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Abstract. Landau-Ginzburg mirror symmetry predicts isomorphisms between
graded Frobenius algebras (denoted A and B) that are constructed from a non-
degenerate quasihomogeneous polynomial W and a related group of symmetries G.
Duality between A and B models has been conjectured for particular choices of W
and G. These conjectures have been proven in many instances where W is restricted
to having the same number of monomials as variables (called invertible). Some con-
jectures have been made regarding isomorphisms between A and B models when
W is allowed to have more monomials than variables. In this paper we show these
conjectures are false; that is, the conjectured isomorphisms do not exist. Insight
into this problem will not only generate new results for Landau-Ginzburg mirror
symmetry, but will also be interesting from a purely algebraic standpoint as a result
about groups acting on graded algebras.
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1 Introduction

Physicists conjectured some time ago that to each quasihomogeneous (weighted homoge-
neous) polynomial W with an isolated singularity at the origin, and to each admissible
group of symmetries G of W , there should exist two different physical “theories,” (called
the Landau-Ginzburg A and B models, respectively) consisting of graded Frobenius algebras
(algebras with a nondegenerate pairing that is compatible with the multiplication). The
B-model theories have been constructed [6, 7, 8, 9, 10] and correspond to an “orbifolded
Milnor ring.” The A-model theories have also been constructed [4] and are a special case
of what is often called “FJRW theory.” We will not address these in this paper, but in
many cases, these theories can be extended to whole families of Frobenius algebras, called
Frobenius manifolds.

For a large class of these polynomials (called invertible) Berglund-Hübsch [3], Henningson
[2], and Krawitz [10] described the construction of a dual (or transpose) polynomial W T and
a dual group GT . The Landau-Ginzburg mirror symmetry conjecture states that the A-
model of a pair W,G should be isomorphic to the B-model of the dual pair W T , GT . This
conjecture has been proved in many cases [5, 10], although the proof of the full conjecture
remains open.

It has been further conjectured that the Berglund-Hübsch-Henningson-Krawitz duality
transform should extend to large classes of noninvertible polynomials and that Landau-
Ginzburg mirror symmetry should also hold for these polynomials. In this paper we investi-
gate some candidate mirror pairs of noninvertible polynomials and show that many obvious
candidates for mirror duality cannot satisfy mirror symmetry.

To approach this problem, we study the A and B models as graded vector spaces and
inspect how the symmetry groups act on these spaces. Insight into this problem will not
only generate new results for Landau-Ginzburg mirror symmetry, but will also be interesting
from a purely algebraic standpoint as a result about groups acting on graded algebras.

One case of mirror symmetry that has been verified for all invertible polynomials is when
the A-model is constructed from an invertible polynomial W with its maximal group of sym-
metries and the B-model is constructed from the corresponding transpose polynomial with
the trivial group of symmetries. This is sometimes denoted AW,Gmax

W

∼= BWT ,{0}. This intu-
ition stemming from invertible polynomials motivated two conjectures about isomorphisms
between A and B models built from noninvertible polynomials. We often refer to polynomi-
als for which the A and B models exist as admissible.

Conjecture 1. For any admissible (not necessarily invertible) polynomial W in n vari-
ables, there exists a corresponding admissible polynomial W T in n variables satisfying
AW,Gmax

W

∼= BWT ,{0}.

Note that this conjecture includes the collection of noninvertible polynomials, which
are allowed to have more monomials than variables. After providing necessary background
material in Section 2, we show that this conjecture is false in Section 3.1.
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By relaxing the restriction on the number of variables that W T is allowed to have, we
obtain a second conjecture.

Conjecture 2. For any admissible W , there is a corresponding admissible W T satisfying
AW,Gmax

W

∼= BWT ,{0}.

In Section 3.2 we look at an example of a particular noninvertible polynomial, and expand
our search space for finding a suitable W T . We develop some formulas and show that they
rule out the existence of W T in a few more cases that were not considered in Conjecture 1.
Thereby we also establish that Conjecture 2 is unlikely to be true in general.

2 Preliminaries

Here we will introduce some of the concepts needed to explain the theory of this paper.

2.1 Admissible Polynomials

Definition. For a polynomial W ∈ C[x1, . . . , xn], we say that W is nondegenerate if it has
an isolated critical point at the origin.

Definition. Let W ∈ C[x1, . . . , xn]. We say that W is quasihomogeneous if there ex-
ist positive rational numbers q1, . . . , qn such that for any c ∈ C, W (cq1x1, . . . , c

qnxn) =
cW (x1, . . . , xn).

We often refer to the qi as the quasihomogeneous weights of a polynomial W , or just
simply the weights of W , and we write the weights in vector form J = (q1, . . . , qn).

Definition. W ∈ C[x1, . . . , xn] is admissible if W is both nondegenerate and quasihomoge-
neous, with the weights of W being unique.

We will use the following result about admissible polynomials later in the paper.

Proposition 1 (2.1.6 of Fan, Jarvis, and Ruan [4]). If W ∈ C[x1, . . . , xn] is admissible, and
contains no monomials of the form xixj for i 6= j, then the qi are bounded above by 1

2
.

Because the construction of AW,G requires an admissible polynomial, we will only be con-
cerned with admissible polynomials in this paper. In order for a polynomial to be admissible,
it needs to have at least as many monomials as variables. Otherwise its quasihomogeneous
weights cannot be uniquely determined. We now state the main subdivision of the admissible
polynomials.
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Definition. Let W be an admissible polynomial. We say that W is invertible if it has the
same number of monomials as variables. If W has more monomials than variables, then it
is noninvertible.

Admissible polynomials with the same number of variables as monomials are called in-
vertible since their associated exponent matrices (which we define in the next section) are
square and invertible.

2.2 Dual Polynomials

We will now introduce the idea of the transpose operation for invertible polynomials.

Definition. Let W ∈ C[x1, . . . , xn]. If we write W =
∑m

i=1 ci
∏n

j=1 x
aij
j , then the associated

exponent matrix is defined to be A = (aij).

From this definition we notice that n is the number of variables in W , and m is the
number of monomials in W . A is an m×n matrix. Thus when W is invertible, we have that
m = n which implies that A is square. One can show, without much work, that this square
matrix is invertible if the polynomial W is quasihomogeneous with unique weights. When
W is noninvertible, m > n. A then has more rows than columns.

Observe that if a polynomial is invertible, then we may rescale all nonzero coefficients to
1. So there is effectively a one-to-one correspondence between exponent matrices of invert-
ible polynomials and the polynomials themselves.

Definition. Let W be an invertible polynomial. If A is the exponent matrix of W , then we
define the transpose polynomial to be the polynomial W T resulting from AT . By the classifi-
cation given by Kreuzer and Skarke [11], W T is again a nondegenerate, invertible polynomial.

We now have reached our fundamental problem. When a polynomial W is noninvertible,
its exponent matrix A is no longer square. Taking AT yields a polynomial with fewer
monomials than variables, which is not admissible. Therefore, we will require a different
approach to define what the transpose polynomial should be for noninvertibles.

2.3 Symmetry Groups and Their Duals

Definition. Let W be an admissible polynomial. We define the maximal Abelian symmetry
group of W to be Gmax

W = {(ζ1, . . . , ζn) ∈ (C×)n | W (ζ1x1, . . . , ζnxn) = W (x1, . . . , xn)}.

Fan, Jarvis, and Ruan [4] and Artebani, Boissière, and Sarti [1] observe that Gmax
W is

finite and that each coordinate of every group element is a root of unity. The group opera-
tion ◦ in Gmax

W is coordinate-wise multiplication. The map (e2πiθ1 , . . . , e2πiθn) 7→ (θ1, . . . , θn)
mod Z gives a group isomorphism. Using additive notation, we will often write Gmax

W = {g ∈
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(Q/Z)n | Ag ∈ Zm}, where A is the m× n exponent matrix of W .

Definition. In this notation, Gmax
W is a subgroup of (Q/Z)n with respect to coordinate-wise

addition. For g ∈ Gmax
W , we write g = (g1, . . . , gn) where each gi is a rational number in the

interval [0,1). The gi are called the phases of g.

The following definition of the transpose group is due to Krawitz and Henningson [10, 2].

Definition. Let W be an invertible polynomial, and let A be its associated exponent ma-
trix. The transpose group of a subgroup G ≤ Gmax

W is the set GT = {g ∈ Gmax
WT | gAhT ∈

Z for all h ∈ G}.

Since this relies on knowing what W T is, this definition currently does not extend to
noninvertible polynomials. The following is a list of common results for the transpose group.

Proposition 2 (2 of Artebani, Boissière, and Sarti [1]). Let W be an invertible polynomial
with weights vector J , and let G ≤ Gmax

W .
(1) (GT )T = G,
(2) {0}T = Gmax

WT and (Gmax
W )T = {0},

(3) 〈J〉T = Gmax
WT ∩ SL(n,C) where n is the number of variables in W ,

(4) if G1 ≤ G2, then GT
2 ≤ GT

1 and G2/G1
∼= GT

1 /G
T
2 .

2.4 Some Notes on A and B Models

Landau-Ginzburg A and B models are algebraic objects that are endowed with many levels
of structure. In this paper, we will chiefly be concerned with their structure as graded
vector spaces, although we will also occasionally consider their Frobenius algebra structure.
These algebras are associative, commutative, and have identity. They further have a pairing
operation 〈·, ·〉 : A× A→ F that is
• Symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ A,
• Linear: 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 for all x, y, z ∈ A and α, β ∈ F ,
• Nondegenerate: for every x ∈ A there exists y ∈ A such that 〈x, y〉 6= 0.
The pairing also satisfies the Frobenius property, meaning that 〈x · y, z〉 = 〈x, y · z〉 for

all x, y, z ∈ A.
We will only develop the theory needed for the proofs in Section 3. We refer the interested

reader to Fan, Jarvis, and Ruan [4] for more details on the construction of the A-model.
Francis, Jarvis, Johnson, and Suggs [5], Krawitz [10], and Tay [12] provide more information
on constructing A and B models, and related isomorphisms.

Definition. QW = C[x1, . . . , xn]/
(
∂W
∂x1
, . . . , ∂W

∂xn

)
is called the Milnor ring of W (or local

algebra of W ).
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Definition. We define the unorbifolded B-model to be BW,{0} = QW .

We will think of the unorbifolded B-model as a graded vector space over C. The degree
of a monomial in QW is given by deg(xa1

1 x
a2
2 . . . xann ) = 2

∑n
i=1 aiqi. This defines a grading

on the basis of QW . We note the following.

Theorem 1 (2.6 of Tay [12]). If W is admissible, then QW is finite dimensional.

We will need two results about the unorbifolded B-model. First, dim(BW,{0}) =
∏n

i=1

(
1
qi
− 1
)

.

Second, the highest degree of its graded pieces is 2
∑n

i=1 (1− 2qi). (See Section 2.1 of Krawitz
[10].)

Definition. Let W be an admissible polynomial with weights vector J = (q1, . . . , qn), and
let G ≤ Gmax

W . Then G is admissible if J ∈ G.

We note that since W is quasihomogeneous, we have that AJT = (1, . . . , 1)T ∈ Zm. Thus
J ∈ Gmax

W .
The construction of the A-model requires that G be an admissible group. From parts

(3) and (4) of Proposition 2, the corresponding condition for the B-model is that GT ≤
Gmax
WT ∩ SL(n,C).

Definition. Let W ∈ C[x1, . . . , xn] be admissible, and let g = (g1, . . . , gn) ∈ Gmax
W . The

fixed locus of the group element g is the set fix(g) = {xi | gi = 0}.

We now state how G acts on the Milnor ring.

Definition. Let W be an admissible polynomial, and let g ∈ Gmax
W . We define the map

g∗ : QW → QW by g∗(m) = det(g)m ◦ g. (Here we think of g as being a diagonal map with
multiplicative coordinates.)

Definition. Let W be an admissible polynomial, and let G ≤ Gmax
W . Then the G-invariant

subspace of QW is defined to be QGW = {m ∈ QW | g∗(m) = m for each g ∈ G}.

Definition. Let W be an admissible polynomial, and G an admissible group. We define

AW,G =
⊕
g∈G

(
QW |fix(g)

)G
, where (·)G denotes all the G-invariants. This is called the A-model

state space.

We further note that the state space of the orbifolded B-model BW,G is constructed
similarly, but with the condition that G ≤ Gmax

W ∩ SL(n,C). If we let G = {0}, then the
formula yields the Milnor ring of W as expected.
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We will not discuss many details of constructing the state space here. For further treat-
ment of this topic, we refer the reader to Section 2.4 of Tay [12]. A brief comment on
notation: we represent basis elements of AW,G in the form [m; g], where m is a monomial
and g is a group element.

Definition. The A-model degree of a basis element [m; g] is defined to be deg([m; g]) =
dim(fix(g)) + 2

∑n
i=1(gi− qi), where g = (g1, . . . , gn) with the gi chosen such that 0 ≤ gi < 1

and J = (q1, . . . , qn) is the vector of quasihomogeneous weights of W . (See Section 2.1 of
Krawitz [10])

Finally, we state one important theorem for A-model isomorphisms.

Theorem 2 (Group-Weights, Section 7.1 of Tay [12]). Let W1 and W2 be admissible
polynomials which have the same weights. Suppose G ≤ Gmax

W1
and G ≤ Gmax

W2
. Then

AW1,G
∼= AW2,G.

Note that one can give the A-model a product and pairing such that A is a Frobenius
algebra. The above is then an isomorphism of Frobenius algebras, not just graded vector
spaces.

2.5 Properties of Invertible Polynomials

Our initial intuition tells us that some of the properties of invertible polynomials should
extend to the noninvertible case. For example, we’d like to keep the results of the following
proposition.

Proposition 3. Let W be an invertible polynomial. Then
(1) W and W T have the same number of variables.
(2) (Gmax

W )T = {0}.
(3) AW,Gmax

W

∼= BWT ,{0}, as graded vector spaces.

Proof. Statement (1) follows from noticing that the exponent matrix of W is square. Hence
its transpose is also square and of the same size, so W and W T have the same number of
variables. Statement (2) was stated previously in Proposition 2. Statement (3) is a special
case of the mirror symmetry conjecture that has been verified. Reference Theorem 4.1 in
Krawitz [10]. �

Part (3) of Proposition 3 is especially important, and will be what we use to look for candi-
date transpose polynomials. In other words, given a noninvertible polynomial W , we would

like to identify a candidate polynomial W T that satisfies
⊕

g∈Gmax
W

(
QW |fix(g)

)Gmax
W ∼= QWT .

Though we would like this isomorphism to hold for all levels of algebraic structure, we will
mainly investigate it on the level of graded vector spaces. For the benefit of the reader, we
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will restate the first conjecture.

Conjecture 1. For any admissible polynomial W in n variables, there exists a corresponding
admissible polynomial W T in n variables satisfying AW,Gmax

W

∼= BWT ,{0}.

3 Results

3.1 Disproving Conjecture 1

To disprove Conjecture 1, we prove a related nonexistence result. Note that this theorem is
about any W, 〈J〉, whereas Conjecture 1 is about W,Gmax

W .

Theorem 3. For any n ∈ N, n > 3, let W be an admissible but noninvertible polynomial in
two variables with weight system J =

(
1
n
, 1
n

)
, and let G = 〈J〉. Then there does not exist a

corresponding W T in two variables satisfying AW,G ∼= BWT ,{0}.

Before proving this theorem, we will demonstrate the hypothesis by exhibiting a few
examples of such admissible polynomials for small values of n.

n J Some Examples n J Some Examples

x4 + y4 + x3y x5 + y5 + x4y

4
(

1
4
, 1

4

)
x4 + x2y2 + xy3 5

(
1
5
, 1

5

)
x4y + xy4 + x3y2 + x2y3

x4 + xy3 x5 + x2y3 + xy4

x6 + y6 + x5y x7 + y7 + x6y

6
(

1
6
, 1

6

)
x5y + x4y2 + y6 7

(
1
7
, 1

7

)
x6y + x5y2 + y7

x6 + x2y4 + xy5 + y6 x6y + xy6

Proof. The idea of this proof is to choose an admissible polynomial with weight system
J =

(
1
n
, 1
n

)
, compute some formulas for its A-model using the group 〈J〉, and show that

there is no corresponding isomorphic unorbifolded B-model. Then, under the Group-Weights
isomorphism for A-models, we will be able to generalize the result for any admissible poly-
nomial with the same weights.

To start, we need an admissible polynomial in two variables with weight system J =(
1
n
, 1
n

)
. Let W ′ = xn + yn + xn−1y, and let G = 〈J〉. Certainly W ′ has weight system J ,

and G fixes W ′.
For the unorbifolded B-model, we know that dim(BWT ,{0}) =

∏n
i=1

(
1
qi
− 1
)

and that

the highest degree of its graded pieces is given by 2
∑n

i=1 (1− 2qi). In order to have
AW,G ∼= BWT ,{0}, we need the degrees of the vector spaces and the degrees of each of the
graded pieces to be equal. Therefore we now need corresponding formulas for the dimension
of the A-model vector space and the degree of the highest degree piece of the A-model.
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Lemma 1. As a graded vector space, dim (AW ′,G) = 2n− 2, and the highest degree of any

element is 2(2n−4)
n

. (n ∈ N, n ≥ 3).

Proof of Lemma 1. Recall that AW ′,G =
⊕
g∈G

(
QW ′|fix(g)

)G
. Notice that in our case

G = 〈
(

1
n
, 1
n

)
〉 = {(0, 0),

(
1
n
, 1
n

)
, . . . ,

(
n−1
n
, n−1

n

)
}. Then W ′|fix(g) = W ′ only for g = (0, 0).

Otherwise W ′|fix(g) is trivial.

Case 1 When W ′|fix(g) is trivial, we get n− 1 basis elements of the form [1; g].

Case 2 W ′|fix(g) = W ′. Then g = (0, 0). The basis elements we get in this case are of the
form [xayb; (0, 0)] where a+ b ≡ n− 2 mod n and a, b ∈ {0, 1, . . . , n− 2}. So we have
(a, b) = (0, n − 2), (1, n − 3), . . . , (n − 3, 1), (n − 2, 0). Hence there are n − 1 basis
elements of this type.

The total dimension of AW ′,G is therefore (n− 1) + (n− 1) = 2n− 2.
Now we will consider the degree of each basis element. Recall that

deg([m; g]) = dim(fix(g)) + 2
n∑
i=1

(gi − qi),

where g = (g1, . . . , gn) and J = (q1, . . . , qn) is the vector of quasihomogeneous weights.

For g = (0, 0), the degree is 2 +
(
− 2
n

)
+
(
− 2
n

)
= 2(n−2)

n
. Also notice by the above

equation that deg
(
[1;
(
n−1
n
, n−1

n

)
]
)
> deg

(
[1;
(
m
n
, m
n

)
]
)

for all m ∈ {1, . . . , n − 2}. Compute

deg
(
[1;
(
n−1
n
, n−1

n

)
]
)

= 2(2n−4)
n

, and notice that 2(2n−4)
n

= 2
(

2(n−2)
n

)
> 2(n−2)

n
for all n ≥ 3.

Hence the degree of the highest degree part of AW,G is 2(2n−4)
n

. �
From the lemma, we now have the following system of equations for the possible weights

q1, q2 for a candidate W T : (
1

q1

− 1

)(
1

q2

− 1

)
= 2n− 2,

2 ((1− 2q1) + (1− 2q2)) =
2(2n− 4)

n
.

Solving for q1 in the second equation, we have q1 = 2
n
− q2. Substituting back into the first

equation yields

n(2n− 3)q2
2 + 2(3− 2n)q2 + n− 2 = 0.

We now have a quadratic equation in q2. Consider the discriminant

D = −4(2n3 − 11n2 + 18n− 9).
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When D < 0, we will not have a real-valued solution for q2. The above equation is a cubic
polynomial that has roots at n = 1, 3

2
, 3. Since D < 0 for all n > 3, q2 will not be real-valued

for all n > 3. Thus there are no rational-valued solutions for the quasihomogeneous weights
in this case.

This shows that there is no W T in two variables satisfying AW ′,G
∼= BWT ,{0}. Extending

by the Group-Weights theorem, for any admissible polynomial W with weights
(

1
n
, 1
n

)
, we

have that AW,G ∼= AW ′,G. By this isomorphism, we know that dim (AW,G) = 2n− 2 and the

degree of its highest sector is 2(2n−4)
n

. Therefore, by what we have just shown, there cannot
not exist any W T in two variables such that AW,G ∼= BWT ,{0}. This proves the theorem. �

We do have the following solutions for n ∈ {1, 2, 3}. n = 1 yields the solution q = (1, 1),
n = 2 yields solutions q = (1, 0), (0, 1), and n = 3 gives a solution q =

(
1
3
, 1

3

)
. However,

since each coordinate must be in the interval (0, 1/2], q =
(

1
3
, 1

3

)
is the only valid weight

system.
Our original conjecture (Conjecture 1) about the transpose of a noninvertible polynomial

was that W and W T have the same number of variables and (Gmax
W )T = {0}. We will now

state a corollary to demonstrate that one of these assumptions must be false.

Corollary 1. For any n ∈ N, n > 3, let W be a noninvertible polynomial in two variables
with weight system J =

(
1
n
, 1
n

)
and Gmax

W = 〈J〉. Then there does not exist a corresponding
W T in two variables satisfying AW,Gmax

W

∼= BWT ,{0}.

The proof follows from the fact that for W ′ = xn + yn + xn−1y we have 〈J〉 = Gmax
W ′ .

Lemma 2. The polynomial W ′ has Gmax
W ′ = 〈J〉 = 〈

(
1
n
, 1
n

)
〉 for all n ∈ N, n ≥ 3.

Proof of Lemma 2. We note that if an element (g1, g2) preserves W ′, then to preserve the
first monomial one needs g1 = a

n
, to preserve the second monomial one needs g2 = b

n
, and to

preserve the third monomial we require a = b. Therefore Gmax
W ′ = 〈

(
1
n
, 1
n

)
〉 = 〈J〉. �

SinceW ′ hasGmax
W ′ = 〈J〉, and sinceW ′ satisfies the hypotheses of Theorem 3, we conclude

that there does not exist a corresponding W T in two variables satisfying AW ′,Gmax
W ′
∼= BWT ,{0}.

Extending by the Group-Weights theorem shows that any noninvertible W with weights J
and Gmax

W = 〈J〉 fails to have a W T in two variables satisfying the mirror symmetry alignment
stated in Corollary 1.

3.2 Evidence Against Conjecture 2

We will now consider finding a suitable W T in a different number of variables. By relaxing
the constraint on the number of variables required in Conjecture 1, it is natural to make the
following conjecture.

Conjecture 2. For any admissible W , there is a corresponding admissible W T satisfying
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AW,Gmax
W

∼= BWT ,{0}.

The following theorem is a start to disproving this conjecture.

Theorem 4. For any admissible polynomial W with weight system J =
(

1
5
, 1

5

)
and G = 〈J〉,

there is no corresponding admissible W T in 1, 2, or 3 variables satisfying AW,G ∼= BWT ,{0}.

Proof. For W as given in the hypothesis, we have previously shown that the degree of the
A-model is 8, and the degree of its highest sector is 12/5.

We will rule out the existence of a W T in these three cases. In one variable, we can
only have W T = x9 to give us an unorbifolded B-model of dimension 8. Then q1 = 1

9
, but

1− 2
9

= 7
9
6= 6

5
. The two variable case is done by Theorem 3.

Now let n ∈ N, n ≥ 3. We have the following equations for a candidate weight system:(
1

q1

− 1

)(
1

q2

− 1

) n∏
i=3

(
1

qi
− 1

)
= 8, (1)

2

[
(1− 2q1) + (1− 2q2) +

n∑
i=3

(1− 2qi)

]
=

12

5
. (2)

Letting A = 1− 8
n∏
i=3

(
1
qi
− 1
) , and B =

5n− 6

10
−

n∑
i=3

qi, equations (1) and (2) simplify to

Aq1q2 − q1 − q2 + 1 = 0, (3)

−q1 +B = q2. (4)

For any qi ∈ (0, 1/2], we have that 1
qi
− 1 ≥ 1. By equation (1), we require that

n∏
i=3

(
1
qi
− 1
)
≤ 8. This tells us that 1 ≤

n∏
i=3

(
1
qi
− 1
)
≤ 8. Therefore we have that

−7 ≤ A ≤ 0.

From equation (2) we also have that
n∑
i=3

(1− 2qi) ≤ 6
5
. Rewriting the left-hand side gives

us (n− 2)− 2
n∑
i=3

qi ≤ 6
5
. Subtracting n− 2 from both sides yields −

n∑
i=3

qi ≤ 16−5n
10

.

Substituting this into B gives us

B =
5n− 6

10
−

n∑
i=3

qi ≤
5n− 6

10
+

16− 5n

10
= 1.

Though we have developed the previous formulas in general, we will now restrict our
attention to the case n = 3. When A 6= 0, we can use the quadratic formula to plot the
real-valued solutions of q1. In three variables, the discriminant D = (AB)2− 4A(B− 1) ≥ 0
for q3 ≤ 1/9. This yields the following:
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Figure 1: Positive solutions for q1

in the quadratic system (3) and (4)
Figure 2: Negative solutions for q1

in the quadratic system (3) and (4)

None of these values of q1 is in the interval (0, 1/2], let alone (0, 1/2] ∩Q.

Now when A = 0, we must have that 1
qi
− 1 = 8. Therefore by equation (1) we can only

have q1 = q2 = 1/2. But equations (1) and (2) show that if this is the case, then we could
have found a satisfactory weight system in just 1 variable without considering q1 and q2.
Since we have already ruled out the case n = 1, we conclude that there are no valid weight
systems for W T in three variables. �

The previous result casts doubt on the validity of Conjecture 2. Using the formulas de-
veloped in Theorem 4 may be useful in proving the following statement.

Conjecture 3. For any admissible polynomial W with weight system J =
(

1
5
, 1

5

)
and

G = 〈J〉, there is no corresponding admissible W T satisfying AW,G ∼= BWT ,{0}.

Proving Conjecture 3 will demonstrate that the mirror symmetry construction AW,Gmax
W

∼=
BWT ,{0} does not, in general, extend to noninvertible W .

4 Conclusion

Given a polynomial W fixed by a weight system J =
(

1
n
, 1
n

)
and group G = 〈J〉, and

m ∈ N representing the number of variables in a candidate W T , it is impossible to construct



RHIT Undergrad. Math. J., Vol. 16, No. 2 Page 65

AW,G ∼= BWT ,{0} in the following cases:

m
1 2 3 . . .

4 X
n 5 X X X

6 X
... X

These results show that our original intuition about invertible polynomials and their
transposes does not extend well to the noninvertible case. Even at the level of graded vector
spaces, simply allowing an invertible polynomial to have one extra monomial seems to break
this mirror symmetry construction. Though the counter-example demonstrated for n = 5
does not completely rule out the possibility of the existence of a transpose polynomial in
this case, it does demonstrate that the intuitive notions for finding dual polynomials do not
hold in general.
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