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Abstract. The article introduces Ahlfors’ generalization of Schwarz’ lemma. With
this powerful geometric tool of complex functions in one variable, we are able to
prove some theorems concerning the size of images under holomorphic mappings,
including celebrated Picard’s theorems. The article concludes with a brief insight
into the theory of Kobayashi hyperbolic complex manifolds. Although this survey
paper does not contain any new results, it may be useful for the beginner in complex
analysis to better understands the concept of hyperbolicity in complex geometry.
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1 Introduction

Since 1881, when famous French mathematician Henry Poincaré (1854–1912) connected
hyperbolic geometry on a disc with complex analysis, it had been known that the Poincaré
metric (1) has constant Gaussian curvature −1 (Definition 2). This is also why the metric
is traditionally considered hyperbolic. Surprisingly, it was not until 1938 that a Finnish
mathematician Lars V. Ahlfors (1907–1996), one of the first two Fields medalists, realized
that the Schwarz-Pick lemma (Theorem 6) was a consequence of the negative curvature of
the Poincaré metric. His result, published in the paper An extension of Schwarz’s lemma
[Ahl38], is known as Ahlfors’ lemma (Theorem 8) or the Schwarz-Pick-Ahlfors lemma in full.
According to Ahlfors himself, he published the result because the lemma provides a relatively
simple proof of Bloch’s theorem (Theorem 3) with a very good estimation of the constant B
from Bloch’s theorem. He also said that his lemma “is an almost trivial fact that anybody
who sees the need could prove it at once” [Kra04, p. 70]. In the last section of this paper we
will see the influence of Ahlfors’ lemma in the theory of hyperbolic complex manifolds.

It seems rather interesting that although Ahlfors’ lemma is comparatively old and straight-
forward, it is rarely presented in (mostly undergraduate) textbooks on complex analysis of
one variable, Ahlfors’ classic itself [Ahl79] being no exception. On the other hand, it is
included in a book by Narasimhan [NN01], who proves and uses it further to prove two
theorems of Picard (Theorems 4 and 5). That said, Narasimhan’s book does not contain a
proof of Bloch’s theorem, one of Ahlfors’ own applications, and only briefly addresses the
importance of completeness of metrics. For instance, the latter property is crucial for the
proof of the Normality theorem (Theorem 13) and consequently for the proof of the Big
Picard theorem.

There are two reasons for writing this article. The first reason is to provide a proof
of the original version of Ahlfors’ lemma and then use it to prove Bloch’s and Picard’s
theorems. Here, the word “original” means that we proved Ahlfors’ lemma for a supporting
pseudometric (Definition 3). This is presented in the way that is useful for the second reason,
which is an introduction to the theory of hyperbolic complex manifolds. Here, we introduce
the Kobayashi pseudodistance and related hyperbolic manifolds. We mentioned some basic
generalizations of Picard’s theorems to complex manifolds via hyperbolicity. The article can
thus serve as a motivation for that interesting and still developing area of complex geometry.

The article is self-contained, very little of elementary complex analysis is assumed. Sec-
tion 2 provides a background material where we state classical theorems concerning this
paper, namely Schwarz’s lemma, Bloch’s theorem and Picard’s theorems. Section 3 starts
with the definition of the Poincaré metric on a disc, we calculate the corresponding distance
and state the Schwarz-Pick lemma. In Section 4 we prove some properties of inner distances,
the most important of which is the Hopf-Rinow theorem (Theorem 7). Here we introduce
the notion of b-completeness of a domain (Definition 1), which could be understood as the
boundary of a domain being “infinitely far away” from every inner point. In Section 5 we
prove Ahlfors’ lemma and Section 6 gives some applications of it: a proof of Bloch’s theorem,
two theorems of Landau (Theorems 9 and 10), Schottky’s theorem (Theorem 11) and Pi-
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card’s theorems. Section 7 concludes the article with some properties of hyperbolic complex
manifolds, especially those connected with Picard’s theorems.

2 Preliminaries
This preliminary section is a review of some fundamental definitions and theorems that are
used in this paper. Also some historical comments are added.

Let C be the complex plane, Dr := {z ∈ C : |z| < r} an open disc with radius r > 0 and
D∗r := Dr \ {0}. Also D := D1 and D∗ := D∗1. A domain Ω ⊆ C is, by definition, an open and
connected set. The family of holomorphic functions on the domain Ω is denoted by O (Ω),
and the family of holomorphic mappings from a domain Ω1 to domain Ω2 by O (Ω1,Ω2).
Biholomorphic map is, by definition, a holomorphic map with holomorphic inverse.

Theorem 1 (Schwarz’s lemma). Assume f ∈ O (D,D) and f(0) = 0.

(a) Then |f(z)| ≤ |z| for every z ∈ D and |f ′(0)| ≤ 1.

(b) If |f ′(0)| = 1, or if |f(z0)| = |z0| for some z0 ∈ D∗, then there exists a ∈ ∂D such that
f(z) = az.

In the years 1869–1870, the German mathematician Hermann A. Schwarz (1843–1921)
was trying to offer an ultimate proof of the celebrated Riemann mapping theorem. In his
thesis (1851), Riemann proposed a theorem which stated that every simply connected domain
Ω ⊂ C is biholomorphic to D. Résumé of the second chapter of Schwarz’s lecture entitled “Zur
Theorie der Abbildung” [Sch90, pp. 109-111] is: Let f : D → f(D) ⊂ C be a biholomorphic
mapping with f(0) = 0. Assume that ρ1 (resp. ρ2) is the minimum (resp. the maximum)
distance from 0 to the boundary of f(D). Then ρ1|z| ≤ |f(z)| ≤ ρ2|z| and ρ1 ≤ |f ′(0)| ≤ ρ2.
Schwarz derived the first inequality from examining real part of log(f(z)/z) and the second
inequality from the Cauchy integral representation theorem for f ′(0). It is clear that part (a)
of Theorem 1 follows from this result. The present form, proof and name of the lemma were
written in 1912 by a Greek-German mathematician Constantin Carathéodory (1873–
1950). He popularized the lemma through various problems of conformal mappings. For
proof of the lemma, Carathéodory used the maximum principle on an auxiliary function
f(z)/z. Since f(0) = 0, this function is holomorphic on D.

Schwarz’s lemma could be very easily reformulated for discs of arbitrary radii. Supposing
that f ∈ O (Dr1 ,Dr2), where r1, r2 > 0 and f(0) = 0. Then the mapping F (z) := r−1

2 f(r1z)
meets the conditions of the lemma, so we get |F (z)| ≤ |z| for z ∈ D. Then |f(z)| ≤ (r2/r1)|z|
for z ∈ Dr1 . Let f be the entire function, i.e. holomorphic on C such that f(C) ⊂ Dr2 for a
fixed r2 > 0. The radius r1 can be arbitrary large, so we get f(z) ≡ 0. This is the content
of the following well-known theorem.

Theorem 2 (Liouville). Every bounded entire function is constant.
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The connection between Schwarz’s lemma and Liouville’s theorem is a wonderful and
simple example of Bloch’s principle: nihil est in infinito quod non prius fuerit in finito,
which can be translated as there is nothing in the infinite which was not first in the finite.
In consequence, for a global result like Liouville’s, there must be a more powerful local
result, such as Schwarz’s. A French mathematician André Bloch (1893–1948) published
his principle in the paper in 1926. Let Dr(z0) := {z ∈ C : |z − z0| < r} be an open disc with
radius r > 0 and centre z0 ∈ C. We denote by A (Ω) the set of all continuous functions on
Ω which are holomorphic on Ω. In 1924, Bloch proved

Theorem 3. There is a universal constant B > 0 with the property that for every value of 0 <
R < B, every function f ∈ A (D) with |f ′(0)| = 1 maps a domain Ω ⊂ D biholomorphically
onto DR(z0) for some z0 ∈ f(D).

We have named the discs from the theorem simple (“schlicht”) discs. Bloch’s theorem
is interesting because it guarantees the existence of simple discs with a fixed radius in the
image of “quite a large family” of holomorphic functions on a disc. In accordance with his
principle, Bloch derived the following celebrated global result from his “local” theorem.

Theorem 4 (The Little Picard Theorem). Any entire function whose range omits at least
two distinct values is a constant.

The above theorem is a remarkable generalization of Liouville’s theorem. It is simple
to find entire functions whose range is the entire C; nonconstant polynomials, for instance.
The exponential function is an example of an entire function whose range omits only one
value, namely zero. But there does not exist a nonconstant entire function whose range
omits 0 and 1. The latter statement is actually equivalent to the Little Picard theorem since
(b − a)z + a is a biholomorphic mapping between C \ {0, 1} and C \ {a, b}, where a 6= b.
Theorem 4 was proved in 1879 by Charles É. Picard (1856–1941), by using arguments
based on the modular function. A modular function λ(z) is a covering map from the upper
halfplane H := {z ∈ C : =(z) > 0} onto C\{0, 1}. The function g(z) := (i−z)(i+z)−1 maps
H biholomorphically onto D. If f is an entire function whose range omits 0 and 1, then f can
be lifted by λ to f̃ ∈ O (C,H), i.e. λ ◦ f̃ = f . Since g ◦ f̃ is constant according to Liouville’s
theorem, f̃ is constant and therefore f is also constant. The nontrivial and technically
challenging part of the proof is the construction of such λ. One can find a construction,
where Theorem 4 is proved in that way [Ahl79, §7.3.4]. This is why mathematicians searched
for “elementary” proofs that avoid modular function.

The name of Theorem 4 suggests that a similar theorem named after Picard exists.

Theorem 5 (The Big Picard Theorem). In the neighborhood of an isolated essential singu-
larity a holomorphic function takes every value in C infinitely often with no more than one
exception.

Similarly to the relation between Liouville’s theorem and the Little Picard theorem, there
is a weaker and more accessible theorem in the case of the Big Picard theorem. We know that
a holomorphic function on Ω \ {a} has in a one and only one type of isolated singularities:
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removable singularity, pole and essential singularity. In the latter case, the limit limz→a |f(z)|
does not exist and this happens if and only if the image of the neighborhood of the point a
is dense in C. This proposition is also known as the Sohocki-Casorati-Weierstrass theorem
[BG91, Proposition 2.4.4]. Theorem 5 can be reformulated as a meromorphic extension: if
a holomorphic function in the neighborhood of an isolated essential singularity omits two
distinct values, then the singularity is removable or it is a pole. In this case, a function
becomes meromorphic.

3 The Poincaré metric on a disc
In this section the Poincaré metric on a disc is introduced and the corresponding distance is
calculated in order to apply the Schwarz-Pick lemma.

Introduce R+ := {x ∈ R : x > 0} and R+
0 := R+ ∪ {0}. The Poincaré metric on Dr is

dρ2
r := 4r2|dz|2

(r2 − |z|2)2 . (1)

This is a form of a Hermitian pseudometric, which is on domain Ω ⊆ C defined by

ds2
Ω := 2λ(z)|dz|2 (2)

where λ(z) ∈ C2(Ω,R+
0 ) is twice real-differentiable function with λ(z) = λ(z) and Z(λ) :=

{z ∈ Ω: λ(z) = 0} is a discrete set. If Z(λ) = ∅, then ds2
Ω is said to be a Hermitian metric.

We can observe that (1) is really a Hermitian metric. For the sake of simplicity, let us say
dρ2 := dρ2

1.
Let Ω1 and Ω2 be two domains on C and f ∈ O (Ω1,Ω2). The pullback of arbitrary

pseudometric ds2
Ω2 is defined by f ∗(ds2

Ω2) := 2λ(f(z))|f ′(z)|2|dz|2, which is a pseudometric
on Ω1. Poincaré noticed that for the Möbius transformation

ϕa(z) := z − a
1− āz ,

where a ∈ D, there is ϕa ∈ Aut (D) and ϕ∗a(dρ2) = dρ2. By Aut (D) a family of holomorphic
automorphisms of a disc is denoted. Therefore Möbius transformations are isometries for
the Poincaré metric. In 1884 Poincaré proved that

Aut (D) = {eiaϕb(z) : a ∈ R, b ∈ D}.

This follows from Schwarz’s lemma [BG91, Examples 2.3.12].
A pseudodistance can always be assigned to a Hermitian pseudometric. The process is

described in what follows. A pseudodistance differs from the distance in metric spaces only
in that the distance between two different points might be zero.

Let Ω ⊆ C be an arbitrary domain and x, y ∈ Ω arbitrary points. The mapping γ : [0, 1]→
Ω is called Cn-path from x to y for n ≥ 0 if γ(t) is n-times differentiable mapping and
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γ(0) = x, γ(1) = y. In the case n = 0 we speak about C-paths. The concatenation of
Cn-paths γ1 from x to y and γ2 from y to z is C-path

(γ1 ∗ γ2)(t) :=
{

γ1(2t), t ∈ [0, 1/2]
γ2(2t− 1), t ∈ [1/2, 1]

from x to z. Piecewise Cn-path γ from x to y is γ := γ1∗· · ·∗γk where γ1, . . . , γk are Cn-paths
and γ(0) = x, γ(1) = y.

Assume that domain Ω is equipped with a Hermitian pseudometric ds2
Ω. Let γ : [0, 1]→ Ω

be a piecewise C1-path from x to y. The length of γ is defined by

Lds2Ω(γ) :=
∫ 1

0

√
2(λ ◦ γ)|γ̇|dt.

The pseudodistance between the points is defined by dΩ(x, y) := inf Lds2Ω(γ), where the
infimum goes through all piecewise C1-paths γ from x to y.

Let domains Ω1,Ω2 ⊆ C be equipped with pseudometrics ds2
Ω1 = 2λ1(z)|dz|2 and ds2

Ω2 =
2λ2(z)|dz|2. Let there be points x, y ∈ Ω1, f ∈ O (Ω1,Ω2) and a piecewise C1-path γ : [0, 1]→
Ω1 from x to y. Assume that f ∗(ds2

Ω2) ≤ ds2
Ω1 . Then f(γ) is a piecewise C1-path from f(x)

to f(y). We have

dΩ2(f(x), f(y)) ≤
∫ 1

0

√
2(λ2 ◦ f ◦ γ)|f ′(γ)||γ̇|dt ≤

∫ 1

0

√
2(λ1 ◦ γ)|γ̇|dt. (3)

Because this is valid for every such path, it follows

dΩ2(f(x), f(y)) ≤ dΩ1(x, y). (4)

If f ∈ O (Ω1,Ω2) is a biholomorphic mapping and f is an isometry for pseudometrics i.e.
f ∗(ds2

Ω2) = ds2
Ω1 , then we can, with similar inequality as (3), but on inverse mapping f−1,

obtain dΩ2(f(x), f(y)) = dΩ1(x, y). In this case f is also an isometry for the induced pseu-
dodistances.

To the Poincaré metric on a disc we can explicitly write down the distance function
between arbitrary points p, q ∈ D. We denote it with ρ(p, q) and call it the Poincaré distance.
The proposition below will show that it is expressible with an area hyperbolic tangent

artanh (x) := 1
2 log 1 + x

1− x, x ∈ (−1, 1).

This function is increasing with zero at x = 0. It is also limx→−1 artanh(x) = −∞ and
limx→1 artanh(x) =∞.

Proposition 1. For arbitrary points p, q ∈ D, the Poincaré distance is

ρ(p, q) = log |1− p̄q|+ |p− q|
|1− p̄q| − |p− q| = log 1 + |ϕp(q)|

1− |ϕp(q)|
= 2 artanh |ϕp(q)|. (5)
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Proof. The second and third equalities are clear from the definitions, so the first equality
remains to be proved.

Bearing in mind that rotations and Möbius transformations are isometries for the Poincaré
metric, it is sufficient to show that

ρ(0, a) = log 1 + a

1− a (6)

for every a ∈ [0, 1). Because

ρ

(
0,
∣∣∣∣∣ p− q1− p̄q

∣∣∣∣∣
)

= ρ

(
ϕ−p(0), ϕ−p

(
p− q
1− p̄q

))
= ρ(p, q),

equation (5) follows from (6). Let γ(t) := x(t) + iy(t) be a piecewise C1-path from 0 to a
and γ̄(t) := at. Then

Ldρ2(γ) =
∫ 1

0

2
√
ẋ2(t) + ẏ2(t)

1− x2(t)− y2(t)dt ≥
∫ 1

0

2ẋ(t)dt
1− x2(t)

= log 1 + x(t)
1− x(t)

∣∣∣∣t=1

t=0
= log 1 + a

1− a = Ldρ2(γ̄).

The inequality above becomes equality if and only if y ≡ 0. If Ldρ2(γ) = ρ(0, a), then
Ldρ2(γ̄) = ρ(0, a), which is equivalent to (6). �

The above proof makes it evident that the shortest path in the Poincaré metric from 0
to a ∈ [0, 1) is a chord between those points. We call the shortest path in arbitrary metric
a geodesic. Using a proper rotation and the Möbius transformation, we map this chord
into the unique geodesic between arbitrary points on a disc. On Figure 1a we observe some
geodesics through 0 and on Figure 1b an action of the Möbius transformation on previous
geodesics. For a general domain and metric on it, the geodesic does not always exist; think
about a nonconvex domain, equipped with the Euclidean metric. If it exists, it may not be
the only one. Some of these possible domains and metrics are discussed in [KL07].

In 1916, Georg A. Pick (1859–1942) connected Schwarz’s lemma and the Poincaré
metric in the so-called Schwarz-Pick lemma. Observe that assumption about centrality
condition f(0) = 0 is not necessary.

Theorem 6 (The Schwarz-Pick Lemma). Assume f ∈ O (D,D).

(a) Then
ρ(f(p), f(q)) ≤ ρ(p, q) (7)

for every p, q ∈ D and
|f ′(z)| ≤ 1− |f(z)|2

1− |z|2 (8)

for every z ∈ D.
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(b) If p 6= q exist such that the equality in (7) is valid or such z0 exists that the equality in
(8) is valid, then f ∈ Aut (D).

A sketch of the proof for the Schwarz-Pick lemma may be as follows. Choose arbitrary
f ∈ O (D,D) and arbitrary points p, q ∈ D. Define F (z) := (ϕf(p) ◦ f ◦ ϕ−p)(z). Then
F ∈ O (D,D), F (0) = 0 and

F ′(0) = f ′(p)(1− |p|2)
1− |f(p)|2 .

According to Schwarz’s lemma we have |ϕf(p)(f(z))| ≤ |ϕp(z)|. This is equivalent to (7). If
f(0) = 0, then at (7) we get ρ(0, f(z)) ≤ ρ(0, z), which is equivalent to |f(z)| ≤ |z| and at
(8) we get |f ′(0)| ≤ 1. Therefore a part (a) of Schwarz’s lemma is equivalent to a part (a) of
the Schwarz-Pick lemma. To prove that parts (b) of both lemmas are equivalent, note that
if f ∈ Aut (D) and f(0) = 0, then f is rotation.

Figure 1a: Unit disc with geodesics through 0 and
some balls with center 0 in the Poincaré metric.

Figure 1b: Unit disc with geodesics through (1 +
i)/2 and balls with center (1 + i)/2 in the Poincaré
metric with the same radii as in Figure 1a.

4 Inner distances
What makes the Poincaré distance exceptional? We could, for example, introduce µ(p, q) :=
|ϕq(p)|, which is a distance function on D with all the properties as ρ in the Schwarz-Pick
lemma. This distance function is called the Möbius distance. But there is a crucial difference
between ρ and µ: in the Poincaré distance the boundary is infinitely far away from every point
and the Möbius distance seemingly does not have that property. On Figure 1a six concentric
discs with a center 0 can be observed. These are balls in the Poincaré distance with radii
0.5, 1, 1.5, 2, 2.5, 3. With the increasing of radii, circles are dense in the neighborhood of
the boundary of a disc. This is even more evident if we choose the center of balls near
the boundary, as in Figure 1b. It can be observed that closed balls in the Poincaré metric
are compact. From the explicit expression for ρ we can prove that every Cauchy sequence
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with respect to ρ is convergent in D. We say that (D, ρ) is a complete metric space. Is
there a connection among the infiniteness of a boundary, compactness of closed balls and
completeness of a metric space? This question is dealt with in this section.

Let γ : [0, 1]→ Ω be a piecewise Cn-path from x to y and δ := {0 = t0 < t1 < · · · < tk = 1}
partition of [0, 1] on k pieces. Length of γ in space (Ω, dΩ) is defined by

LdΩ(γ) := sup
δ

k∑
n=1

dΩ(γ(tn−1), γ(tn)).

We call d iΩ(x, y) := inf LdΩ(γ), where the infimum goes through all piecewise Cn-paths γ from
x to y, inner pseudodistance. It is not difficult to prove that this is indeed a pseudodistance.
Because it is always dΩ(x, y) ≤ LdΩ(γ), it follows dΩ(x, y) ≤ d iΩ(x, y). If the opposite
inequality is valid, then we call it dΩ inner. In that case we have dΩ = d iΩ.

Proposition 2. Let dΩ(p, q) be a pseudodistance, generated with (2). Then dΩ is inner.

Remark 1. The proof of this fact is very simple. Let γ : [0, 1]→ Ω be a piecewise C1-path
from p to q. Because we have

k∑
n=1

dΩ(γ(tn−1), γ(tn)) ≤
k∑

n=1

∫ tn

tn−1

√
2(λ ◦ γ)|γ̇|dt = Lds2Ω(γ)

for every partition δ, it follows LdΩ(γ) ≤ Lds2Ω(γ). Therefore d iΩ(p, q) ≤ dΩ(p, q).

We denote the ball with the center x ∈ Ω and its radius r > 0 with BdΩ(x, r). The closed
ball will be BdΩ(x, r).

Proposition 3. Assume that dΩ is a continuous inner distance. Then dΩ is equivalent to
the Euclidean topology on Ω.

Proof. Choose an arbitrary x ∈ Ω. Assume dΩ : {x} × Ω→ [0,∞) is a continuous function.
The set [0, r) ⊂ [0,∞) is open. Because BdΩ(x, r) =

(
pr2 ◦ d−1

Ω

)
([0, r)) where pr2 is a

projection to the second component, every dΩ-ball is open in the Euclidean topology.
Conversely, we will prove that every open set in Ω is open on dΩ. Let U ⊂ Ω be an

arbitrary neighborhood of a point x ∈ Ω. We must show that r > 0 exists such that
BdΩ(x, r) ⊂ U . Choose a relatively compact neighborhood U ′ ⊂ U of a point x. Define

r := dΩ (x, ∂U ′) = inf
y∈∂U ′

dΩ(x, y).

Because dΩ is an inner distance, for every point y ∈ BdΩ(x, r) exists a piecewise Cn-path γ
from x to y such that LdΩ(γ) < r. This means that γ ⊂ BdΩ(x, r). Hence BdΩ(x, r) ⊂ U ′,
because contrary, for y ∈ U \ U ′ there will be x′ ∈ ∂U ′ such that r + dΩ(x′, y) ≤ r. As this
is impossible, the proposition is thus proved. �



Page 122 RHIT Undergrad. Math. J., Vol. 16, No. 2

Remember that a complete metric space (X, dΩ) means that every Cauchy sequence
converges in dΩ. If there is a continuous inner distance, then compactness of closed balls
characterizes completeness of a metric space.
Theorem 7 (Hopf-Rinow). Assume that dΩ is a continuous inner distance. Then (Ω, dΩ) is
a complete metric space if and only if every closed ball BdΩ(x, r) is compact.
Proof. The easy part of the proof is an implication from compactness of closed balls to
completeness of a space and is valid without the assumption of innerness. Let every closed
dΩ-ball be compact. Because in a metric space every Cauchy sequence has one accumulation
point at most and in a compact space every sequence has one accumulation point at least,
it follows that (Ω, dΩ) is complete.

Let (Ω, dΩ) be a complete space. Fix x0 ∈ Ω. Then r > 0 exists such that BdΩ(x0, r) is
relatively compact. If we prove that this is true for all r > 0, our goal has been accomplished.
Assuming the contrary, set

r0 := sup
{
r : BdΩ(x0, r) is compact

}
.

Then the set BdΩ(x0, r0 − ε) is compact for all ε > 0. Therefore a sequence {yi}ni=1 ⊂
BdΩ(x0, r0 − ε) exists such that

BdΩ(x0, r0 − ε) ⊂
n⋃
i=1

BdΩ(yi, ε).

We will demonstrate that {BdΩ(yi, 2ε)}ni=1 is an open cover of BdΩ(x0, r0). Let us take
arbitrary

x ∈ BdΩ(x0, r0) \BdΩ(x0, r0 − ε).
By innerness a piecewise Cn-path γ exists from x0 to x such that LdΩ(γ) < r0. Then t0 ∈ (0, 1)
and yj ∈ {yi}ni=1 exist such that γ(t0) ∈ ∂BdΩ(x0, r0 − ε) and γ(t0) ∈ BdΩ(yj, ε). Then we
have

LdΩ

(
γ|[t0,1]

)
= LdΩ(γ)− LdΩ

(
γ|[0,t0]

)
< r0 − (r0 − ε) = ε.

This means that dΩ(γ(t0), x) < ε and dΩ(x, yj) < 2ε. It follows

BdΩ(x0, r0) ⊂
n⋃
i=1

BdΩ(yi, 2ε).

Then n1 ∈ N, 1 ≤ n1 ≤ n exists such that BdΩ(yn1 , r0/2) is not compact (we take ε = r0/2).
Set

r1 := sup{r : BdΩ(yn1 , r) is compact}.
We inductively continue this process as above. This is how a sequence of points ynk

∈
BdΩ(ynk−1 , r021−k) is obtained, where BdΩ(ynk

, r02−k) is not compact for every k ∈ N. The
nonconvergent sequence {ynk

} is Cauchy, which is in contradiction with the assumption of
the completeness of domain Ω. The theorem is therefore proved. �
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Let there be a domain Ω ⊆ C and let us choose an arbitrary point x ∈ Ω. The mapping
γ : [0, 1)→ Ω is a piecewise Cn-path from x to y ∈ ∂Ω∪{∞} if for every t0 ∈ (0, 1) mapping
γ|[0,t0] is a Cn-path, γ(0) = x and limt→1 γ(t) = y. In the introduction we announced the
definition of b-completeness of a domain.

Definition 1. Domain Ω is b-complete with respect to the distance dΩ if for arbitrary
points x ∈ Ω, y ∈ ∂Ω∪{∞} and for an arbitrary piecewise Cn-path γ from x to y, it follows
limt→1 LdΩ

(
γ|[0,t]

)
=∞.

Letter “b” stands for “boundary”. Intuitively speaking, (Ω, dΩ) is b-complete if and only
if the boundary is “infinitely far away” from every inner point.

Corollary 1. Assume that dΩ is a continuous inner distance. Then (Ω, dΩ) is a complete
metric space if and only if (Ω, dΩ) is b-complete.

Proof. Assume that Ω is not b-complete. Then there exists a piecewise Cn-path γ : [0, 1)→ Ω
from x ∈ Ω to y ∈ ∂Ω such that limt→1 LdΩ(γ|[0,t]) = r for some r > 0. For every sequence
{yn} ⊂ γ([0, 1)), where yn → y, it follows that dΩ(x, yn) ≤ r for every n ∈ N. Because the
closed ball BdΩ(x, r) is not compact, Theorem 7 guarantees that (Ω, dΩ) is not complete.

Assume that Ω is not a complete metric space. Then a Cauchy sequence {xi}∞i=1 ⊂ Ω
exists with the limit x ∈ ∂Ω. Take arbitrary ε ∈ (0, 1). Since the sequence is Cauchy, then a
subsequence {ki} ⊂ N exists such that dΩ(xki

, xki+1) < εi. Because dΩ is an inner distance,
there exist piecewise Cn-paths γi with γi(0) = xki

and γi(1) = xki+1 such that

LdΩ(γi) = dΩ(xki
, xki+1) + εi < 2εi.

Define a piecewise Cn-path γ : [0, 1) → Ω from xk1 to x with γ(t) := γi(2i(t − 1) + 2) for
t ∈ [1 − 21−i, 1 − 2−i]. Take arbitrary t0 ∈ (0, 1). Then j ∈ N exists such that t0 ∈
[1− 21−j, 1− 2−j]. Therefore

LdΩ

(
γ|[0,t0]

)
< 2(ε+ ε2 + · · ·+ εj) < 2ε

1− ε

for j > 1. Since limt→1 LdΩ

(
γ|[0,t]

)
<∞, the domain Ω is not b-complete. �

5 Ahlfors’ generalization of the Schwarz-Pick lemma
As mentioned in the introduction, Ahlfors’ generalization was based on curvature.

Definition 2. Gaussian curvature Kds2Ω
of a pseudometric (2) is defined by

Kds2Ω
(z) := −1

λ

∂2

∂z∂z̄
log λ(z) (9)

for z ∈ Ω \ Z(λ) and −∞ for the rest of the points.
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A simple calculation shows Kdρ2 ≡ −1 for the Poincaré metric (1). It is worth mentioning
that this curvature is indeed connected to Gaussian curvature of Riemannian metric on
surfaces in real differential geometry. A Hermitian metric 2λ(z)|dz|2 is a complex analogue
of a Riemannian metric E(x, y)dx2 + 2F (x, y)dxdy + G(x, y)dy2 in real world. Since z =
x + iy, it is easy to accept that F (x, y) = 0 and E(x, y) = G(x, y) = 2λ(x, y), so ds2 =
2λ(x, y)(dx2 + dy2). Let there be u ∈ C2(Ω,R+), where Ω ⊂ C. Then

∂2

∂z∂z̄
log u = 1

4

(
∂2

∂x2 + ∂2

∂y2

)
log u =

u(uxx + uyy)− (u2
x + u2

y)
4u2 . (10)

If Gaussian curvature of ds2 is calculated (see e.g. [Pre10, Corollary 10.2.3]), we get Kds2Ω
=

(2λ)−2Kds2 . The curvatures seem to be different, nevertheless, the sign does not change.
An important property of Gaussian curvature is invariance on the pullback, which ex-

plicitly means that for an arbitrary f ∈ O (Ω1,Ω2) there is

Kds2Ω1
(f(z)) = Kds2Ω2

(z)

where ds2
Ω2 is an arbitrary Hermitian pseudometric on Ω2 and ds2

Ω1
:= f ∗

(
ds2

Ω2

)
. This can

be easily seen from (9), using the chain rule and fz̄ ≡ 0 since f is holomorphic.
We wish to have weaker assumptions for the function λ(z). Assume that λ(z) is only

continuous function. Then ds2
Ω = 2λ|dz|2 is a continuous Hermitian metric.

Definition 3. A pseudometric ds2
supp = 2λsupp(z)|dz|2 is supporting pseudometric for ds2 at

z0 ∈ Ω if there is a neighborhood U 3 z0 in Ω such that λsupp ∈ C2(U,R+
0 ) and λsupp|U ≤ λ|U

with equality at z0.

What seems particularly noteworthy is that we do not need a supporting pseudometric,
defined on the whole domain Ω. When a supporting pseudometric exists for a continuous
pseudometric, this is defined as local existence, which can change from point to point.

Theorem 8 (Ahlfors’ lemma). Let Ω be a domain with a continuous Hermitian pseudometric
ds2

Ω, for which a supporting pseudometric ds2
supp exists. Assume that Kds2supp|Ω ≤ L for some

L < 0. Then for every f ∈ O (D,Ω) we have

f ∗(ds2
Ω) ≤ |L|−1dρ2 (11)

where dρ2 is the Poincaré metric (1).

Proof. By assumptions there is a continuous Hermitian pseudometric ds2
Ω = 2λ|dz|2. Define

ds2 := |L|f ∗(ds2
Ω) = 2|L|λ(f) · |f ′|2 · |dz|2.

Then ds2 is a continuous Hermitian pseudometric on D. Define λ1 := |L|λ(f) · |f ′|2. The
equation (11) is equivalent to ds2 ≤ dρ2.
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For every r ∈ R+ define µr(z) := 2r2(r2−|z|2)−2 on Dr. Hence dρ2 = 2µ1(z)|dz|2. Define
the function ur(z) := λ1(z)µ−1

r (z). Hence ds2 = urdρ
2
r. If we show that u1 ≤ 1 on D, then

ds2 ≤ dρ2.
Let us take arbitrary r′ ∈ (0, 1). If we show that ur′(z) ≤ 1 for every z ∈ Dr′ , then

u1 ≤ 1 on D, because with r′ → 1 and fixed z0 ∈ Dr′ it follows ur′(z0)→ u1(z0). Since λ1 is
bounded on Dr′ , from |z| → r′ follows ur′(z)→ 0. Function ur′ is continuous, hence z0 ∈ Dr′

exists such that max ur′ = ur′(z0).
Let there be a supporting pseudometric ds2

supp for ds2
Ω at f(z0). Then ds′2supp := |L|f ∗(ds2

supp)
is a supporting pseudometric for ds2 at z0, whose curvature is −1 at most. Then a neigh-
borhood U 3 z0 and λ′supp(z) ∈ C2(U,R+

0 ) exist such that λ′supp|U ≤ λ1|U with equality in z0.
Define function

vr(z) :=
λ′supp(z)
µ−1
r (z) =

λ′supp(z)
λ1(z) ur(z).

Hence maxz∈U vr′ = ur′(z0).
Although what follows is related to the theory of real functions, it is a crucial element

of the proof. Let us have u ∈ C2(Ω,R+), where Ω ⊂ C is a domain. Assume that a
function u reaches its maximum at (x0, y0) ∈ Ω. Because this point is singular, it follows
ux(x0, y0) = uy(x0, y0) = 0. But the point is maximum, so uxx(x0, y0) ≤ 0 and uyy(x0, y0) ≤ 0.
By equation (10) we have

∂2 log u
∂z∂z̄

∣∣∣∣
z=x0+iy0

≤ 0.

Remember that the maximum of function vr′|U is reached at point z0. Hence

0 ≥ ∂2 log vr′|U
∂z∂z̄

∣∣∣∣
z0

=
∂2 log λ′supp

∂z∂z̄

∣∣∣∣
z0

− ∂2 log µr′
∂z∂z̄

∣∣∣∣
z0

= −λ′supp(z0)Kds′2supp(z)− µr′(z0)

= µr′(z0)
(
−vr′(z0)Kds′2supp(z)− 1

)
≥ µr′(z0)(vr′(z0)− 1).

We get vr′(z0) ≤ 1 and ur′(z0) ≤ 1. Since z0 is the maximum of ur′ , it follows ur′(z) ≤ 1 on
Dr′ . �

In the introduction we promised that Theorem 8 is original version of Ahlfors’ lemma.
However, Ahlfors proved his lemma for Riemann surfaces. These are one dimensional com-
plex manifolds, so the proof is essentially the same as one above. Under originality we mean
the concept of supporting pseudometric. Most authors prove Ahlfors’ lemma without it,
because for most applications twice-differentiable Hermitian pseudometrics would suffice.

Assume that L = −1 in Ahlfors’ lemma. Then we have f ∗(ds2
Ω) ≤ dρ2. Therefore we can

use inequality (4) and get
dΩ(f(p), f(q)) ≤ ρ(p, q). (12)

In the case of domain (D, dρ2), we get (7) of the Schwarz-Pick lemma. Inequality (8) is even
more easily accessible; in (11) a proper metrics is put. It is a theorem from 1962 by M. Heins
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that in the case of equality in (11) for one point only, it follows that there is equality on the
whole domain Ω. This can be considered as the generalization of part (b) of the Schwarz-
Pick lemma. Interested reader can find simplified proof due to D. Minda in the book [JP13,
Proposition 1.2.1].

6 Applications
In this section we prove the theorems mentioned in the introduction. Firstly, we will prove
Bloch’s theorem and a familiar theorem due to Landau, which drops out the assumption
about simple discs. Bloch’s and Landau’s theorems are also Ahlfors’ examples of the ap-
plications of his lemma. Next, a complete Hermitian metric is constructed, i.e. an induced
distance generates a complete metric, on domain C \ {0, 1}, which satisfies the assumptions
of Ahlfors’ lemma. From that point, we are able to provide a proof of the Little Picard
theorem. We use the nature of completeness of a space in studying the size of an image of
a disc under a holomorphic mapping, which misses two distinct points. This result, named
after Schottky is crucial for proving the Big Picard theorem.

6.1 The Bloch Theorem
Let there be B := {f ∈ A (D) : |f ′(0)| = 1} where A (D) is the set of all continuous functions
on D which are holomorphic on D. Remember that Bloch’s theorem (Theorem 3) guarantees
the existence of simple discs with a fixed radius in the image f(D), where f ∈ B. Let B(f)
be a supremum of all radii of simple discs in f(D). We want to show that a constant B > 0
exists such that B(f) ≥ B for every f ∈ B.

Proof of Bloch’s theorem. By S := {z ∈ D : f ′(z) = 0} we denote a set of singular points.
According to the open mapping theorem, Ω := f(D) is a domain and f(D) ⊆ Ω ⊂ C.
For every point z ∈ Ω there is a number ρ(z) such that Dρ(z)(z) is the largest simple disc.
Therefore B(f) = supz∈Ω ρ(z) and B(f) <∞. On D we define a metric

λ(z) := A2|f ′(z)|2

2ρ(f(z)) (A2 − ρ(f(z)))2 , (13)

where A is a constant, which satisfies A2 > B(f). Since ρ is a continuous function and
ρ(f(z)) = 0 if and only if z ∈ S, then (13) is a continuous Hermitian metric at nonsingular
points. We must care only at singular points. Take arbitrary z0 ∈ S. We know that there
is a neighborhood U ′ 3 z0 on D, n ≥ 1 and biholomorphic function ϕ(z) on U ′ such that
f(z) = f(z0) +ϕn(z) on U ′ (see e.g. [BG91, Corollary 2.3.7]). Then there is a neighborhood
U ⊂ U ′ of point z0 on D such that ρ(f(z)) = |f(z) − f(z0)| on U . Then the equation (13)
can be rewritten as

λ(z) = A2n2|ϕ(z)|n−2|ϕ′(z)|2
2(A2 − |ϕ(z)|n)2
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for z ∈ U . Therefore (13) is a Hermitian pseudometric in the neighborhoods of singular
points.

If we want to use Ahlfors’ lemma, we need a supporting pseudometric for (13). Take
an arbitrary nonsingular point z0 ∈ D \ S. Then s0 ∈ D exists such that the boundary of
Dρ(f(z0))(f(z0)) contains a point f(s0). In the neighborhood U of a point z0 it is ρ(f(z)) ≤
|f(z)− f(s0)|. On U define a Hermitian metric

λsupp(z) := A2|f ′(z)|2

2|f(z)− f(s0)| (A2 − |f(z)− f(s0)|)2 . (14)

The inequality λsupp(z) ≤ λ(z) will be satisfied on U if x(A2 − x)2 is an increasing function
on [0,B(f)]. Since λsupp(z0) = λ(z0), metric (14), which has constant curvature −1, will
be supporting for (13) at z0. A quick calculation shows that the function is increasing on
[0, A2/3]. Therefore the metric is supporting if A2 > 3B(f).

Let there be f(0) = z0. By assumption |f ′(0)| = 1, the upper bounds combined with
Ahlfors’ lemma give

3B(f) < A2 ≤ 4ρ(z0)(A2 − ρ(z0))2 ≤ 4B(f)(A2 − B(f))2.

Pushing A2 toward 3B(f), we get B(f) ≥
√

3/4. Hence B ≥
√

3/4. �

Edmund G. H. Landau (1877–1938) dropped the assumption about simple discs in
Bloch’s theorem.

Theorem 9. Assume f ∈ A (D) and |f ′(0)| = 1. Then a universal constant L > 0 exists
such that in the image f(D) a disc with the radius R ≥ L exists.

Proof. Proving this theorem is very similar to proving Bloch’s theorem. Let there be a
real and positive function ρ(z) such that Dρ(z)(z) is the largest disc in Ω := f(D). Define
L(f) := supz∈Ω ρ(z). Since we are not dealing with singular points, we take metrics

λ(z) := 1
2

(
ρ(z) log C

ρ(z)

)−2

and λsupp(z) := 1
2

(
|z − s0| log C

|z − s0|

)−2

on Ω. The metric λsupp(z) is defined on a neighborhood U of a point z0 ∈ Ω and s0 ∈
∂Dρ(z0)(z0) ∩ ∂Ω where it has constant curvature −1. Therefore λsupp will be supporting for
λ at z0 if the inequality λsupp(z) ≤ λ(z) is satisfied on U . This will be true if x log(Cx−1) is
an increasing function on [0,L(f)]. A function is increasing for ex < C, therefore the metric
is supporting if eL < C.

Assume f(0) = z0. According to Ahlfors’ lemma it follows

1 ≤
(

2ρ(z0) log C

ρ(z0)

)2

≤
(

2L(f) log C

L(f)

)2

.

Pushing C toward eL(f), we get L(f) ≥ 1/2 and hence L ≥ 1/2. �
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The numbers B and L are called the Bloch and Landau constants. It follows from the
definitions that B ≤ L. Landau simplified Bloch’s proof in 1926 and estimated B ≥ 1/16. It
is possible to prove Bloch’s theorem with bound B ≥

√
3/4 without Ahlfors’ lemma [Rem98,

§10.1.4]. Standard proof of Landau’s theorem with bound L ≥ 1/16 could be found in
Berenstein and Gay’s textbook [BG91, Proposition 2.7.10]. The exact values of the Bloch
and Landau constants are not known [Rem98, §10.1.5].

6.2 The Little Picard Theorem
The Little Picard theorem (Theorem 4) deals with domain C \ {0, 1}. Therefore, the ques-
tion whether a Hermitian metric with curvature, bounded with negative constant exists, is
reasonable. If this is so, we can use Ahlfors’ lemma.

Proof of the Little Picard theorem. Introduce C∗∗ := C \ {0, 1}. Define

A1(z) := log C|z|2

1 + |z|2 , A2(z) := log C|z − 1|2
2(1 + |z|2) , A3(z) := log C

1 + |z|2

for a constant C > 9, which will be determined later. The expressions are well-defined on
C∗∗. We will prove that for

λC∗∗(z) := 4(1 + |z|2)
|z|2|z − 1|2A2

1(z)A2
2(z)A2

3(z) (15)

the metric ds2
C∗∗ := 2λC∗∗(z)|dz|2 is a complete Hermitian metric on C∗∗ with curvature

K(z) := Kds2C∗∗
(z) < −1.

From (15) we can see that in the neighborhood of a point a ∈ {0, 1} it is

λC∗∗(z) > A

|z − a|2 log2
(√

C|z − a|
)

for some constant A > 0 and

λC∗∗(z) > B

|z|2 log2
(√

2/C|z|
) (16)

for large |z| and some constantB > 0. Let there be a polar presentation γ(t) = r(t) exp (iϕ(t))+
a of a piecewise C1-path γ : [0, 1)→ C∗∗ from γ(0) to limt→1 γ(t) ∈ {0, 1}. This means that for
t→ 1 it follows r(t)→ 0. For the “point at infinity” we take the path γ(t) = r(t) exp (iϕ(t)),
where for t→ 1 it follows r(t)→∞. Since

∫ t0

0

2
√
A|ṙ + rϕ̇|dt
r| log

√
Cr|

≥
∫ t0

0

2
√
Aṙdt

r log
√
Cr

=
√
A log log2Cr(t0)

log2Cr(0)
t0→1−−−→∞,

and the same result with inequality (16), (C∗∗, dC∗∗) is b-complete. By Corollary 1 metric
ds2

C∗∗ is a complete Hermitian metric.
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The corresponding Gauss curvature is

K(z) =− |z|
2|z − 1|2A2

1(z)A2
2(z)A2

3(z)
4(1 + |z|2)3 − |z − 1|2A2

2(z)A2
3(z)(1 + |z|2A1(z))

2(1 + |z|2)3

− |z|
2A2

1(z)A2
3(z)(|z + 1|2 + |z − 1|2A2(z))

2(1 + |z|2)3

− |z|
2|z − 1|2A2

1(z)A2
2(z)(|z|2 + A3(z))

2(1 + |z|2)3 .

It can be derived from the expression above that

lim
z→0

K(z) = lim
z→∞

K(z) = −(1/2) log2(C/2) log2C < −1,

lim
z→1

K(z) = −(1/4) log4(C/2) < −1.

For r1, r2, r3 > 0 let us introduce a domain

Xr1,r2,r3 := {z ∈ C : 0 < |z| < r1 or 0 < |z − 1| < r2 or r3 < |z|}.

Positive numbers r1, r2, r3 exist such that K(z) < −1 for z ∈ Xr1,r2,r3 . Because C∗∗ \Xr1,r2,r3

is compact, there is a constant C > 9 such that K(z) < −1 for z ∈ C∗∗ \ Xr1,r2,r3 . Then
K(z) < −1 on C∗∗.

Let there be r > 0 and f ∈ O (Dr,C∗∗). Then f(rz) ∈ O (D,C∗∗). According to Ahlfors’
lemma it follows

r|f ′(0)| ≤ 2
λC∗∗(f(0)) . (17)

We can now prove the Little Picard theorem. Assume that f is an entire function such
that f(C) ⊆ C∗∗. Choose an arbitrary point z0 ∈ C and introduce a function g(z) :=
f(z + z0). Let there be an increasing and unbounded sequence {rn}∞n=1 of positive real
numbers and gn := g|Drn

. By equation (17) for every n ∈ N it follows

|f ′(z0)| = |g′n(0)| ≤ 2
rnλC∗∗(gn(0)) = 2

rnλC∗∗(f(z0))
n→∞−−−→ 0,

since gn(0) = f(z0) and g′n(0) = f ′(z0). Hence f ′(z0) = 0. Because z0 was an arbitrary point,
it follows f ′ ≡ 0 on C. This means that f is a constant function. �

By using inequality (17) we are able to provide a very easy proof of the following Landau
theorem from 1904.
Theorem 10. Assume that f ∈ O (Dr,C∗∗) for some r > 0 and f ′(0) 6= 0. Then there is a
constant C > 0, depending only on f(0) and f ′(0) such that r ≤ C.
Proof. Inequality (17) suggests that a good choice for a constant is

C = 2
|f ′(0)|λC∗∗(f(0)) ,

which only depends on f(0) and f ′(0). �
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Assume that f(z) = a0 + a1z + a2z
2 + · · · is a power series expansion of f at 0. Then

f(0) = a0 and f ′(0) = a1. Theorem 10 has the following equivalent form: if f omits 0 and
1 and a1 6= 0, then a constant C(a0, a1) > 0 exists such that the convergence radius of f is
not greater than C(a0, a1). The story goes that Landau was reluctant to publish the above
theorem because he found it too absurd [Rem98, §10.2.2].

6.3 The Schottky theorem
In 1904, the German mathematician Friedrich H. Schottky (1851–1935) studied the size
of an image of a disc under a holomorphic mapping, which omits two distinct points on C.
In our proof completeness of a metric (15) is called for. The Hopf-Rinow characterization
with closed balls can be used. The theorem is a bridge between the Little and Big Picard
theorems.

Theorem 11. Let R and C be positive real numbers. Assume that we have f ∈ O (DR,C∗∗)
such that |f(0)| < C. Then for every r ∈ (0, R) a constant M exists, depending only on R,
r and C such that |f(z)| ≤M for |z| ≤ r.

Proof. Take f and r from the theorem and set a := f(0) and g(z) := f(Rz). Then g ∈
O (D,C∗∗) and g(0) = a. Define r′ := ρ(0, r/R). Let ds2

C∗∗ be metric (15) and the dC∗∗
corresponding distance. Since dC∗∗ is complete, every closed ball B := BdC∗∗ (a, r′) is compact.
Hence, a constant M1 exists, depending only on R, r and C such that |z−a| < M1 for every
z ∈ B. For every f ∈ O (D,C∗∗) there is by (12)

dC∗∗(a, f(z)) ≤ ρ(0, z) ≤ r′

for |z| ≤ r and therefore |f(z) − a| < M1. Since |a| < C, it follows |f(z)| < C + M1 for
|z| ≤ r. The theorem follows after setting M := M1 + C. �

6.4 The Big Picard Theorem
While studying the properties of O (Ω), we should introduce the concept of normal families:
a family F ⊂ O (Ω) is normal if every sequence in F has a convergent subsequence in O (Ω),
where convergence is uniformly on compact sets. For F we say that it is bounded on Ω if
for every compact set K ⊂ Ω a constant C(K) exists such that

sup
f∈F

(
sup
z∈K
|f(z)|

)
≤ C(K). (18)

A common sign for supz∈K |f(z)| is ‖f‖K . Paul A. A. Montel (1876–1975) proved the
following theorem in 1907.

Theorem 12 (Montel). A family F ⊂ O (Ω) is bounded on Ω if and only if it is normal.
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The difficult part of proving Montel’s theorem comes from the implication from a bound
to normality, since the opposite direction is quite clear. Assume that a compact set L ⊂ Ω
exists for which (18) is not true. Then a sequence {fn} ⊂ F exists, such that ‖fn‖L → ∞
and does not have a convergent subsequence with the limit f , since ‖fn‖L−‖f−fn‖L ≤ ‖f‖L.
The core of the problem is the celebrated Arzelá-Ascoli theorem [Ahl79, §5.5], which asserts
that a family F of continuous functions on Ω is relatively compact if and only if the family
is equicontinuous and f(z0) is relatively compact for every z0 ∈ Ω and every f ∈ F . The
latter is satisfied since F is bounded and equicontinuity follows from the Cauchy inequality.
By Weierstrass’ theorem, which asserts that a family of holomorphic functions is closed in
a family of continuous functions, we see that the Arzelá-Ascoli theorem implies Montel’s
theorem.

It is useful to expand the definition of normality in the direction that allows uniform
convergence on compact sets to ∞. A closed family F ⊂ O (Ω1,Ω2) is normal if every
sequence in F has convergent subsequence or this sequence is compactly divergent. This
means that for arbitrary compact sets K ⊂ Ω1 and L ⊂ Ω2 integer N ∈ N exists such that
fn(K) ∩ L = ∅ for all n > N .

For the proof of the next theorem we need the classical result by A. Hurwitz [Ahl79,
p. 178]: Assume that {fn} ⊂ O (Ω) is a convergent sequence with the limit f ∈ O (Ω). If
a ∈ C exists such that a /∈ fn(Ω) for every n ∈ N, then a /∈ f(Ω) or f ≡ a.

Theorem 13 (The Normality Theorem). Let there be a, b ∈ C, a 6= b. Then the family
F ⊆ O (Ω,C \ {a, b}) is normal for every domain Ω ⊂ C.

Proof. Let there be F ⊂ O (Ω,C \ {0, 1}) and {fn}∞n=1 ⊂ F is an arbitrary sequence. It is
enough to show that for every point x ∈ Ω there is a neighborhood U ⊂ Ω such that the
family {fn|U : n ∈ N} is normal.

Choose a fixed but arbitrary point x ∈ Ω. An unbounded sequence {fn(x)} is compactly
divergent. If the sequence {fn(x)} is bounded, then according to Schottky’s theorem C > 0
exists such that fn(Dr(x)) ⊂ DC , where such r > 0 is chosen that Dr(x) ⊂ Ω. Since

sup
f∈{fn}

‖f‖Dr(x) ≤ C,

according to Montel’s theorem, a subsequence {fn1} ⊂ {fn} exists such that fn1 uniformly
converges to f ∈ O (Dr(x)) on compact sets. If f(Dr(x)) ⊂ C \ {0, 1}, the goal has been
achieved. Therefore, let us have z0 ∈ Dr(x) such that f(z0) ∈ {0, 1}. Assume that f 6= f(z0).
According to Hurwitz’s theorem N ∈ N exists such that f(z0) ∈ fn1(Dr(x)) for all n > N .
Because this is not true, it follows that f ≡ f(z0). Therefore, the sequence is compactly
divergent. �

Montel proved the Normality theorem in 1912, which is why it is sometimes referred to
as the Big Montel theorem.

The Normality theorem is used to prove the Big Picard theorem (Theorem 5). We
are going to prove the sharper and not so widely known form of the theorem by Gaston
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M. Julia (1893–1978) from 1924. For the formulation of the theorem the following “cone-
shape” domain is needed

J(ζ, α) :=
{
t1e

i(ϕ0+t2α) : t1 ∈ (0, 1), t2 ∈ (−1/2, 1/2), eiϕ0 = ζ
}
⊂ D∗.

The domain is a disc section with an angle α, which is symmetric on a chord with endpoints
0 and ζ ∈ ∂D.

Theorem 14. Assume that f ∈ O (D∗) with an essential singularity at 0. Then ζ ∈ ∂D
exists such that for all α > 0 function f on J(ζ, α) takes every value in C infinitely often
with no more than one exception.

Proof. Assume that for every ζ ∈ ∂D there is αζ > 0 such that for some a, b ∈ C, a 6= b
equations f(z) = a and f(z) = b have finite solutions on J(ζ, αζ). Since the boundary of a
disc is a compact set, a sequence {ζn}Nn=1 exists such that {J(ζn, αζn)} is a finite open cover of
D∗ with the previously mentioned property. Then there is ε > 0 such that f(D∗ε) ⊂ C\{a, b}.

Let A(r1, r2) := {z ∈ C : r1 < |z| < r2} be an annulus. Define the family F :=
{fn(z)|A(1/2,2)}, where fn(z) := f(ε2−nz). Since

F ⊂ O (A(1/2, 2),C \ {a, b}) ,

the Normality theorem guarantees that F is a normal family. Then a subsequence {fn1} ⊂
{fn} exists such that fn1 → g ∈ O (A(1/2, 2)) or {fn} is compactly divergent. In the
first case, the sequence {fn1|∂D} is uniformly bounded. In the second case, the sequence{

(fn|∂D)−1
}

is uniformly bounded. Assume that we are dealing with the first case. Then
there exists M > 0 such that |f(z)| < M for every |z| = ε2−n1. According to the maximum
principle |f(z)| < M in the neighborhood of 0. This means that singularity is removable.
This is in contradiction with the assumption of an essential singularity. In the second case,
we get a removable singularity for 1/f in 0, which is also a contradiction. �

7 A glimpse of hyperbolic complex manifolds
In this final section we briefly describe main properties of hyperbolic complex manifolds.
We are especially interested on those properties which are in direct connection with Picard’s
theorems.

We begin with the notion of invariant pseudodistances. These are pseudodistances which
can be constructed on the category of complex manifolds and they become isometries for
biholomorphic mappings. In 1967, a Japanese mathematician Shoshichi Kobayashi (1932–
2012) constructed one of those pseudodistances. For every x, y ∈M and every f ∈ O (M,N),
where M and N are complex manifolds, the Kobayashi pseudodistance dKM has the following
properties

dKN (f(x), f(y)) ≤ dKM(x, y), (19)
dKD (x, y) = ρ(x, y). (20)
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Thus dKM is an invariant pseudodistance, which coincides with the Poincaré distance on a
disc. Explicit construction is carried out by the so-called chain of holomorphic discs

α :


p = p0, p1, . . . , pk = q ∈M,
a1, a2, . . . , ak ∈ D,
f1, f2, . . . , fk ∈ O (D,M)

between p, q ∈ M where fn(0) = pn−1 and fn(an) = pn for all n ∈ {1, . . . , k}. Kobayashi
pseudodistance is then defined as

dKM(p, q) := inf
α

{
k∑

n=1
ρ(0, an)

}
.

Thus the construction of dKM is in the spirit of Bloch’s principle. Generally speaking, dKM is
not a distance.

Example 1. We have dKC ≡ 0. To see this, take a holomorphic mapping f(z) := p+ ε−1(q−
p)z from D into C, where p, q ∈ C are arbitrary points and ε > 0 is an arbitrary small
number. Then f(0) = p and f(ε) = q. From (19) we get dKC (p, q) ≤ 2ε. Because mapping
exp: C→ C∗ is surjective, it also follows dKC∗ ≡ 0.

A complex manifold is hyperbolic if the Kobayashi pseudodistance becomes a distance and
complete hyperbolic if (M,dKM) is a complete metric space. Hyperbolic manifolds have several
important properties, including the fact that the Kobayashi distance is inner, direct product
of (complete) hyperbolic manifolds is (complete) hyperbolic and (complete) hyperbolicity is
invariant with respect to unramified covering projections. The latter statement combined
with the Poincaré-Koebe uniformization theorem asserts that Riemann surface is hyperbolic
if and only if its universal cover is a disc. This is in agreement with traditional meaning of
hyperbolic Riemann surfaces.

We call pseudodistances, which satisfy the properties (19) and (20), contractible pseu-
dodistances. It can be shown that the Kobayashi pseudodistance is the largest among con-
tractible pseudodistances. What is more, if a pseudodistance dM satisfies dM(f(x), f(y)) ≤
ρ(x, y) for all x, y ∈ D and all f ∈ O (D,M), then dM ≤ dKM . Ahlfors’ lemma implies that
every planar domain (or more generally every Riemann surface), which carries a complete
Hermitian metric of curvature not greater than −1, is complete hyperbolic. Therefore, the
domain C \ {0, 1} is complete hyperbolic. From this it is easy to see that every domain
Ω ⊆ C \ {a, b}, a 6= b, is complete hyperbolic; observe that every Cauchy sequence in Ω
is also Cauchy in C \ {a, b}, a 6= b. Of course in higher dimensions there exist hyperbolic
domains which are not complete hyperbolic. Probably the simplest example is a punctured
bidisc D2 \ {(0, 0)}.

Example 2. Denote punctured bidisc by X. Because X is bounded, it is hyperbolic. Define
the following sequences an := (0, αn), bn := (αn, 0) and cn,m := (αn, αm) where {αn} ⊂ D
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is a sequence with property ρ(0, αn) = 2−n. Introducing domains X1 := D × D∗ ⊂ X and
X2 := D∗ × D ⊂ X yields

dKX(an, bn) ≤ dKX1(an, cn,n) + dKX2(bn, cn,n),
dKX(bn, an+1) ≤ dKX2(bn, cn,n+1) + dKX1(an+1, cn,n+1).

Define fn ∈ O (D, X1) with fn(z) := (z, αn) and gn ∈ O (D, X2) with gn(z) := (αn, z).
Then dKX1(an, cn,n) ≤ ρ(0, αn) and dKX1(an+1, cn,n+1) ≤ ρ(0, αn). Equivalently dKX2(bn, cn,n) ≤
ρ(0, αn) and dKX2(bn, cn,n+1) ≤ ρ(0, αn). Thus dKX(an, bn) ≤ 21−n and dKX(bn, an+1) ≤ 21−n.
Therefore {an}∞n=1 is a Cauchy sequence which converges to (0, 0) /∈ X.

Hyperbolicity is closely related to the Little Picard theorem. If we assume f ∈ O (C,M),
then we get dKM(f(x), f(y)) = 0 by (19). This shows that every holomorphic map from C
to a hyperbolic manifold is constant. The converse of this statement is not true in general;
however, it is true on compact complex manifolds in view of a fundamental theorem of
Robert Brody from 1978. The image of holomorphic map from C is said to be entire curve.
A complex manifold is said to be the Brody hyperbolic if all entire curves on it are constants.
We prove that C \ {a, b}, a 6= b is also the Brody hyperbolic.

Our definition of normal families can be adapted to holomorphic mappings between
complex manifolds. A complex manifold M is said to be taut if O (N,M) is a normal family
for every complex manifold N . Taut manifolds are somewhere between complete hyperbolic
and hyperbolic manifolds since it can be shown that completeness implies tautness and
tautness implies hyperbolicity. The Hopf-Rinow theorem is crucial to prove this assertions.
Therefore C \ {a, b}, a 6= b is taut domain which implies the Normality theorem.

Is there any generalization of the Big Picard theorem in the sense of hyperbolicity? The
answer is yes and it goes through hyperbolic imbeddings. Let X be a relatively compact
domain in complex manifold M . If for every x, y ∈ X there exist neighborhoods U 3 x and
V 3 y in M such that dKX(U∩X, V ∩X) > 0, then X is hyperbolically imbedded in M . Peter
Kiernan coined this term in 1973 and proved that if X is hyperbolically imbedded domain in
M , then every map f ∈ O (D∗, X) has an extension to f̃ ∈ O (D,M). Since CP1 \ {0, 1,∞}
is biholomorphic to C\{0, 1} it follows from properties of the Hermitian metric, constructed
in section 6.2, that CP1 \ {0, 1,∞} is hyperbolically imbedded in CP1.

We can consider a point in CP1 as a hyperplane. Mark L. Green proved: complement
of 2n + 1 hyperplanes in general position in CPn is complete hyperbolic and hyperbolically
imbedded in CPn. Main ideas in the proof of this theorem are:

(a) using Nevanlinna theory of meromorphic functions to study entire curves in comple-
ments of hyperplanes; here the most useful result is Borel’s lemma: if f1 + · · ·+ fn ≡ 1
for entire functions f1, . . . , fn without zeros, then at least one function must be a con-
stant. Observe that this implies the Little Picard theorem.

(b) extending Brody’s theorem to obtaining a criteria for hyperbolically imbedded comple-
ments of complex hypersurfaces in compact complex manifolds;
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(c) connect hyperbolic imbeddings and complete hyperbolicity of such complements; it can
be shown that if a complement of a complex hypersurface is hyperbolically imbedded in
a complex manifold, then this complement is complete hyperbolic.

All results mentioned in this section can be found in Kobayashi’s book [Kob10], still
ultimate reference concerning hyperbolic complex spaces. The same author offers an excellent
introduction to the subject [Kob05] while Krantz’s book [Kra04] has similar approach to the
subject as here. The historical aspect of invariant pseudodistances and hyperbolicity are
described in Royden’s paper [Roy88]. The greatness and beauty of invariant pseudodistances
can be found in a comprehensive book [JP13].
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