clearly $\operatorname{ann}(y) \backslash\{0\} \subseteq Y$. Consider the element $y^{\prime}=\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n}^{\prime}\right)$ where $y_{2}^{\prime}=1$ and $y_{i}^{\prime}=$ y_{i} for all $i \neq 2$. By Lemma 3.5, $\operatorname{ann}\left(y^{\prime}\right) \backslash\{0\} \subseteq \operatorname{ann}(y) \backslash\{0\}$. Also, ann $\left(y^{\prime}\right) \backslash\{0\} \subseteq A$ since any element which annihilates y^{\prime} must have a zero in the second position. Therefore, $\operatorname{ann}\left(y^{\prime}\right) \backslash\{0\} \subsetneq A$ since $\beta \notin \operatorname{ann}\left(y^{\prime}\right) \backslash\{0\}$ but $\beta \in A$. Thus, ann $\left(y^{\prime}\right) \backslash\{0\}$ forms a cut-set, a contradiction of the minimality of A. Therefore, all elements in A must be of the form $\left(0, \ldots, 0, a_{i}, 0, \ldots, 0\right)$. Theorem 3.7. A set A of $V\left(\Gamma\left(\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}\right)\right)$ with $m \geq 2$ is a cut-set if and only if $A=\left\{\left(0,0, \ldots, a_{i_{1}}, \ldots, 0\right),\left(0,0, \ldots, a_{i_{2}}, \ldots, 0\right), \ldots,\left(0,0, \ldots, a_{i_{k}}, \ldots, 0\right)\right\}$ where $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right\}=\operatorname{ann}(p) \backslash\{0\}$ for some prime $p \in \mathbb{Z}$ such that $p \mid n_{i}$ in $\mathbb{Z}_{n_{i}}$.

Proof. (\Leftarrow) First note that the case where $n_{i}=p$ is included in this theorem because the nonzero annihilators of p are exactly the nonzero elements of $\mathbb{Z}_{n_{i}}$. Without loss of generality, let p be a prime such that p divides n_{1} and let $\operatorname{ann}(p)=$ $\left\{0, a_{1_{1}}, a_{1_{2}}, \ldots, a_{1_{k}}\right\}$ in $\mathbb{Z}_{n_{1}}$. Because $\operatorname{ann}((p, 1, \ldots, 1))=\left\{(0, \ldots, 0),\left(a_{1_{1}}, 0, \ldots, 0\right),\left(a_{1_{2}}\right.\right.$, $\left.0, \ldots, 0), \ldots,\left(a_{1_{k}}, 0, \ldots, 0\right)\right\}$, when $A=\left\{\left(a_{1_{1}}, 0, \ldots, 0\right),\left(a_{1_{2}}, 0, \ldots, 0\right), \ldots,\left(a_{1_{k}}, 0, \ldots, 0\right)\right\}$ is removed from the graph, $(p, 1, \ldots, 1)$ is isolated. Further, $Z\left(\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}\right)^{*} \neq$ $A \cup\{(p, 1, \ldots, 1)\}$ since $(0,1,0, \ldots, 0)$ is outside of A but distinct from $(p, 1, \ldots, 1)$. Because $\operatorname{ann}(p)=\left\{0, a_{1_{1}}, a_{1_{2}}, \ldots, a_{1_{k}}\right\}$ in $\mathbb{Z}_{n_{1}}$, we see that for any $1 \leq l, q \leq k$, $\operatorname{ann}\left(a_{1_{l}}\right)=\operatorname{ann}\left(a_{1_{q}}\right)$ in $\mathbb{Z}_{n_{1}}$, implying that no proper subset of A will act as a cut-set.
(\Rightarrow) Let A be a cut-set of $\Gamma\left(\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{m}}\right)$ and let X and Y be two subgraphs created when A is removed. Take any $\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in X \backslash A$ and $\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in Y \backslash A$ such that $\left(x_{1}, x_{2}, \ldots, x_{m}\right)-\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and $\left(y_{1}, y_{2}, \ldots\right.$, $\left.y_{m}\right)-\left(b_{1}, b_{2}, \ldots, b_{m}\right)$ for some $\left(a_{1}, a_{2}, \ldots, a_{m}\right),\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in A$. Because any $\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ where each u_{i} is a unit contains only the zero element in its annihilator, we know that at least one of the x_{i} must be a zero-divisor of the corresponding $\mathbb{Z}_{n_{i}}$, and similarly for the y_{i}. Since we also know that all elements of A are zero in every component position but, say, the i th position by Theorem 3.6, the i th component position of both $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ must contain a zero-divisor. We may therefore assume without loss of generality that both x_{1} and y_{1} are zero-divisors of $\mathbb{Z}_{n_{1}}$. Since this is the case we can rewrite $x_{1}=r p_{x_{1}}$ and $y_{1}=q p_{y_{1}}$ for $r, q \in \mathbb{Z}_{n_{1}}$ and primes $p_{x_{1}}, p_{y_{1}} \in \mathbb{Z}$ dividing n_{1}.

First assume that $p_{x_{1}} \neq p_{y_{1}}$, where $p_{x_{1}}$ does not divide y_{1} and $p_{y_{1}}$ does not divide x_{1}. Then by Theorem 3.1 we know that for any nonzero $\beta \in \operatorname{ann}\left(p_{y_{1}}\right)$ and any nonzero $c\left(n / p_{x_{1}}\right), y_{1}-\beta-c\left(n / p_{x_{1}}\right)-x_{1}$ in $\Gamma\left(\mathbb{Z}_{n_{1}}\right)$. Therefore we have that $\left(y_{1}, y_{2}, \ldots, y_{m}\right)-(\beta, 0, \ldots, 0)-\left(c\left(n / p_{x_{1}}\right), 0, \ldots, 0\right)-\left(x_{1}, x_{2}, \ldots, x_{m}\right)$. This implies that $(\beta, 0, \ldots, 0) \in A$, which would imply inclusion of all such $(\beta, 0, \ldots, 0)$ in A, or $\left(c\left(n / p_{x_{1}}\right), 0, \ldots, 0\right) \in A$, which would imply a similar inclusion. Since $p_{x_{1}}$ does not divide y_{1} and $p_{y_{1}}$ does not divide $x_{1},\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is not connected to elements of the form $(\beta, 0, \ldots, 0)$ and $\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ is not connected to elements of the form $\left(c\left(n / p_{x_{1}}\right), 0, \ldots, 0\right)$. However, since we know that both $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ are connected to elements in A and that the set of all nonzero $(\beta, 0, \ldots, 0)$ and the set of all nonzero $\left(c\left(n / p_{x_{1}}\right), 0, \ldots, 0\right)$ are cut-sets by the first direction, we see that A contains a proper subset that is a cut-set, a contradiction.

We may therefore assume that $p_{x_{1}}=p_{y_{1}}$. Then since $\operatorname{ann}\left(p_{x_{1}}\right) \subseteq \operatorname{ann}\left(x_{1}\right)$ and $\operatorname{ann}\left(p_{x_{1}}\right) \subseteq \operatorname{ann}\left(y_{1}\right)$, then for any nonzero $\alpha \in \operatorname{ann}\left(p_{x_{1}}\right),\left(x_{1}, x_{2}, \ldots, x_{m}\right)-$ $(\alpha, 0, \ldots, 0)-\left(y_{1}, y_{2}, \ldots, y_{m}\right)$. We then have that $(\alpha, 0, \ldots, 0) \subseteq \operatorname{ann}\left(\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right)$ and $(\alpha, 0, \ldots, 0) \subseteq \operatorname{ann}\left(\left(y_{1}, y_{2}, \ldots, y_{m}\right)\right)$, meaning that $(\alpha, 0, \ldots, 0) \subseteq A$, but since the set of all nonzero $(\alpha, 0, \ldots, 0)$ where $\alpha \in \operatorname{ann}\left(p_{x_{1}}\right)$ is a cut-set by the first direction, then $A=\left\{(\alpha, 0, \ldots, 0) \mid \alpha \neq 0, \alpha \in \operatorname{ann}\left(p_{x_{1}}\right)\right\}$.

4. Acknowledgement

This paper is the result of a summer's worth of undergraduate research at the Wabash College mathematics REU in Crawfordsville, Indiana. The REU was funded through the National Science Foundation grant number DMS-0755260. The authors would like to thank Wabash College, Dr. Michael Axtell and the Wabash Summer Institute in Mathematics 2009.

References

[1] Anderson, David F. and Livingston, Philip S., The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
[2] Axtell, M., Baeth, N., Stickles, J., Cut Vertices and Zero-Divisor Graphs, submitted
[3] Axtell, M., Stickles, J., and Trampbachls, W., Zero-divisor ideals and realizable zero-divisor graphs, Involve 2(1) (2009), 17-27.
[4] Dummit, David S., and Foote, Richard M., Abstract Algebra, 3rd Ed. (2004), John Wiley and Sons, Inc.
[5] Redmond, S., On Zero-divisor graphs of small finite commutative rings, Discrete Math. 307(910) (2007), 1155-1166.
[6] MATHEMATICA, Wolfram Software.

[^0]: Date: May 7, 2010.

