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Early die out events in SIR epidemic models.

Jonathan Ballone

May, 2010

Abstract

We are interested in the behavior of an SIR epidemic model with

respect to low-probability events. Specifically, we want to identify

the probability of the early die out of a disease. Ordinary differential

equations are commonly used to model SIR systems. However, this

approach fails to describe the spontaneous die out event. We develop

a Markov SIR model from which the probability of early die out can be

captured. Additional simulations reveal that this model agrees closely

with the ODE solutions when this low-probability event is ignored.

1 Introduction

In this article, we compare three algorithms for modeling the spread of a
disease through a population. Markov chains can be used to model systems
that switch among several states, with the next state depending probabilisti-
cally only on the current state. Because we are modeling a discrete random
process, the Markov chain does not predict the exact state of the system
in the future. However, it does approximate the probability of the system
transitioning to each of the possible states at a future time. An agent-based
model, which is a Monte Carlo simulation using random variables, can be
used to simulate how a system switches from state to state in time. To de-
termine if an event has occurred, a random number with uniform distribution
is generated and compared to the probability of the event occurring. The
general behavior of the system can be obtained by averaging the results of
many simulations, but there are few analytic tools for this method and com-
putational time can be costly. Ordinary differential equations capture the
average behavior of a system by approximating how the system changes in
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time. Solutions are continuous and there are well defined methods to analyze
their stability and long term behavior. All three methods are commonly used
to study epidemiology.

The goal of this study is to identify low probability events, which are not
captured by the use of ordinary differential equations. In particular, we are
interested in an early or spontaneous die-out of a disease. While differential
equations capture the average behavior of a system for a large population, this
approach cannot capture spontaneous die out. Markov models and agent-
based simulations can be used to understand the conditions for which the
early die-out event is most likely to occur and can aid in identifying strategies
that minimize or eradicate a disease from a population.

This work extends the results of [2], in which the authors consider model-
ing the spread of a computer virus, with the possibility of reinfection after the
removal of the virus. The authors compare the methods of Markov chains,
differential equations, and agent-based simulations. In that scenario, each
computer could be classified as either susceptible or infected. Since the state
of the network is fully defined by the number of computers in either class,
the dynamics can be captured by one-dimensional model. Comparing the
methods revealed differences in the behavior that each model can simulate.

In this paper, we extend that approach to consider any disease spread
in which life-long immunity is conferred after infection. For this type of
system each node must be in one of three conditions: susceptible, infectious
or recovered; this is commonly reffered to as the SIR model. The state of a
population is determined by the number of nodes in any two of these classes
and two-dimensional models are required for analysis. The SIR pattern is
usually found in childhood diseases, such as measles, mumps, and chickenpox.
It is well known that for the SIR model, all solutions will limit to the disease
free solution asymptotically. We are interested in the maximum number of
infectives for an average realization and if that number can be decreased.

2 The Markov Model

In this model, a disease is introduced into the network so that one or more
individuals are initially infected. We assume that all others start in the
susceptible condition (although some could begin as recovered, perhaps to
simulate previous vaccinations). In one time step, an infective individual
can transmit the infection to a susceptible or become recovered. No individ-
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ual becomes recovered without first becoming infected. Once an individual
becomes recovered, they will remain in that condition. The state of the net-
work is characterized by the number of individuals in each condition. Using
a Markov model approach, we calculate the probability of transitioning from
each state to every other. The probability distributions are collected in a ma-
trix, which is used to generate the expected value for the number of infected
individuals over a given number of time steps.

We consider a population with a total of N individuals. The individuals
in this population are not uniquely identified. However, the average connec-
tivity in the population, c, is known. The state of the network is given by
the triple (S, I, R) where S, I, and R are the number of individuals in the
conditions susceptible, infective and recovered, respectively. Since the size of
the network is fixed, note that each state is fully defined by the pair (S, I),
with R = N − (S + I) implied.

We make a list, q, of all possible states for the network. Let k be the
length of this list, so that q is a k by 3 matrix with each row storing the
triple for one state. States are referenced by their row index. The rows of q
are generated with an assignment loop of the following form:

[S, I, R] = [i, j, N − (i+ j)], for 0 ≤ i ≤ N and 0 ≤ j ≤ N − i. (1)

In the first state, all individuals are susceptible. Successive states are
organized in blocks, by decreasing the value of S and then I. The following
is an example of q with N = 2:

















2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2

















. (2)

The length of q can be found in the following way. For every value of S,
there are N − S + 1 possible values for I, each of which fully defines a state.
Using (2) as an example, we see that k is the sum of the first N + 1 positive
integers, also known as the N + 1 triangular number. This value can be
computed directly with a binomial coefficient: k =

(

N+2

2

)

.
Organizing the states in this way has a major programming benefit. Con-

sider the probability of transitioning from a state i to a state j. With i ≤ j,
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this is the probability of a certain number of individuals moving from S to
I and I to R. With i > j, the probability of a transition is always zero,
because such a transition would involve some individuals moving from I to
S or from R to I or from R to S. So as i increases, there are fewer states for
which valid transitions are defined and must be calculated.

We use the list of all possible states for the network, q, to index the
rows and columns of a transition matrix Q. In this way, each entry of Q is
associated with a unique pair of states: (S, I, R) and (S ′, I ′, R′). The entry
Q(i, j) corresponds to the probability of transitioning from state (S, I, R) to
state (S ′, I ′, R′).

The transition probabilities in Q are derived in the following way. At a
given time, let x = S−S ′ be the number of individuals that become infected
(S ⇒ I) and let z = R′ − R be the number of individuals that become
recovered (I ⇒ R). Let µ be the probability of one individual becoming
infected and δ be the probability of one individual becoming recovered. Then
Q(i, j) is given by

(

S

x

)

(µx)(1− µ)S−x

(

I

z

)

(δz)(1− δ)I−z. (3)

We use the product of independent binomial distributions to calculate the
probability for any x individuals to become infected and any z individuals
to become recovered, in the same time step.

The value of µ is not a constant. It is a function of the probability of
transmitting the virus, β, and the connectivity of the network, c. Let y be
the number of infected neighbors for an individual. Then the probability of
a individual becoming infected by at least one connected infective neighbor
is given by the following formula, which was derived in [2]:

µ =
I

∑

y=1

(1− (1− β)y)

(

I

y

)

(cy)(1− c)1−y. (4)

The size of Q is k2, which becomes large very quickly. For example,
with N = 100, Q has 51512 entries. The brute-force approach to generating
Q involves calculating a sparse matrix with many small entries. However,
the structure of q guarantees that Q is an upper diagonal matrix. So Q
is initially a matrix of zeros and entries are generated one row at a time,
beginning with Q(i, i). Since each row contains a probability distribution,
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Figure 1: Time series of expected values for number of infective individuals
using the Markov model. Parameters are set to N = 100, β = 0.12, c =
0.0505, and δ = 0.2. Initial conditions are sampled from I = 1, 2, ...10.

the sum along each completed row is 1. As j increases, states i and j become
significantly different. The result is that entries farther off the diagonal are
generally smaller. For example, it is not likely that everyone in the population
will become infective if currently only one person is infective. In practice,
we keep a running sum of the entries in the current row and neglect the
remaining entries once the sum becomes close enough to 1 as specified by an
acceptable tolerance.

We also identify the following patterns in generating Q that save time
computationally. Consider that the number of possible values for

(

S

x

)

is the

same as those for
(

I

z

)

, there are N + 1 of them, with each component of the
binomial coefficient ranging from 0 to N , so all of these values can be stored
in a square matrix of size N +1. However, all of the entries on the diagonal,
S = x, are 1 and entries above the diagonal, S < x are always zero. So instead
of calculating two binomial coefficients for each entry in Q, as required for
3, we generate a table of binomial coefficients and reference them as needed.
Similar tables can be generated for the rest of the elements of the product,
as well as the values of µ. This approach involves more start-up time and
space, but as N increases, the savings in time also increase.

The matrix Q can be used to generate a time-series for the expected num-
ber of infected individuals given an initial condition. The initial condition
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is the state of the network at time t = 0. An initial condition vector v0
is of length k and has a one in the position that corresponds to the initial
state of the network, indicating with 100% probability that it is the initial
state of the network. The probability of how the system will evolve in one
time step is given by v1 = Qv0. The entries in v1 represent the probability
of the system realizing each state, at the next time step, given the initial
condition. If we continue in time, the probability distribution at time t = n
is vn = Qnv0. We find the expected number of infective individuals at time
t = i by multiplying the probabilities in vi by the number of infectives in
each associated state (second column of q) and taking the sum of that vector.
See Figure 1 for an example time series of expected values for the number
of infective individuals, sampling initial conditions of 1 to 10 infective in a
population of N = 100.

3 The Differential Equation Model

One must be careful in generating the matrix Q for large values of N , because
memory requirements will impose a limitation on the size of that matrix.
Therefore, we continue with the most common and fastest approach to finding
the dynamics of an SIR model with a large population. Using a continuous
time perspective, a system of ordinary differential equations can describe the
process that allows the SIR system to change states [1, 8]. The number of
infected individuals increases by the number of susceptible nodes that get
infected. This rate is captured by µSI/N , noting the dependence of µ on I
as shown in (4). The number of infected nodes decreases by the number of
infected nodes that are cured, δI.

Let s = S/N , i = I/N , and r = R/N be the proportion of susceptible,
infective, and recovered nodes respectively. The system can be described by
the following system of equations:

ds

dt
= −µNsi,

di

dt
= µNsi− δi, (5)

dr

dt
= δi,

with µN defined as µ in (4), but using the next smallest integer I of N
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Figure 2: Time series of expected values for number of infective individu-
als using the Markov model and the ordinary differential equations model.
Overlaid are simulations with and without early die out, time series averaged
over 10, 000 realizations. See text for details. Parameters are set to N = 100,
β = 0.12, c = 0.0505, δ = 0.2, and initial condition I = 1.

nodes infected. Computationally, we approximate µN as a piecewise constant
function on a fixed time interval.

As shown in Figure 2, the ODE solution exhibits a larger outbreak than
the solution for the Markov model. We attribute the difference to the occur-
rence of early die out events, which can be clearly defined by the distribution
of maximum outbreak sizes in an agent-based simulation.

4 The Agent Based Model

An agent-based simulation of the infection process tracks the state of N in-
dividuals in time. At each time step we simulate an event by generating
a random number between 0 and 1 and seeing if it falls in the probability
defined by the model. For example, we start by determining if a connec-
tion exists between a particular infective and a particular susceptible. The
probability of this event is given by c. Then we test to see if the disease
was transmitted (β). Finally, we test each infective individual for a recovery
event (δ). We update the individuals’ conditions and repeat for the next
time step. The times series collects the average number of infectives, at each
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Figure 3: Associated distribution of total number of infective individuals over
the time series for 20,000 realizations.

time step, over a large number of simulations. See Figure 2 for an exam-
ple of N = 100 and an initial condition of 1 infected individual. Averaged
over 20, 000 realizations, we see that this agent-based simulation approach
(circles) agrees with the Markov process (solid curve).

If we examine the distribution of maximum outbreak sizes from the sim-
ulation realizations, we see two distinct behaviors as shown in Figure 3. The
first is a grouping of very small maximums, mostly less than five. The other
is a grouping of large maximums, mostly between 25 and 45. We call the
first grouping the early die out group, because the disease quickly dies out
without infecting many individuals. Removing the early die out group from
consideration results in an average behavior that is close to the ODE solution,
as shown by the squares in Figure 2.

5 Conclusions

We conclude by discussing the need for additional analysis of early die out
realizations, which are missed by deterministic ODE models. Most endemic
diseases exhibit oscillations, which have low minimums in between outbreak
years. In this paper, we simulate the random events in the state variables (S,
I, R), to show the variability in realizations for low numbers of infectives.
Markov models provide an analytical way to identify the behavior of the early
die out events. The state variables are only one source that could facilitate an
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early die out event in these low years, commonly called fade-outs in epidemi-
ology [5]. Parameters such as the contact rate (including seasonal forcing
[11]), birth rate [6, 10], age structure [3], and different demographic and ge-
ographic patterns [9, 4, 7] have all been considered as possible candidates
to elicit the onset of complex fluctuations in this class of models. Further
analysis of Markov models and stochastic differential equations, might give
insight into the circumstances under which noise may be more easily ignored
versus where it must be included to fully understand the early die out events
in these systems. These results could influence future vaccination strategies.
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