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Abstract. Let f be a complex quadratic rational map. The ith elementary symmet-

ric polynomial of the formal n multiplier spectra of f is denoted σ
(n)
i (f). The values

of these polynomials are invariant under conjugation by the projective linear group
PGL2(C) and are interesting to the study of the moduli space of quadratic rational

maps,M2(C). For every n ∈ Z>0 and i in the appropriate range, σ
(n)
i (f) ∈ Z[σ1, σ2]

where σ1, σ2 are σ
(1)
1 (f), σ

(1)
2 (f), respectively. Despite this, the σ

(n)
i (f) are difficult

to compute. By restricting our focus to the family of quadratic polynomials z2 + c,
computations become simpler. We determine an upper bound for the degrees of the

σ
(n)
i for the maps of the form z2 + c by arguing in terms of the growth rates of their

periodic points and corresponding multipliers. We also include computations of the

forms of the σ
(n)
i for n = 2, ..., 6 for these maps.
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1 Introduction

We define a complex rational map to be a quotient of relatively prime complex polynomials.
Let Rat2(C) denote the space of complex quadratic rational maps. We define the projective
linear group PGL2(C) to be the group of Möbius transformations on C, that is, the set
of maps of the form az+b

cz+d
for a, b, c, d ∈ C with ad − bc 6= 0 which forms a group under

composition. Many dynamical properties of complex quadratic rational maps are preserved
under conjugation by PGL2(C). Because of this, it is interesting to study the quotient space
M2(C) of Rat2(C), known as the moduli space of quadratic rational maps, that is formed
from this conjugation action. Functions on Rat2(C) that are PGL2(C)-invariant can be used
to define functions onM2(C) and provide a means through which we can describe the space.
In this article, we investigate a particular subset of these functions and their restrictions to
the set of maps of the form z2 +c in Rat2(C). Before we define them and state our results, we
briefly introduce needed concepts from dynamics. This preliminary material will be defined
more formally in Sections 2 and 3.

Let f be a complex rational map. For n ∈ Z>0, we denote the nth iterate of f by fn,
defined fn = f ◦ fn−1 where f 0(z) = z. We say z0 ∈ C is a periodic point of period n of f if
fn(z0) = z0. The multiplier of such a point z0 is defined to be λz0(f) = (fn)′(z0). A periodic
point of period n of f is said to have formal period n if it is a root of the nth dynatomic
polynomial of f , Φf,n. The set of multipliers of periodic points of formal period n of f is
denoted Λn(f) and is called the formal n multiplier spectra of f . For each n ∈ Z>0, Λn(f) is
preserved under conjugation by elements of PGL2(C). This allows for a more general study of
conjugacy classes of rational maps instead of specific maps. Since the sets are preserved, the
values of symmetric polynomials on these sets are also preserved by conjugation allowing us
to assign a single, sometimes unique, complex number to each conjugacy class, an invariant.

We consider the case of quadratic rational maps. Let f ∈ Rat2(C). The first two
elementary symmetric polynomials of Λ1(f) are denoted σ1, σ2. These are functions on
M2(C) and it turns out that they induce an isomorphism between M2(C) and affine 2-
space A2(C), each conjugacy class corresponding bijectively to a complex pair (σ1, σ2) [2,
Lemma 3.1]. Our primary objects of study are generalizations of σ1 and σ2, namely the
elementary symmetric polynomials of Λn(f) for n ∈ Z>0. We denote the ith elementary

symmetric polynomial of Λn(f) as σ
(n)
i (f). From Silverman [4, Corollary 5.2], we have that

σ
(n)
i (f) ∈ Z[σ1, σ2].

For general quadratic rational f , finding the forms of the σ
(n)
i (f) is difficult. Milnor [2]

and Berker et al. [1] have computed the forms of σ
(n)
i (f) for n = 2, 3. Computations are

simpler for the family of quadratic polynomials of the form z2 + c. In fact, for φ(z) = z2 + c,
σ1 = 2 and σ2 = 4c, allowing us to write φ as φσ2(z) = z2 + σ2

4
. Thus for φσ2(z) = z2 + σ2

4
,

σ
(n)
i (φσ2) ∈ Z[σ2]. The periodic points of formal period n of φσ2 depend continuously on σ2

since they are roots of the nth dynatomic polynomial of φσ2 . For two continuous functions

f, g : C → C, we say f = Θ(g) if limz→∞
f(z)
g(z)

exists and is nonzero. By arguing in terms of
growth rates we show the following:
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Proposition 4.1. Let φσ2(z) = z2 + σ2
4

and let n ∈ Z>0. Then for every P such that

Φφσ2 ,n
(P ) = 0, we have P = Θ(σ

1
2
2 ).

Corollary 4.2. Let φσ2(z) = z2+σ2
4

and let n ∈ Z>0. Then for every P such that Φφσ2 ,n
(P ) =

0, we have λP (φσ2) = Θ(σ
n
2
2 ).

These growth rates along with the fact that the σ
(n)
i are polynomials allow us to determine

a bound on the degrees of the σ
(n)
i .

Theorem 4.3. For the map φσ2(z) = z2 + σ2
4

, and for every n ∈ Z>0 and every i ∈
{1, ..., |Λn(φσ2)|}, we have deg(σ

(n)
i (φσ2)) ≤

⌊
in
2

⌋
where b·c denotes the floor function.

The argument we use to show this does not say anything about cancellation of terms in the
elementary symmetric polynomials so we cannot conclude equality; however, we conjecture
that the other direction holds.

Conjecture 4.4. For the conditions of Theorem 4.3, we have deg(σ
(n)
i (φσ2)) =

⌊
in
2

⌋
for

every n ∈ Z>0 and every i ∈ {1, ..., |Λn(φσ2)|}.

The upper bound on the degrees of the σ
(n)
i allows us to easily compute the general forms

of σ
(n)
i (φσ2) with interpolation. We include our computations of σ

(n)
i (φσ2) for n = 2, ..., 6. We

also include the same results using the multiplier spectra of φσ2 including the multipliers of
all periodic points instead of the formal multiplier spectra. Computations were done using
the Sage computer algebra system [6].

The remainder of this article is organized as follows. In Section 2, we introduce essential
concepts and terminology from dynamics. In Section 3, we describe the conjugation action
of PGL2(C) on Rat2(C) and then define the polynomials σ

(n)
i . We prove our main result in

Section 4. In Sections 5 and 6, we provide an algorithm that can be used to compute the
σ

(n)
i and discuss its implementation using the Sage computer algebra system. We describe

our computational results in Section 7 and list them in Appendix A. Finally, in Section 8 we
briefly discuss a possible direction for future research.

2 Definitions from dynamics

We begin by first introducing needed concepts from dynamics.

Definition. A discrete dynamical system consists of a set S and a map f from that set to
itself, that is, f : S → S.

We consider systems of the form f : C→ C for complex rational maps f which we define
to be quotients relatively prime complex polynomials. We note that to be more precise,
complex rational maps should be considered as self maps of the extended complex plane;
however, since we eventually focus on a family of polynomial maps, we introduce needed
dynamical concepts in terms of C instead. For such a rational map, we define its degree to
be the maximum of the degrees of its numerator and denominator.
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Example 2.1.

• f(z) = z2+2z+1
z−1

is degree 2.

• f(z) = z2+z+2
7z5+2z2+z+9

is degree 5.

For a nonnegative integer n, we define the nth iterate of a rational map f to be fn =
f ◦ fn−1. The 0th iterate is defined to be the identity map, that is, f 0(z) = z.

Example 2.2.

• For f(z) = z2, f 3(z) = ((z2)2)2 = z8.

• For f(z) = z2 + 1, f 2(z) = f(f(z)) = (z2 + 1)2 + 1 = z4 + 2z2 + 2.

• For f(z) = 2z−3
z+1

, f 2(z) = f(f(z)) =
2( 2z−3

z+1
)−3

2z−3
z+1

+1
= z−9

3z−2
.

We say a point z0 ∈ C is a periodic point of period n of f if it is fixed by the nth iterate
of f , that is, if fn(z0) = z0.

Example 2.3. Let f(z) = z2 − 7
4
. Its periodic points of period 2 are the solutions to

f 2(z)− z = f(f(z))− z = (z2 − 7

4
)2 − z − 7

4
= z4 − 7

2
z2 − z +

21

16
= 0

which are z = 1
2
,−3

2
, 1

2
±
√

2.

Since a periodic point of period n is a periodic point of period nm for every m ∈ Z>0 we
can classify periodic points based on the smallest period for which they are periodic.

Definition. A point z0 ∈ C is called a periodic point of minimal period n of a rational map
f if fn(z0) = z0 and fm(z0) 6= z0 for every m ∈ {1, ..., n− 1}.

We define the forward orbit of a point z0 ∈ C by a rational map f to be the set of forward
images of z0 by f , {fn(z0) | n ∈ Z≥0}. The forward orbit of a periodic point is always finite.
Also, if z0 is a periodic point of period n of f , then its forward orbit by f will consist of
other periodic points of period n of f .

Example 2.4. For the map f(z) = z2 − 7
4
, the forward orbit of 1

2
is {1

2
,−3

2
}. Both 1

2
and

−3
2

are periodic points of minimal period 2 of f . The points 1
2

+
√

2 and 1
2
−
√

2 are fixed
points of f , that is, they are periodic points of period 1, and thus their orbits only contain
one element.

We make an additional classification of periodic points for polynomial maps, the roots of
the nth dynatomic polynomial. We define the Möbius function µ as:
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Definition. Let n ∈ Z>0.

µ(n) =


(−1)r if n is squarefree
0 if n is not squarefree
1 if n = 1

where r is the number of distinct prime factors of n.

Example 2.5.

• µ(5) = −1.

• µ(6) = 1.

• µ(8) = 0.

Definition. Let f ∈ C[z]. The nth dynatomic polynomial of f [3] is defined to be

Φf,n(z) =
∏
k|n

(fk(z)− z)µ(n
k

).

Example 2.6. For f(z) = z2 + c,

Φf,2 =
∏
k|2

(fk(z)− z)µ( 2
k

) =
f 2(z)− z
f(z)− z

= z2 + z + c+ 1,

Φf,4 =
∏
k|4

(fk(z)− z)µ( 4
k

) =
f 4(z)− z
f 2(z)− z

= z12 + 6cz10 + z9 + (15c2 + 3c)z8 + 4cz7

+ (20c3 + 12c2 + 1)z6 + (6c2 + 2c)z5 + (15c4 + 18c3 + 3c2 + 4c)z4

+ (4c3 + 4c2 + 1)z3 + (6c5 + 12c4 + 6c3 + 5c2 + c)z2 + (c4 + 2c3 + c2 + 2c)z

+ (c6 + 3c5 + 3c4 + 3c3 + 2c2 + 1).

There is a more general version of the dynatomic polynomial for rational maps [3], but
in this article we only focus on a family of polynomial maps. For a polynomial map f , Φf,n

is guaranteed to be a polynomial [3, Theorem 4.5], and all of the periodic points of minimal
period n of f are among its roots. Additionally, its roots are always periodic points of period
n of f . We can compute the degree of Φf,n as deg(Φf,n) =

∑
k|n((deg(f))kµ(n

k
)). It turns

out that any simple root of Φf,n is a periodic point of minimal period n of f [5]. However,
there are cases where there are higher multiplicity roots that are periodic points of period
smaller than n.

Example 2.7. Consider f(z) = z2− 3
4
, f(z)−z = (z+ 1

2
)(z− 3

2
) and f 2(z)−z = (z+ 1

2
)3(z− 3

2
)

meaning that f has no periodic points of minimal period 2. As a result, the 2nd dynatomic

polynomial of f has a higher multiplicity root, Φf,2(z) = f2(z)−z
f(z)−z = (z + 1

2
)2.
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Definition. A point z0 ∈ C is called a periodic point of formal period n of a polynomial
map f if Φf,n(z0) = 0. For a general rational map, its periodic points of formal period n are
the zeros of the corresponding generalized nth dynatomic polynomial.

We also define the multiplier of a periodic point:

Definition. Let z0 ∈ C be a periodic point of period n of a rational map f . The multiplier
of z0 is defined to be λz0(f) = (fn)′(z0).

The multipliers of periodic points in the same orbit are the same. We can see this by
applying the chain rule: (fn)′(z) = f ′(fn−1(z)) · · · f ′(z). If z is a periodic point of period n
of f , then (fn)′(z) is the product of the first derivatives of f evaluated at each point in the
forward orbit of z. Thus the value of (fn)′(z) is invariant with respect to the choice of point
from the orbit.

Example 2.8.

• For f(z) = z2 − 7
4

we found z0 = 1
2
−
√

2 to be a fixed point of f .

λz0(f) = f ′(z0) = 2z0 = 1− 2
√

2.

• Additionally, we found z1 = 1
2

to be a periodic point of minimal period 2.

λz1(f) = (f 2)′(z1) =
d

dz

∣∣∣
z1

((z2−7

4
)2−7

4
) =

d

dz

∣∣∣
z1

(z4−7

2
z2+

49

16
) = (4z3−7z)

∣∣∣
z1

=
1

2
−7

2
= −3.

• z2 = −3
2

was also a periodic point of minimal period 2, and its multiplier is

λz2(f) = (4z3 − 7z)
∣∣∣
z2

= −27

2
+

21

2
= −3

which reflects the fact 1
2

and −3
2

are in the same forward orbit.

3 The isomorphism and its invariants

We now introduce the projective linear group PGL2(C) and describe how it acts on the
space of rational quadratic maps Rat2(C). This action induces an equivalence relation from
which we construct the moduli space of quadratic rational maps M2(C). We then define
our objects of study, which are generalizations of the invariants of an isomorphism from this
space.

We define a Möbius transformation on C to be a degree one rational map of the form
f(z) = az+b

cz+d
for a, b, c, d ∈ C with ad − bc 6= 0. The set of Möbius transformations under

composition forms the projective linear group PGL2(C). We denote the space of complex
quadratic rational maps as Rat2(C). For a rational map f and a Möbius transformation g
we define the conjugate of f by g to be f g = g−1 ◦ f ◦ g.
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Example 3.1. Let f(z) = z2+5
z+1
∈ Rat2(C), and let g(z) = 1

z
∈ PGL2(C), then

f g(z) =
(1
z
) + 1

(1
z
)2 + 5

=
z2 + z

5z2 + 1
.

Möbius transformations are the automorphisms of the extended complex plane and are
very useful in studying iteration of rational maps since conjugation with them commutes with
iteration, g−1◦fn◦g = (g−1◦f ◦g)n. We can use this conjugation action to partition Rat2(C)
into equivalence classes where two rational quadratic maps are in the same equivalence class
if they are conjugates of each other by an element of PGL2(C).

Definition. Let f, h ∈ Rat2(C). We say f , h are conjugate if there exists a g ∈ PGL2(C)
such that f = hg.

This is an equivalence relation and the resulting equivalence classes are called conjugacy
classes. We denote the set of these conjugacy classes as M2(C), called the moduli space of
rational quadratic maps [2]. More precisely, M2(C) = Rat2(C)/PGL2(C), that is, Rat2(C)
modulo the action of conjugation by PGL2(C).

For any n ∈ Z>0, and a rational quadratic map f , conjugation by PGL2(C) preserves
the set of multipliers of periodic points of formal period n of f . Before showing this, we
introduce a convenient notation for the set of multipliers of periodic points of formal period
n.

Definition. The formal n multiplier spectra Λn(f) of a quadratic rational map f is the
set of multipliers of the periodic points of formal period n of f included with appropriate
multiplicity [3]. Since periodic points of the same forward orbit share the same multiplier,
only one multiplier per orbit is included.

Example 3.2. Let f(z) = z2 − 8
9
. The periodic points of formal period 2 of f are the roots

of

Φf,2(z) = z2 + z +
1

9
= (z − (−1

2
−
√

5

6
))(z − (−1

2
+

√
5

6
))

and are thus −1
2
±
√

5
6

. These points are in the same forward orbit and so they share the
same multiplier,

λ− 1
2
−
√
5
6

(f) = λ− 1
2

+
√
5

6

(f) = f 2(−1

2
+

√
5

6
) =

11

12
− 17

√
5

108
.

Since only one multiplier per orbit is included in the formal multiplier spectra, Λ2(f) =

{11
12
− 17

√
5

108
}.

We first show how the set of fixed points of a rational map is acted upon by PGL2(C)
conjugation. This result is well known but we include it for completeness:
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Lemma 3.1. Let f be a rational map, and let g ∈ PGL2(C). Then P is a fixed point of f
if and only if g−1(P ) is a fixed point of f g.

Proof. Let P be a fixed point of f . Then

f g(g−1(P )) = g−1(f(g(g−1(P )))) = g−1(P ).

Let g−1(P ) be a fixed point of f g. Then f(P ) = (g ◦ f g ◦ g−1)(P ) = P .

Since the periodic points of period n of a rational map f are the fixed points of fn, the
above result also holds for the set of periodic points of period n of f . Given any g ∈ PGL2(C)
and k dividing n we have fk(P )−P = 0 if and only if (f g)k(g−1(P ))− g−1(P ) = 0, and so it
follows that P is a periodic point of formal period n of f if and only if g−1(P ) is a periodic
point of formal period n of f g. We now want to show Λn(f) is preserved under PGL2(C)
conjugation.

Proposition 3.2. Let f be a rational map, let g ∈ PGL2(C). Then Λn(f) = Λn(f g).

Proof. Since we have P is a periodic point of formal period n of f if and only if g−1(P ) is
a periodic point of formal period n of f g, we need only show λP (f) = λg−1(P )(f

g) for each
periodic point P of formal period n of f . Here λP (f) = (fn)′(P ).

Let z ∈ C. For convenience let h = fn. Then hg(z) = (g−1 ◦ h ◦ g)(z), and so (hg)′(z) =
(g−1)′(h(g(z)))h′(g(z))g′(z). Let P be a periodic point of formal period n of f . Note that
λg−1(P )(f

g) = (hg)′(g−1(P )) since conjugation by g commutes with iteration. Thus we have:

λg−1(P )(f
g) = (hg)′(g−1(P )) = (g−1)′(h(g(g−1(P ))))h′(g(g−1(P )))g′(g−1(P ))

= (g−1)′(P )h′(P )g′(g−1(P )) = (g−1)′(P )g′(g−1(P ))h′(P ) = h′(P ) = λP (f)

since (g−1)′(g(z))g′(z) = (g−1 ◦ g)′(z) = 1 for any z ∈ C.

Though Λn(f) is fixed by conjugation by PGL2(C), it would be even nicer to have a
single complex number corresponding to Λn(f) that is preserved by conjugation rather than
a set. This would allow us to identify each conjugacy class with a single complex value, an
invariant.

Definition. Let n ∈ Z>0, z1, ..., zn ∈ C. Consider the monic polynomial

(z − z1) · · · (z − zn) = zn − e1z
n−1 + ...+ (−1)nen,

here ei is the ith elementary symmetric polynomial of the n variables z1, ..., zn.

The values of elementary symmetric polynomials are invariant under permutation of the
variables, meaning that the values of elementary symmetric polynomials evaluated over the
elements of Λn(f) will be invariant under conjugation by PGL2(C).

A rational map of degree d has exactly d+1 fixed points [3]. Thus for a quadratic rational
map we will have exactly 3 fixed points. We denote the multipliers of these fixed points as
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λ1, λ2, λ3 and let σ1, σ2 denote the first two elementary symmetric polynomials of λ1, λ2, λ3.
That is, σ1 = λ1 + λ2 + λ3 and σ2 = λ1λ2 + λ1λ3 + λ2λ3.

We also define affine 2-space over C to be A2(C) = {(a1, a2) | a1, a2 ∈ C)}. We denote
the conjugacy class of a rational quadratic map f inM2(C) as [f ]. From Milnor [2, Lemma
3.1], we have:

Theorem 3.3. M2(C) ∼= A2(C) with isomorphism π : M2(C) → A2(C) defined by [f ] ∈
M2(C) 7→ (σ1, σ2).

We now define the objects of our study which are generalizations of σ1, σ2:

Definition. For a quadratic rational map f and for n ∈ Z>0 and i ∈ {1, ..., |Λn(f)|}, we

define σ
(n)
i (f) to be the ith elementary symmetric polynomial of the formal n multiplier

spectra of f .

From Silverman [4, Corollary 5.2], we have a useful fact about these polynomials:

Theorem 3.4. For n ∈ Z>0 and i ∈ {1, ..., |Λn(f)|}, σ(n)
i (f) ∈ Z[σ1, σ2], that is, σ

(n)
i (f) is

a polynomial in σ1, σ2 with integer coefficients.

From now on we focus our study on the family of quadratic polynomial maps of the form
z2 + c. The reason why we choose the family z2 + c instead of general quadratic polynomials
is that any quadratic polynomial is PGL2(C) conjugate to z2 + c for some c ∈ C [3].

We first want to compute the set of coordinates (σ1, σ2) for maps of the form φ(z) = z2+c.
Notice that the point at infinity is always a fixed point of φ, but we need an alternate
definition for its multiplier.

Definition. If the point at infinity is a fixed point of a rational map f , its multiplier is

λ∞(f) = lim
z→0

z−2f ′(z−1)

f(z−1)2

which can be seen by conjugating f by 1
z

[3].

Lemma 3.5. For φ(z) = z2 + c, λ∞(φ) = 0.

Proof. λ∞(φ) = limz→0
z−22z−1

((z−1)2+c)2
= limz→0

z−22z−1

((z−1)2+c)2
z4

z4
= limz→0

2z
(1+cz2)2

= 0
1

= 0.

Without loss of generality, let λ3 correspond to the multiplier of the point at infinity.
Then for φ, σ1 = λ1 + λ2, σ2 = λ1λ2, and σ3 = 0. The two finite fixed points of φ can be
found by solving φ(z) − z = z2 − z + c = 0. The roots are z1 = 1+

√
1−4c
2

and z2 = 1−
√

1−4c
2

.
So we have λ1 = φ′(z1) = 2z1, λ2 = φ′(z2) = 2z2, and thus σ1 = λ1 + λ2 = 2z1 + 2z2 = 2,
σ2 = λ1λ2 = 2z12z2 = 4c. This means that the image of the family of maps of the form
z2 + c by π : Rat2(C)→ A2(C) that maps f ∈ Rat2(C) to (σ1, σ2) is a line in A2(C).

Since σ1 = 2 for the family of maps φ(z) = z2 +c, we have that σ
(n)
i (φ) ∈ Z[σ2]. This fact

and the relation σ2 = 4c allows for easier computation of the σ
(n)
i (φ). We relabel φ(z) = z2+c

as φσ2(z) = z2 + σ2
4

for convenience.
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Note. The reason we define the multiplier spectra in terms of periodic points of formal period
rather than those of minimal period is that we want the σ

(n)
i to be polynomials. It turns

out that if we define the multiplier spectra in terms of periodic points of minimal period
we encounter discontinuities in the σ

(n)
i . To see this, consider the general map φc(z) =

z2 + c. Its 2nd dynatomic polynomial is Φφc,2(z) = z2 + z + c + 1 which has roots z =
−1

2

√
−4c− 3 − 1

2
, 1

2

√
−4c− 3 − 1

2
. These are distinct for c 6= −3

4
meaning that Φφc,2 has

two simple roots, which are thus exactly the periodic points of minimal period 2. So then
suppose we define the multiplier spectra in terms of periodic points of minimal period so
that the σ

(n)
i are elementary symmetric polynomials of the multipliers of the periodic points

of minimal period. Then for c 6= −3
4
, σ

(2)
1 (φc) = (φ2

c)
′(1

2

√
−4c− 3 − 1

2
) = 4c + 4. We have

limc→− 3
4
σ

(2)
1 (φc) = 1 and so if σ

(2)
1 (φc) were continuous with respect to c we would expect

σ
(2)
1 (φ− 3

4
) = 1.

However, this is not the case. Recall that in Example 2.7, we saw that there can be
deficiencies of periodic points of minimal period. In particular, φ− 3

4
(z) = z2 − 3

4
has no

periodic points of minimal period 2 so σ
(2)
1 (φ− 3

4
) would be an empty sum. Thus defining

the σ
(n)
i in terms of periodic points of minimal period introduces discontinuities, and in

particular, the σ
(n)
i cannot be polynomials in c so results such as those in Theorem 3.4 are

not possible.

4 Results

By arguing in terms of the growth rates of periodic points with respect to σ2 we can deduce
an upper bound for the degrees of the σ

(n)
i for φσ2(z) = z2 + σ2

4
. We use asymptotic notation

to denote growth rate relations:

Definition. Let f, g : C→ C be continuous functions. We say f = O(g) if limz→∞
f(z)
g(z)

exists.

We say f = Θ(g) if limz→∞
f(z)
g(z)

exists and is nonzero. We say f = o(g) if limz→∞
f(z)
g(z)

= 0,

and f = ω(g) if g = o(f).

Proposition 4.1. Let φσ2(z) = z2 + σ2
4

and let n ∈ Z>0. Then for every P such that

Φφσ2 ,n
(P ) = 0, we have P = Θ(σ

1
2
2 ).

Proof. Let n ∈ Z>0 and i ∈ {1, ..., |Λn(φσ2)|} be given. The constant term of φkσ2 has degree
2k−1 with respect to σ2. Thus the constant term of the nth dynatomic polynomial has degree∑

k|n µ(n
k
)2k−1 = 1

2

∑
k|n µ(n

k
)2k = 1

2
deg(Φφσ2 ,n

) with respect to σ2. Let N = deg(Φφσ2 ,n
),

then Φφσ2 ,n
has exactly N roots, and since it is a monic polynomial in z we may write

Φφσ2 ,n
(z) = (z−P1) · · · (z−PN) where P1, ..., PN are the roots of Φφσ2 ,n

. The product of the

roots of a polynomial is its constant term, thus we have P1 · · ·PN = Θ(σ
1
2
N

2 ).
Let P ∈ {P1, ..., PN}, then P is a periodic point of formal period n so φnσ2(P ) = P , and

also P is a continuous function of σ2 since it is a root of φnσ2 . Suppose P = ω(σ
1
2
2 ), then we
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have P 2 = ω(σ2)⇒ φσ2(P ) = P 2 + σ2
4

= Θ(P 2) = ω(P ). And so φnσ2(P ) = Θ(P 2n) = ω(P ),

but since φnσ2(P ) = P , this is a contradiction. Thus we must have P = O(σ
1
2
2 ).

We have from earlier that P1 · · ·PN = Θ(σ
1
2
N

2 ). Since each Pi = O(σ
1
2
2 ), we must have Pi =

Θ(σ
1
2
2 ) for every i since if for some i, Pi = o(σ

1
2
2 ), then P1 · · ·PN = o(σ

1
2
N

2 ), a contradiction.

Corollary 4.2. Let φσ2(z) = z2+σ2
4

and let n ∈ Z>0. Then for every P such that Φφσ2 ,n
(P ) =

0, we have λP (φσ2) = Θ(σ
n
2
2 ).

Proof. We have λP (φσ2) = (φnσ2)
′(P ) =

∏n−1
j=0 φ

′
σ2

(φjσ2(P )), the product of the first derivatives
of φσ2 evaluated at each periodic point in the forward n-orbit of P , each of which is also a
periodic point of formal period n of φσ2 . For φσ2(z) = z2 + σ2

4
, φ′σ2(z) = 2z, linear in z. Thus

using the result of Proposition 4.1, λP (φσ2) = Θ(σ
n
2
2 ).

Theorem 4.3. For the map φσ2(z) = z2 + σ2
4

, and for each n ∈ Z>0 and each i ∈
{1, ..., |Λn(φσ2)|}, we have deg(σ

(n)
i (φσ2)) ≤

⌊
in
2

⌋
where b·c denotes the floor function.

Proof. σ
(n)
i is the sum of products of length i of multipliers of periodic points of formal period

n of φσ2 , and so σ
(n)
i = O(σ

in
2

2 ) after applying the result of Corollary 4.2. Since σ
(n)
i ∈ Z[σ2],

we have deg(σ
(n)
i ) ≤

⌊
in
2

⌋
.

The reason we cannot conclude equality from this argument is that it is possible for
cancellation to occur in the elementary symmetric polynomials which can reduce growth
rates. As far as we can compute, the other direction holds, however, we have not yet been
able to formulate a lower bound for the possible amount of cancellation. We leave this as a
conjecture:

Conjecture 4.4. For the conditions in Theorem 4.3, we have deg(σ
(n)
i (φσ2)) =

⌊
in
2

⌋
for

every n ∈ Z>0 and every i ∈ {1, ..., |Λn(φσ2)|}.

Equality does indeed hold for the last elementary symmetric polynomial, σ
(n)
|Λn(φσ2 )|; since

it is a product, no cancellation can occur.

5 Computing the σ
(n)
i

We can use the upper bound for the degrees of the σ
(n)
i (φσ2) to compute their general forms.

To do this, we compute
⌊
in
2

⌋
+ 1 distinct pairs (σ2, σ

(n)
i (φσ2)) and then perform Lagrange

interpolation on them. If the degree of σ
(n)
i happens to be smaller than

⌊
in
2

⌋
, the terms that

are too large will have zero coefficients.
Given a value of σ2, we want to compute the corresponding value of σ

(n)
i . We can do

this since given a value of σ2, we know the map of the form z2 + c to which it corresponds,
namely φσ2(z) = z2 + σ2

4
. The task of computing the value of σ

(n)
i at σ2 becomes:
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1. Compute the periodic points of formal period n of φσ2(z) = z2 + σ2
4

, that is, the roots
of Φφσ2 ,n

.

2. Compute the multipliers of these periodic points.

3. Remove all duplicates in the collection of multipliers to emulate the formal n multiplier
spectra of φσ2 .

4. If there aren’t enough multipliers, choose a different value of σ2.

5. Otherwise, compute σ
(n)
i directly by evaluating the ith elementary symmetric polyno-

mial of the collection of multipliers.

Although it is rare, there are cases where we have too few multipliers in our list after
we remove duplicates. The first cause of this is that two distinct forward orbits of periodic
points of formal period n may have the same multipliers. The other cause is when Φφσ2 ,n

has a higher multiplicity root. These are rare enough that we may simply skip the value of
σ2 corresponding to the deficit.

6 Sage computer algebra system

We used the Sage computer algebra system to compute the polynomials [6]. Sage has many
tools for computing iterates of maps, multipliers, and dynatomic polynomials. Progress and
goals for Sage development in the areas of arithmetic and complex dynamics is managed in
the Arithmetic and Complex Dynamics wiki [7].

With any computer algebra system, computing the roots of polynomials of degree greater
than four is problematic since most often these roots can only be approximated. Since our
algorithm for computing the value of σ

(n)
i for a given value of σ2 requires the removal of

duplicates in our list of multipliers, we need duplicate roots to be treated as equal by Sage.
With only approximations, duplicate roots may be computed differently and thus will not
pass equality tests.

A way around this is to treat the roots of a polynomial as intervals in the complex
plane. To do this, only the general location within some error bound of the root needs to
be known. With higher precision, the intervals are smaller. We can treat these intervals
as points themselves and define equality of two points as the intersection of their respective
intervals. With high enough precision duplicate roots will be computed accurately enough
so that their respective intervals intersect, passing required equality tests.

7 The polynomials

When we defined the n multiplier spectra for the map φ(z) = z2 + c, it was possible to
also define the n multiplier spectra to be the set of multipliers included with appropriate
multiplicity for all of the periodic points of φ of period n instead of just those of the periodic
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points of formal period n. The periodic points of period n are the roots of φn(z)− z and the

same upper bound holds for the degrees of the corresponding σ
(n)
i so we can apply a similar

algorithm to compute them. We include the results of our computations for both families of
polynomials in Appendix A.

8 Future research

One goal for future research could be to compute more of the σ
(n)
i for general quadratic

rational maps by using an interpolation-based algorithm. This would be a more complex
task as σ1 is not constant for general maps. Unless upper bounds for the degrees of the
σ

(n)
i are found, interpolating the σ

(n)
i would first require finding their degrees as multivariate

polynomials in σ1, σ2. Additionally, with maps of the form z2 + c we had the relationship
σ2 = 4c allowing us to easily determine the map corresponding to a given value of σ2, z2 + σ2

4
.

The relationship for general quadratic rational maps is less straightforward, and is seen by
conjugating the maps to their Milnor normal form [2].
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Appendix A

The following are the results of our computations for the σ
(n)
i first using only the multipliers

of the periodic points of a given formal period and then using the multipliers of all periodic
points of a given period.

A.1 With only the multipliers of the periodic points of a given
formal period

For the formal 2 multiplier spectra

σ
(2)
1 = σ2 + 4

For the formal 3 multiplier spectra

σ
(3)
1 = 2σ2 + 16

σ
(3)
2 = σ3

2 + 8σ2
2 + 16σ2 + 64

For the formal 4 multiplier spectra

σ
(4)
1 = −σ2

2 + 48

σ
(4)
2 = −σ4

2 − 4σ3
2 + 16σ2

2 + 768

σ
(4)
3 = σ6

2 + 12σ5
2 + 48σ4

2 + 192σ3
2 + 512σ2

2 + 4096

For the formal 5 multiplier spectra

σ
(5)
1 = −2σ2

2 + 8σ2 + 192

σ
(5)
2 = 3σ5

2 + 12σ4
2 − 96σ3

2 − 128σ2
2 + 1280σ2 + 15360

σ
(5)
3 = −4σ7

2 − 72σ6
2 − 544σ5

2 − 2688σ4
2 − 6656σ3

2 + 4096σ2
2 + 81920σ2 + 655360

σ
(5)
4 = 3σ1

20 + 44σ9
2 + 96σ8

2 − 1280σ7
2 − 10752σ6

2 − 54272σ5
2 − 151552σ4

2 − 49152σ3
2 + 524288σ2

2

+ 2621440σ2 + 15728640

σ
(5)
5 = −2σ12

2 − 56σ11
2 − 640σ10

2 − 4224σ9
2 − 20480σ8

2 − 75776σ7
2 − 172032σ6

2 − 229376σ5
2 + 131072σ4

2

+ 4718592σ3
2 + 14680064σ2

2 + 41943040σ2 + 201326592

σ
(5)
6 = σ15

2 + 32σ14
2 + 448σ13

2 + 3840σ12
2 + 24064σ11

2 + 118784σ10
2

+ 466944σ9
2 + 1540096σ8

2 + 4521984σ7
2 + 11534336σ6

2

+ 27262976σ5
2 + 58720256σ4

2 + 83886080σ3
2 + 134217728σ2

2

+ 268435456σ2 + 1073741824
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For the formal 6 multiplier spectra

σ
(6)
1 = σ3

2 − 4σ2
2 − 16σ2 + 576

σ
(6)
2 = −4σ6

2 − 8σ5
2 + 128σ4

2 − 256σ3
2 − 1536σ2

2 − 8192σ2 + 147456

σ
(6)
3 = −4σ9

2 − 8σ8
2 + 544σ7

2 + 4032σ6
2 + 13824σ5

2 + 6144σ4
2 − 172032σ3

2 − 229376σ2
2

− 1835008σ2 + 22020096

σ
(6)
4 = 6σ12

2 + 56σ11
2 − 176σ10

2 − 512σ9
2 + 25856σ8

2 + 196608σ7
2 + 946176σ6

2 + 2326528σ5
2

− 5439488σ4
2 − 29360128σ3

2 − 14680064σ2
2 − 234881024σ2 + 2113929216

σ
(6)
5 = 6σ15

2 + 80σ14
2 − 240σ13

2 − 7936σ12
2 − 48384σ11

2 − 190464σ10
2 − 200704σ9

2 + 3473408σ8
2

+ 13631488σ7
2 + 28573696σ6

2 + 5242880σ5
2 − 943718400σ4

2 − 2348810240σ3
2 − 18790481920σ2

+ 135291469824

σ
(6)
6 = −4σ18

2 − 88σ17
2 − 352σ16

2 + 7168σ15
2 + 112896σ14

2 + 873472σ13
2 + 4739072σ12

2

+ 18726912σ11
2 + 50724864σ10

2 + 84410368σ9
2 − 40894464σ8

2 − 1291845632σ7
2 − 5603590144σ6

2

− 16777216000σ5
2 − 61740154880σ4

2 − 90194313216σ3
2 + 60129542144σ2

2 − 962072674304σ2

+ 5772436045824

σ
(6)
7 = −4σ21

2 − 120σ20
2 − 1280σ19

2 − 3648σ18
2 + 49920σ17

2

+ 751616σ16
2 + 5902336σ15

2 + 31801344σ14
2 + 123273216σ13

2

+ 352321536σ12
2 + 597688320σ11

2 − 528482304σ10
2 − 7834959872σ9

2

− 39795556352σ8
2 − 151934468096σ7

2 − 402653184000σ6
2

− 910533066752σ5
2 − 1580547964928σ4

2 − 962072674304σ3
2

+ 3848290697216σ2
2 − 30786325577728σ2 + 158329674399744

σ
(6)
8 = σ24

2 + 40σ23
2 + 656σ22

2 + 5376σ21
2 + 15360σ20

2 − 158720σ19
2

− 2629632σ18
2 − 22069248σ17

2 − 133431296σ16
2 − 643563520σ15

2

− 2644508672σ14
2 − 9529458688σ13

2 − 30903631872σ12
2 − 92945776640σ11

2

− 247765925888σ10
2 − 575525617664σ9

2 − 1245540515840σ8
2 − 2267742732288σ7

2

− 4191888080896σ6
2 − 7146825580544σ5

2 + 1099511627776σ4
2 + 35184372088832σ3

2

+ 105553116266496σ2
2 − 562949953421312σ2 + 2533274790395904

σ
(6)
9 = σ27

2 + 52σ26
2 + 1248σ25

2 + 18752σ24
2 + 202752σ23

2

+ 1712128σ22
2 + 11845632σ21

2 + 69124096σ20
2 + 348192768σ19

2

+ 1544552448σ18
2 + 6126829568σ17

2 + 22053650432σ16
2

+ 72913780736σ15
2 + 222130339840σ14

2 + 625723047936σ13
2

+ 1637456281600σ12
2 + 3981434683392σ11

2 + 9208409882624σ10
2

+ 20478404067328σ9
2 + 42606075576320σ8

2 + 83562883710976σ7
2

+ 153931627888640σ6
2 + 299067162755072σ5

2 + 492581209243648σ4
2

+ 844424930131968σ3
2 + 1125899906842624σ2

2 − 4503599627370496σ2 + 18014398509481984
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A.2 With the multipliers of all periodic points of a given period

For the 2 multiplier spectra

σ
(2)
1 = −σ2 + 8

σ
(2)
2 = −σ2

2 − 4σ2 + 16

σ
(2)
3 = σ3

2 + 4σ2
2

For the 3 multiplier spectra

σ
(3)
1 = −4σ2 + 24

σ
(3)
2 = 2σ3

2 − 4σ2
2 − 64σ2 + 192

σ
(3)
3 = −4σ4

2 − 24σ3
2 − 32σ2

2 − 256σ2 + 512

σ
(3)
4 = σ6

2 + 8σ5
2 + 16σ4

2 + 64σ3
2

For the 4 multiplier spectra

σ
(4)
1 = 2σ2

2 − 8σ2 + 80

σ
(4)
2 = −σ4

2 + 4σ3
2 + 48σ2

2 − 512σ2 + 2560

σ
(4)
3 = −4σ6

2 + 16σ5
2 + 336σ4

2 + 64σ3
2 − 768σ2

2 − 12288σ2 + 40960

σ
(4)
4 = −σ8

2 + 8σ7
2 + 240σ6

2 + 1408σ5
2 + 3584σ4

2 − 1024σ3
2

− 28672σ2
2 − 131072σ2 + 327680

σ
(4)
5 = 2σ10

2 + 24σ9
2 + 32σ8

2 − 448σ7
2 − 2560σ6

2 − 12288σ5
2

− 28672σ4
2 − 16384σ3

2 − 196608σ2
2 − 524288σ2 + 1048576

σ
(4)
6 = σ12

2 + 20σ11
2 + 160σ10

2 + 768σ9
2 + 2816σ8

2 + 7168σ7
2

+ 12288σ6
2 + 32768σ5

2 + 65536σ4
2
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For the 5 multiplier spectra

σ
(5)
1 = 8σ2

2 − 32σ2 + 224

σ
(5)
2 = 4σ5

2 − 8σ4
2 + 64σ3

2 + 1408σ2
2 − 6144σ2 + 21504

σ
(5)
3 = 24σ7

2 − 64σ6
2 − 1696σ5

2 + 256σ4
2 + 8192σ3

2 + 102400σ2
2

− 491520σ2 + 1146880

σ
(5)
4 = 6σ10

2 + 16σ9
2 − 560σ8

2 − 4096σ7
2 − 16896σ6

2 − 15360σ5
2

+ 69632σ4
2 + 393216σ3

2 + 3932160σ2
2 − 20971520σ2 + 36700160

σ
(5)
5 = 24σ12

2 + 192σ11
2 − 1888σ10

2 − 22144σ9
2 − 80384σ8

2 − 225280σ7
2

+ 221184σ6
2 + 4259840σ5

2 + 2490368σ4
2 + 8388608σ3

2 + 83886080σ2
2 − 503316480σ2

+ 704643072

σ
(5)
6 = 4σ15

2 + 56σ14
2 + 64σ13

2 − 1664σ12
2 − 5120σ11

2 + 8192σ10
2

+ 241664σ9
2 + 2146304σ8

2 + 7208960σ7
2 + 19136512σ6

2 + 77594624σ5
2

+ 20971520σ4
2 + 67108864σ3

2 + 939524096σ2
2 − 6442450944σ2 + 7516192768

σ
(5)
7 = 8σ17

2 + 224σ16
2 + 2592σ15

2 + 17280σ14
2 + 80896σ13

2

+ 272384σ12
2 + 516096σ11

2 + 294912σ10
2 − 1310720σ9

2 − 11534336σ8
2

− 29360128σ7
2 − 92274688σ6

2 − 436207616σ5
2 − 134217728σ4

2 + 4294967296σ2
2

− 34359738368σ2 + 34359738368

σ
(5)
8 = σ20

2 + 32σ19
2 + 448σ18

2 + 3840σ17
2 + 24064σ16

2 + 118784σ15
2

+ 466944σ14
2 + 1540096σ13

2 + 4521984σ12
2 + 11534336σ11

2

+ 27262976σ10
2 + 58720256σ9

2 + 83886080σ8
2 + 134217728σ7

2

+ 268435456σ6
2 + 1073741824σ5

2

For the 6 multiplier spectra

σ
(6)
1 = −2σ3

2 + 32σ2
2 − 32σ2 + 832

σ
(6)
2 = −5σ6

2 − 16σ5
2 − 160σ4

2 + 384σ3
2

+ 21248σ2
2 − 24576σ2 + 319488

σ
(6)
3 = 12σ9

2 − 160σ8
2 − 32σ7

2 + 13888σ6
2

− 11264σ5
2 − 20480σ4

2 + 679936σ3
2 + 6307840σ2

2 − 8650752σ2 + 74973184

σ
(6)
4 = 9σ12

2 + 128σ11
2 − 640σ10

2 − 5184σ9
2

+ 149504σ8
2 + 1377280σ7

2 + 2768896σ6
2 − 2162688σ5

2 + 17629184σ4
2

+ 233308160σ3
2 + 1095761920σ2

2 − 1845493760σ2 + 11995709440

σ
(6)
5 = −30σ15

2 + 192σ14
2 + 5056σ13

2 − 34432σ12
2

− 543488σ11
2 − 645120σ10

2 + 15753216σ9
2 + 119898112σ8

2

+ 271122432σ7
2 − 282329088σ6

2 + 60817408σ5
2 + 7008681984σ4

2

+ 42278584320σ3
2 + 121802588160σ2

2 − 265751101440σ2 + 1381905727488
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σ
(6)
6 = −5σ18

2 − 272σ17
2 − 992σ16

2 + 38720σ15
2

+ 217600σ14
2 − 1652736σ13

2 − 6823936σ12
2 + 117391360σ11

2

+ 1169489920σ10
2 + 5735710720σ9

2 + 15774777344σ8
2 − 5410652160σ7

2

− 120930172928σ6
2 + 84288733184σ5

2 + 1230508130304σ4
2

+ 4806068404224σ3
2 + 8787503087616σ2

2 − 27212912787456σ2 + 117922622078976

σ
(6)
7 = 40σ21

2 + 192σ20
2 − 11072σ19

2 − 107392σ18
2

+ 381440σ17
2 + 10124288σ16

2 + 71208960σ15
2 + 364904448σ14

2

+ 1820721152σ13
2 + 10465574912σ12

2 + 57792266240σ11
2

+ 205466370048σ10
2 + 345711312896σ9

2 − 429496729600σ8
2

− 5143760207872σ7
2 − 12235288084480σ6

2 + 14912126451712σ5
2

+ 128436702019584σ4
2 + 363663470886912σ3

2 + 380980779024384σ2
2

− 2031897488130048σ2 + 7547047813054464

σ
(6)
8 = −5σ24

2 + 128σ23
2 + 5376σ22

2 + 40320σ21
2

− 209152σ20
2 − 4520960σ19

2 − 24678400σ18
2 + 26427392σ17

2

+ 1790443520σ16
2 + 18180210688σ15

2 + 111976382464σ14
2

+ 500321746944σ13
2 + 1586352881664σ12

2 + 2577785683968σ11
2

− 4343285678080σ10
2 − 50117973377024σ9

2 − 204930069561344σ8
2

− 449768975237120σ7
2 − 377613524664320σ6

2 + 1400777813786624σ5
2

+ 8635564324552704σ4
2 + 18524571904770048σ3

2 + 5805421394657280σ2
2

− 111464090777419776σ2 + 362258295026614272

σ
(6)
9 = −30σ27

2 − 608σ26
2 + 3680σ25

2 + 203328σ24
2

+ 2112000σ23
2 + 6812672σ22

2 − 34160640σ21
2 − 331415552σ20

2

+ 583467008σ19
2 + 27978366976σ18

2 + 260767219712σ17
2

+ 1489485430784σ16
2 + 5960340865024σ15

2 + 16322419228672σ14
2

+ 20760798167040σ13
2 − 70250632577024σ12

2 − 600427838046208σ11
2

− 2396608931037184σ10
2 − 6581814042820608σ9

2 − 12725747579879424σ8
2

− 9143538696585216σ7
2 + 19865976090656768σ6

2 + 80712949571780608σ5
2

+ 379569006094319616σ4
2 + 616430198996336640σ3

2 − 371546969258065920σ2
2

− 4458563631096791040σ2 + 12880294934279618560

σ
(6)
10 = 9σ30

2 + 208σ29
2 − 1376σ28

2 − 104448σ27
2

− 1676288σ26
2 − 13265920σ25

2 − 25321472σ24
2 + 768065536σ23

2

+ 12048793600σ22
2 + 107183341568σ21

2 + 695179673600σ20
2

+ 3505964187648σ19
2 + 13827596877824σ18

2 + 40978014535680σ17
2

+ 75617194213376σ16
2 − 37736656404480σ15

2 − 1024353995063296σ14
2

− 5221941497561088σ13
2 − 18865901545717760σ12

2 − 54299656615624704σ11
2

− 123143103287656448σ10
2 − 204025377650114560σ9

2 − 116495455986122752σ8
2

+ 626422560669564928σ7
2 + 2017612633061982208σ6

2 + 2913828958908710912σ5
2
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+ 10565444725811183616σ4
2 + 12069647001352929280σ3

2 − 27742173704602255360σ2
2

− 126821365506753167360σ2 + 329735550317558235136

σ
(6)
11 = 12σ33

2 + 480σ32
2 + 5984σ31

2 − 21184σ30
2

− 1450496σ29
2 − 17976320σ28

2 − 92917760σ27
2 + 258981888σ26

2

+ 9218031616σ25
2 + 93886873600σ24

2 + 631098048512σ23
2 + 3144104804352σ22

2

+ 11778159280128σ21
2 + 30375820656640σ20

2 + 24305756798976σ19
2

− 271568634642432σ18
2 − 2056400276553728σ17

2 − 9574770592972800σ16
2

− 34930797219676160σ15
2 − 104753496435195904σ14

2 − 259983922434146304σ13
2

− 513977705520168960σ12
2 − 709967852194496512σ11

2

− 323625854473076736σ10
2 + 2253488663545511936σ9

2

+ 11961560610296037376σ8
2 + 35218149086037278720σ7

2

+ 62365847639826628608σ6
2 + 63122452377224871936σ5

2

+ 168326539672599658496σ4
2 + 89927877359334064128σ3

2

− 862385285445921538048σ2
2 − 2434970217729660813312σ2 + 5755384150997380104192

σ
(6)
12 = −5σ36

2 − 256σ35
2 − 5248σ34

2 − 43328σ33
2

+ 289024σ32
2 + 13088768σ31

2 + 200683520σ30
2 + 2072690688σ29

2

+ 16492789760σ28
2 + 106902847488σ27

2 + 582085509120σ26
2

+ 2718030626816σ25
2 + 11060195098624σ24

2 + 39831593811968σ23
2

+ 129399848435712σ22
2 + 389398914924544σ21

2 + 1128287908659200σ20
2

+ 3315577313558528σ19
2 + 10355475388301312σ18

2 + 34717354524934144σ17
2

+ 120526265613549568σ16
2 + 410535651579002880σ15

2 + 1318006578447646720σ14
2

+ 3913628076184961024σ13
2 + 10707026639096643584σ12

2 + 27073389159937736704σ11
2

+ 63356639557848137728σ10
2 + 136278924724231208960σ9

2 + 265892521999954083840σ8
2

+ 462033292971193925632σ7
2 + 662929865148937011200σ6

2 + 719423018874672513024σ5
2

+ 1125251388496282648576σ4
2 − 1033017668127734890496σ3

2 − 13871951543429582815232σ2
2

− 28334198897217871282176σ2 + 61390764277305387778048

σ
(6)
13 = −2σ39

2 − 128σ38
2 − 3584σ37

2 − 55040σ36
2

− 414464σ35
2 + 1410048σ34

2 + 85966848σ33
2 + 1367965696σ32

2

+ 14761328640σ31
2 + 124932849664σ30

2 + 878374289408σ29
2

+ 5292678971392σ28
2 + 27886635450368σ27

2 + 130339573858304σ26
2

+ 546423993008128σ25
2 + 2073014283796480σ24

2 + 7164593860247552σ23
2

+ 22656450702606336σ22
2 + 65680289157873664σ21

2 + 174423500973408256σ20
2

+ 423288886949576704σ19
2 + 936172578400108544σ18

2 + 1880006553822560256σ17
2

+ 3402258412245876736σ16
2 + 5424304276191051776σ15

2 + 7043629817207455744σ14
2

+ 5332261958806667264σ13
2 − 6449154666394550272σ12

2 − 43018383640642977792σ11
2

− 147862182965828124672σ10
2 − 428886799713747075072σ9

2 − 986900807943461011456σ8
2

− 1715547198854988300288σ7
2 − 885443715538058477568σ6

2 + 2951479051793528258560σ5
2
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− 1180591620717411303424σ4
2 − 18889465931478580854784σ3

2 − 94447329657392904273920σ2
2

− 151115727451828646838272σ2 + 302231454903657293676544

σ
(6)
14 = σ42

2 + 80σ41
2 + 3040σ40

2 + 73536σ39
2

+ 1281792σ38
2 + 17286144σ37

2 + 188989440σ36
2 + 1730805760σ35

2

+ 13596491776σ34
2 + 93260349440σ33

2 + 566373646336σ32
2 + 3080070365184σ31

2

+ 15142444072960σ30
2 + 67852832866304σ29

2 + 279114355310592σ28
2

+ 1060504734793728σ27
2 + 3741118378278912σ26

2 + 12304772065394688σ25
2

+ 37861270585606144σ24
2 + 109304924818374656σ23

2 + 296963797011136512σ22
2

+ 761763645955768320σ21
2 + 1851577581174784000σ20

2 + 4278982595955392512σ19
2

+ 9425752545109737472σ18
2 + 19824845559684923392σ17

2 + 39865863901483630592σ16
2

+ 76651265657845841920σ15
2 + 140224077997807763456σ14

2 + 241248824838982729728σ13
2

+ 386228704043293736960σ12
2 + 581072438321850875904σ11

2 + 903890459611768029184σ10
2

+ 1623313478486440542208σ9
2 + 2951479051793528258560σ8

2 + 4722366482869645213696σ7
2

+ 4722366482869645213696σ6
2
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