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Abstract. Redrawing congressional districts in the United States is a constitu-
tionally required, yet politically controversial, task undertaken after each decennial
census. Federal law requires contiguous, ‘relatively compact’ congressional districts
that maintain ‘approximately equal’ population. Controversy is introduced when
individual states redraw their districts, or redistrict, using partisan committees.
States such as Ohio continue to redistrict with a committee appointed according to
the current proportion of legislators’ political parties to the whole. When political
parties have majority power in redistricting committees, they can draw districts in
a way that gives their party the best chance to keep its majority representation, a
process called gerrymandering. Mathematical redistricting models seek an unbiased
computational approach to the problem. Rather than trust partisan committees,
mathematical modeling approaches rely upon well-defined methods in computational
geometry, graph theory, game theory, and other fields. Here, we discuss two such
approaches. The first, given as a background for comparison, constructs Voronoi
diagrams to redistrict states into convex polygons, which are generally considered
‘compact’. We give greater emphasis to a new model that discretizes a state’s popu-
lation and partitions it into regions of approximately equal population. This model,
our main focus, relies upon graph partitioning to achieve the desired result and uses
census population data as the sole parameter in redistricting.
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CURMath for funding this project and my research partner Eric Shehadi, whose exceptional
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1 Introduction

The United States allots 435 congressional districts among the 50 states according to pop-
ulation taken in the census. Each state contains at least one district, with each district
having one representative, and those states with the largest populations are given the most
representatives. Districts are required to be contiguous landmasses contained within their
respective states. Also, districts are required by federal law to be ‘relatively compact’ and
‘approximately equal’ in population. By a provision of the Voting Rights Act of 1965, mi-
nority ‘communities of interest’ must not be divided. None of these conditions are clearly
defined by the Supreme Court or existing laws.

Generating districts that satisfy federal law and eliminate partisan bias is a difficult
task. By partisan bias, we mean the common abuse of redistricting by committee called
gerrymandering. Most states are redistricted by a partisan committee, and this process is
biased. An excellent example of modern gerrymandering is the 2010 redistricting map of the
state of Ohio, shown in Figure 1. The six most populated cities in the state are denoted with
circles. Note the irregular shapes of the districts, and how they divide the state’s population
hubs.

Computational methods provide solutions that are unsusceptible to gerrymandering, and
they have parameters that ensure approximately equal population as well as compactness of
districts. Mathematicians have considered a variety of redistricting methods, including those
suggested by game theory, statistical physics, graph theory, and computational geometry.
In Section 2, we begin with an overview of existing methods. In Section 3, we sample a
geometric approach to the problem, while Section 4 provides a new method based upon
graph partitioning. Section 5 gives an application of this method to redistrict the state
of Ohio with recommendations for future work. Finally, the appendix contains population
counts under several redistricting plans for the state of Ohio along with their corresponding
maps.

2 Computational Approaches to Redistricting

Landau and Su [7] provide a game-theoretical approach where Republicans and Democrats
choose their constituents in a game that gives each party equal representation. This method
reduces democracy to a mutual agreement among leading political parties. Chou and Li [3]
use a q-state Potts model to redistrict Taipei city. In another vein entirely, Chu et al [4] use
a heuristic called the Colonial Algorithm, which echoes the behavior of competing bacteria
colonies in a culture dish. Their heuristic does not necessarily converge to a solution, and the
time to convergence is not known. A novel approach due to Makse [9] defines communities
of interest by looking at initiative voting and builds districts from these communities, which
are not to be divided by federal law, as stated above.

In a similar problem, a recent article published by Boargwardt et al [1] clusters Bavarian
farmland into contiguous landmasses of approximately equal value to land-leasing farmers.
The geometric clustering model combines several approaches to achieve a computationally
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Figure 1: The 16 Ohio Congressional Districts adopted after the 2010 census

tractable solution. An excellent survey from Tasnádi [14] showcases other methods, including
those that focus on public choice or graph-theoretical models. We now shift our attention
to the computational geometric approach.

3 Geometric Approach

A Voronoi diagram is a partitioning of the Euclidean plane into convex polygons, where each
polygon’s points are closer to their ‘generating point’ than to any other generating point.
Included in Figure 2 is an example of a Voronoi Diagram.

It is natural to consider convex polygons in redistricting since they are generally consid-
ered compact [2, 6, 15]; moreover, Voronoi diagrams formalize our intuition about proximity
of congressional districts. To satisfy the equal population constraint, we must weight the
Voronoi diagrams by population and use an algorithm that generates several polygons in a
densely populated area.
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Figure 2: Voronoi diagram generated in MATLAB [10]; dots are generating points

One way to accomplish this is by strategically placing numerous generating points in
cities. A team working on the 2007 COMAP mathematical modeling competition [13] used
weighted Voronoi diagrams to redistrict New York state in this manner. New York City
received the most generating points, Buffalo received fewer, and so on. Although this method
yields compact districts, it is far from optimal. If a redistricting committee chooses where
to place the generating points, it can certainly choose them to give one party an advantage.

A more formal approach is Lloyd’s Algorithm [8], which computes the centroid, or center
of population, of each polygon and iteratively moves each polygon’s generating point to the
polygon’s centroid. A few iterations of this algorithm are shown in Figure 3, where the plus
signs denote centroids and the red dots represent initial generating points. The algorithm
always converges to a stable configuration [5]. We may expect the algorithm to give us
approximately equal populations, but in reality, the populations still markedly differ. We
are also left with the same problem that the COMAP team faced, namely the dependence
on initial placement of points. Using Lloyd’s Algorithm, it is easy to choose an area of
approximately uniform population density, and yet whose population is well above or below
our target value.

(a) 1st iteration (b) 2nd iteration (c) 3rd iteration (d) 15th iteration

Figure 3: Lloyd’s Algorithm with red generating points

Generating points must be placed in the first step of the algorithm, and it is this depen-
dence on initial point placement that makes the method unsuitable for use in redistricting.
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If one places a generating point in a rural area with approximately uniform population,
then the region will not change significantly and the district will remain considerably low in
population. Strategic point placement can get us closer to the desired district population,
however the choice of these locations is arguably biased. It is clear that a purely geometric
approach to the problem does not properly account for the uneven population distributions
present in most states, so we appeal to a more population-centric method.

4 Graph Partitioning Method

Graph theory delivers a way to solve the redistricting problem without reliance on popula-
tion demographics and Euclidean distance. Disregarding human geography and population
distribution, we discretize a state into units called census block groups, the second-smallest
unit that the U.S. Census Bureau analyzes. We will use these census block groups and their
neighboring units to form a graph.

In particular, we consider redistricting in light of the graph partitioning problem, stated
as follows: Let V be a set of vertices and E a set of edges connecting pairs of vertices. Given
an undirected, vertex-weighted graph G = (V,E) with weights ω(v) for all v ∈ V , we seek
to partition G into k districts of approximately equal weight. The primary objective is to
minimize the edge cut, which is the set of weighted edges whose endpoints lie in different
districts. We call the sum of edge weights in an edge cut the edge cut size.

In terms of redistricting, the vertices represent census block groups whose weights are
populations. An edge connects neighboring census block groups, and we take all initial
edge weights to be 1 (our method will change this value). Our goal is to partition census
block groups (the vertices), thus creating districts. Unfortunately, graph partitioning is
NP-Complete, and thus an heuristic is required to provide a solution.

One heuristic, the multilevel algorithm, performs well in empirical tests, outperforming
other methods both in speed and accuracy. The multilevel algorithm uses three phases
— coarsening, partitioning, and uncoarsening. The coarsening phase involves recursively
contracting, or collapsing, edges of the graph while preserving its basic structure. Hence we
can reduce the number of vertices by a power of two, and allow more time for computationally
intensive tasks. Once a chosen stopping criterion is met, the graph is partitioned into the
required number of districts. Uncoarsening the graph will project this cut onto the original
graph and attempt to find a better partition by swapping vertices among different districts.
This is done while maintaining a pre-specified population imbalance, and again, minimizing
the edge cut.

4.1 Coarsening

If we would like to partition graphs with millions of vertices, then it would be ideal to
contract edges, making it simpler to partition. The question becomes, which edges do we
contract? Finding a maximal matching of the graph identifies these edges with minimum
computing power.
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A matching is a set of edges where no edge pair shares a common vertex. If by adding
an edge we no longer have a matching, we call the matching maximal. There are several
algorithms for finding a maximal matching [11]; here, we use a greedy algorithm. The greedy
algorithm builds an ordered list of edges using the coarsening coefficient

C(uv) =
ω(u)ω(v)

ω(u↔ v)

for every edge connecting vertices u and v, denoted here by u ↔ v. A random matching
would be faster to compute, but unlike the coarsening coefficient, it does not guarantee any
level of quality. We now work through a simple graph partitioning problem involving a graph
with seven vertices and unit edge weights.

Example. Consider the graph in Figure 4, where vertices are conveniently labeled with
their corresponding weights (for example, vertex 2 has weight 2). Suppose that we would
like to partition it into two districts, denoted D1 and D2. First, we list the edges with their
coarsening coefficients in order of increasing magnitude, as in Table 1. After constructing
the table, we begin at the top of the list and work our way down, adding edges to the
matching. Recall that an edge is added if it does not share a vertex with any other edge in
the matching. Hence, after the inclusion of 1↔ 2, the next edge included is 3↔ 4.

Once we have considered every edge in the table, our matching is maximal. The maximal
matching, denoted in red, is listed in Table 2 and shown in Figure 5. These edges are now
contracted, so incident vertices in the matching are combined into a single vertex, and edges
connecting vertices are contracted into single edges with greater weight. For example, in
Figure 6, vertices 1 and 2 are contracted into a vertex labeled 1+2, and the weight of this
new vertex is 3.

1

2

3

4 5

6

7

Figure 4: 7 districts, population 28; ω(u↔ v) = 1

We can choose any initial partition we like, because we will attempt to improve it in the
uncoarsening phase.
In Figure 7, we have randomly chosen the initial partition:

D1 = {3 + 4, 7}
D2 = {1 + 2, 5 + 6}.
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Table 1: Coarsening coefficients;
computed from ω(u)ω(v)

ω(u↔v)

Edge C
1↔ 2 2
1↔ 5 5
2↔ 3 6
1↔ 7 7
2↔ 5 10
3↔ 4 12
3↔ 5 15
4↔ 5 20
4↔ 6 24
5↔ 6 30
5↔ 7 35
6↔ 7 42

Table 2: Maximal matching;
Vertices 1 and 2, 3 and 4, and 5 and
6 are contracted

Edge C
1↔ 2 2
1↔ 5 5
2↔ 3 6
1↔ 7 7
2↔ 5 10
3↔ 4 12
3↔ 5 15
4↔ 5 20
4↔ 6 24
5↔ 6 30
5↔ 7 35
6↔ 7 42

1

2

3

4 5

6

7

Figure 5: Maximal matching

1+2

3+4

5+6

72

23

Figure 6: Coarsened graph

Now that we have a partitioned graph, we must project the partition onto the original
graph, that is, we must uncoarsen the graph while keeping track of partition membership.
Note that we have perfect population balance and the edge cut size is 7. Curious mathe-
maticians would ask, can we do better? When we uncoarsen the graph, we will swap vertices
among districts to (hopefully) find a better edge cut.
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1+2

3+4

5+6

72

23

Figure 7: Arbitrary initial partition of the coarsened graph

4.2 Uncoarsening

Next, we project the partition onto the original graph, resulting in two districts (shown in
Figure 8):

D1 = {3, 4, 7}
D2 = {1, 2, 5, 6}.

1

2

3

4 5

6

7

Figure 8: Partitioned,
uncoarsened graph

1

2

3

4 5

6

7

Figure 9: Example of local refine-
ment: swap (3,4) with
(1,6)

In a process called local refinement, we swap census units in different districts to find
a smaller edge cut. There are |D1| · |D2| = 3 · 4 = 12 possible improvements to the edge
cut. Sanders and Schulz [12] limit the possibilities by finding negative cycles in the graph,
although in our example, we are content with trying every possibility.

If we swap vertices 3 and 4 in D1 with vertices 1 and 6 in D2, then the edge cut size
becomes 5, and we maintain perfect population balance. Thus we have improved the edge
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cut size from 7 to 5, and our optimal solution is given by the following districts (shown in
Figure 9):

D1 = {1, 6, 7}
D2 = {2, 3, 4, 5}.

In summary, we have calculated coarsening coefficients of the edges in our graph to
greedily build a maximal matching. After choosing an initial bipartition of the graph, we
considered swapping vertices in the two districts to find a smaller edge cut while also main-
taining population balance. The result is a bipartition with an edge cut size of 5 and equally
populated districts.

5 Application of Graph Partitioning Algorithm

In terms of redistricting, minimizing the edge cut appears to be correlated with our intuitive
idea of compactness. The Census Bureau breaks dense populations into several small cen-
sus block groups, whereas sparse populations are divided among larger census block groups.
Since the edge cut is minimized, we are discouraged from dividing dense populations —
they contain many census block groups, and thus many connecting edges. Hence it is com-
mon to see partitions where districts cover a single city surrounded by rural area, allowing
compactness to be preserved.

Consider the state of Ohio as an example. Ohio contains 9,238 census block groups,
making it infeasible to partition by hand; thus we appeal to open source C++ software
called KaHIP [12] to partition the state. KaHIP implements the multilevel algorithm with
incredible speed. It takes approximately one minute to partition Ohio into 16 districts, where
district populations vary at most 1% from the mean. This parameter can be changed, and a
longer time may also be specified. Each redistricting map is the product of an independent,
pseudo-randomized process.

Figures 10 and 13, identified by their respective edge cut sizes, show the state after 10
minutes of recursive partitioning (the partition with the best edge cut is chosen at the end of
the time limit). Figures 11 and 14 show Ohio after 20 minutes of partitioning. Note that the
maps with the best and the worst edge cut sizes are not contiguous. The two maps shown
in Figures 10 and 11 are contiguous and relatively equal in population; see Table 3 in the
appendix for the population counts of the 16 districts. The map in Figure 11 is preferable to
the one shown in Figure 10 in the sense that its districts are more equally populated. These
maps were chosen to illustrate the possibility of having non-contiguous districts, and how
results may vary. Compare these with the 2010 redistricting plan for Ohio in Figure 12.

Although we may specify a smaller population imbalance, the resulting districts may
not be as compact, and it is possible to encounter non-contiguous districts such as those
in Figures 13 and 14. This provides motivation for modifying the algorithm to consider
only contiguous results, and perhaps provide a proof that such a result is always possible to
obtain.
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Figure 10: KaHIP partition of Ohio: edge cut size 763

Figure 11: KaHIP partition of Ohio: edge cut size 786
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Figure 12: The 16 Ohio Congressional Districts adopted after the 2010 census

Figure 13: KaHIP partition of Ohio: edge cut size 832; non-contiguous district in brown
color
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Figure 14: KaHIP partition of Ohio: edge cut size 756; non-contiguous district in rust color

5.1 Future Work

Our implementation of the multilevel algorithm uses unit edge weights. If the edges were
weighted by distance between census block group centroids, then we would expect more com-
pact districts since minimizing distance would be made the goal of the algorithm. By making
more cuts in rural areas, we ensure that dense city populations are not broken up (unless
the city is especially populous), a common tactic in gerrymandering. Instead, we minimize
the edge cut size to indirectly influence district compactness. In future implementations, we
may consider adjusting the edge weights to admit a more realistic approach.

Additionally, census block groups are not the smallest units of population data that the
U.S. Census Bureau provides. If we had used Ohio’s 365,344 census blocks as opposed to its
9,238 census block groups, then there may have been a smaller population imbalance due
to the increased number of possible outcomes. Using census block groups, we have 169238

possible redistricting plans; with census blocks, the number is an even more staggering
16365344 (these include non-contiguous redistricting plans). The same population constraints
would apply, so intuitively, we would expect a greater number of contiguous redistricting
plans.

An undesirable trait of the multilevel algorithm is that it does not guarantee contiguous
districts. The redistricting plans are not unique, so it is unclear how a redistricting committee
would use the algorithm to choose ‘politically fair’ districts. The redistricting plans are not
unique, as they are a product of pseudo-randomized processes, especially local refinement.
Thus it is possible for lawmakers to apply the algorithm to a given state multiple times
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and choose whichever plan they prefer. One way to control for this would be to generate
a pre-specified number of redistricting plans, and take the district with the best combined
population equality and compactness.

We have neglected to consider the ill-defined ‘communities of interest’ that the redistrict-
ing process must not break apart. It is possible to modify the algorithm so that these regions
are placed in the same district, however federal law does not identify what they are. The
addition of other parameters like party affiliation and past election results do not constitute a
constitutionally defendable model since the Constitution neither recognizes political parties
nor election results. We have erred on the side of simplicity to avoid political complications
in the model.

The real strength of using the graph partitioning method in redistricting is that it allows
committees to use census population data as the sole parameter in redistricting. This is not
only attractive, but constitutionally sound — population change is the purpose of redistrict-
ing. In an attempt to create ‘politically competitive’ districts, other models have considered
diverse population characteristics, whereas this model treats individuals with the equality
that our federal republic requires.
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Appendix

Districts Fig. 1 (Current) Fig. 14, NC Fig. 10, C Fig. 11, C Fig. 13, NC
1 721032 740330 700844 726339 723906
2 721031 731213 726937 727006 723555
3 721031 739381 688310 727516 723447
4 721032 739011 732883 720079 713459
5 721031 598895 732987 719522 723358
6 721032 741227 738646 715931 723453
7 721031 741007 724381 717936 710104
8 721032 684027 739826 721050 719008
9 721032 740840 719862 712113 720408
10 721032 714762 737363 724309 722471
11 721032 721594 698530 719456 723351
12 721031 740079 718072 703621 719663
13 721031 740581 739944 720968 713624
14 721032 720698 729112 724235 723349
15 721031 720408 708410 726724 719097
16 721031 711483 689429 718731 723283

Standard Deviation 0.5164 36046.9539 17940.3870 6223.7741 4350.0031
Edge Cut Size — 756 763 786 832

Table 3: Population counts in proposed redistricting plans for the state of Ohio (C denotes
contiguous plans and NC denotes non-contiguous plans)
Note: 2010 census requires approximately 721032 people per district


	A Graph Partitioning Model of Congressional Redistricting
	Recommended Citation

	tmp.1484454608.pdf.wgGGf

