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Abstract. We use combinatorial knot theory to construct invariants for spatial
graphs. This is done by performing certain replacements at each vertex of a spatial
graph diagram D, which results in a collection of knot and link diagrams in D. By
applying known invariants for classical knots and links to the resulting collection,
we obtain invariants for spatial graphs. We also show that for the case of undirected
spatial graphs, the invariants we construct here satisfy a certain contraction-deletion
recurrence relation.
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1 Introduction

The purpose of this paper is to create new invariants for spatial graphs using familiar con-
cepts in knot theory. We also have a result that has a foundation in graph theory by
implementing the contraction and deletion of a vertex. We create a multiset by performing
certain replacements at each vertex of the spatial graph diagram. We then apply known in-
variants for classical knots to the multiset to obtain new invariants for spatial graphs. Most
importantly, when we consider undirected spatial graph diagrams, the invariant we create
satisfies a contraction-deletion recurrence relation. We will begin our discussion with some
definitions.

Let Γ be a finite graph without vertices of valency (degree) zero or one. A spatial
embedding of Γ is the image G of a topological embedding of Γ into 3-dimensional space
R3 such that there is an orientation-preserving homeomorphism from R3 → R3 that maps
G into a polygonal graph in R3. A spatial embedding is also called a spatial graph. The
embedding G is called an r-component link if the underlying graph Γ is homeomorphic to r
disjoint circles, and is called a knot if Γ is homeomorphic to a circle. For our convenience,
we consider a spatial graph G by ignoring the vertices of valency two.

Two spatial embeddings G and G′ are called ambient isotopic (or equivalent) if there
exists an orientation-preserving self-homeomorphism h on R3 such that h(G) = G′. A graph
Γ is called planar if there exists an embedding of Γ into a plane. A spatial embedding G of
a planar graph Γ is said to be trivial (or unknotted) if it is ambient isotopic to an embedding
of Γ into an affine plane in R3.

We remark that since the 3-sphere S3 is the one-point compactification of R3, formed
by adjoining the point at infinity, we can also regard spatial graphs as graphs embedded in
S3. Spatial graphs are interesting objects and constitute one of the main research objects in
knot theory. An excellent introduction to knot theory can be found, for example, in texts
by Adams [1] and Kauffman [9]. A fundamental topological problem on spatial graphs is
to determine whether two spatial embeddings of a graph Γ are equivalent or not. Similarly,
a fundamental problem in knot theory is to find effective methods to differentiate knots or
links.

A diagram of a spatial graph G is a regular projection of G onto a plane together with
over/under information at each double point in the projection. Recall that a projection is
called regular if its multiple points consists of finitely many transverse double points away
from the vertices. The double points in a spatial graph diagram are called crossings.

It is well-known, see Kauffman’s Invariants on graphs in three-space [7] for example,
that two spatial graphs G and G′ are ambient isotopic if and only if there is a finite sequence
of planar isotopies and generalized Reidemeister moves I-V taking a diagram of G into a
diagram of G′. The generalized Reidemeister moves are depicted in Figure 1. Note that the
moves I-III are the Reidemeister moves which, together with planar isotopies, are sufficient
to relate diagrams of equivalent knots or links.

Note that the generalized Reidemeister moves define an equivalence relation on the set
of spatial graph diagrams; therefore, we can regard a spatial graph as the equivalence class
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I.

II.

III.

... ...

IV.

V. ......

...

...

Figure 1: The generalized Reidemeister moves I-V

of spatial graph diagrams.

An ambient isotopy invariant for spatial graphs (or knots/links) is a quantity defined
for each spatial graph (or knot/link) which is the same for ambient isotopic spatial graphs
(or knots/links). To show that a quantity is indeed an invariant for spatial graphs (or
knots/links) one needs to verify that it is not changed by the generalized Reidemeister
moves I-V (or the Reidemeister moves I-III). If such a quantity upholds all of the Reidemeister
moves except for the type I move, then the corresponding invariant is called a regular isotopy
invariant.

Isotopy invariants are quite useful tools in distinguishing spatial graphs (or knots/links).
When searching for new invariants for spatial graphs, the most challenging task is to obtain
the invariance under the move of type V. In addition, most of the known isotopy invariants are
not complete in the sense that two spatial graphs (knots/links) that are not equivalent may
have the same invariant. However, it should be clear that if two spatial graphs (knots/links)
have distinct invariants then they are not equivalent.

The purpose of this paper is to construct isotopy invariants for spatial graphs. To reach
this goal, we model techniques from a construction by Kauffman in Invariants on graphs
in three-space [7] in which certain replacements are performed at each vertex in a diagram
D of a spatial graph G to obtain a knot or link diagram, which we call a state of D. In
Section 2, by performing all possible replacements at the vertices, one at the time, we obtain
a collection of all of the states corresponding to the original diagram D that is an ambient
isotopy invariant for G. The replacements at the vertices are done in such a manner that
the resulting states contain diagrams of constituent knots or links of the spatial graph G.
By applying known knot or link polynomial invariants to all of the states corresponding to
the diagram D, we construct various polynomial invariants for the spatial graph G. We
can regard the resulting invariants as extensions to spatial graphs of known knot and link
invariants.

Although we model our approach on Kauffman’s construction, we will record more infor-
mation about the constituent knots or links of a spatial graph for our invariant. Kauffman’s
invariant only lists one of each type of knot that occurs after all resolutions have been per-
formed. In our method, we will keep track of how many times a knot appears by creating a
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multiset of knots and links for a given spatial graph.
We consider both undirected and directed spatial graphs. For undirected graphs we allow

vertices of any valency, while for directed graphs we restrict to regular graphs (all vertices
have the same valency). We should note that for directed graphs, valency is the in degree
plus the out degree. For directed regular graphs with vertices of even valency, we impose
that the edges are oriented such that the degree (in-degree minus out-degree) at each vertex
is zero, and if vertices have odd valency, we require that the degree at a vertex is either 1 or
−1 and that two adjacent vertices have opposite degrees. Recall that a graph will contain
an even number of vertices of odd valency, and therefore, our directed regular graphs of odd
valency will have the same number of vertices of degree 1 as of degree −1. Figure 2 illustrates
(a) a directed trivalent spatial graph diagram, with the degrees of the vertices specified, and
(b) an undirected spatial graph diagram with vertices of different valency.

−1

1

1

−1

(a) (b)

Figure 2: Examples of spatial graph diagrams: (a) directed; (b) undirected

For the case of undirected spatial graphs, we also show how to modify our collection
of associated constituent knots and links of the original spatial graph in Section 3, so that
we arrive at polynomial invariants for spatial graphs that satisfy a contraction-deletion re-
currence relation. This allows us to compute the polynomial of a spatial graph in terms of
polynomials of graphs with vertices of smaller valency.

2 First approach

The method we use to construct our invariants is based on the work by Kauffman in Invari-
ants on graphs in three-space [7]. Let G be a spatial graph with diagram D. We start at
a vertex in D and consider every way to join two strands that meet at that vertex, leaving
the other strands free. For undirected graphs, since any two strands can be joined, there are
n(n−1)

2
different possible ways to resolve the n-valent vertex. Thus, we have created n(n−1)

2

diagrams just from resolving one vertex of valency n. We continue this process at each ver-
tex of the graph diagram and complete the process by discarding all of the arcs that were
created and keep the closed curves. In particular, if any diagram only contains arcs, the
entire diagram is discarded. Therefore, our collection only contains knots and links after we
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Figure 3: Unoriented and oriented 4-valent vertices

have resolved each vertex and discarded the arcs. We will denote this multiset by C(D), and
refer to its elements as the states of the diagram D.

We perform a similar process for directed spatial graphs. However, this time we can only
resolve each vertex in such a way as to maintain global compatibility of the orientations of
the strands. This means that there will exist diagrams that contain contradictory orienta-
tions that must be discarded along with the diagrams that only contain arcs. Thus, after
performing our replacements at each vertex in D and keeping those diagrams that result in
globally compatible orientations throughout the diagram, we will obtain a collection of ori-
ented knots and links associated to the original diagram D. We will also denote the resulting
multiset by C(D).

To illustrate this procedure at a vertex, we consider unoriented and oriented 4-valent
vertices as shown in Figure 3. We need to consider each way to join two strands that are
incident with the vertex, and there are 4(4−1)

2
= 6 resolutions corresponding to an unoriented

vertex of valency four, as shown below:

, , , , ,

Due to contradictory orientations, there are only four resolutions for an oriented 4-valent
vertex, and these are depicted below:

, , ,

Remark 1. Notice that the orientations for the strands of the directed 4-valent vertex are
only one of a few possible local orientations. In any case, we only consider those smoothings
that do not contradict the original orientations of the strands. Similarly, all of our local
pictures for directed 4-valent vertices should be viewed as one of a few possible orientations.

Example 2. To exemplify the entire process for a spatial graph diagram, we consider the
unoriented trivalent graph diagram D1 illustrated below, and apply all possible replacements
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at the two vertices in D1:

D1 = , ,

, ,

, ,

,

,

We discard all of the free arcs in the diagrams that we obtained and arrive at the following
multiset C(D1), where we use the letters L and R to denote the left circle and the right circle,
respectively, in the original diagram D1.

C(D1) = , ,L R L R ,, L R

Example 3. We consider now another example, this time with a 4-valent graph to show
how large the associated collections can become.

D2 =

We have to perform the replacements at each of the three vertices in D2. Notice that
it is possible to arrive at a trivial knot or link by using a particular replacement at two of
the vertices in D2. Therefore, regardless of how we resolve the last vertex, we will always
have the unknot. This situation occurs with the following graph diagrams obtained from
replacements in D2 at only two of the vertices:

,, ,

So, for each of the three diagrams above, when we resolve the third vertex, there will be six
diagrams containing that unknot diagram in the collection. After we discard the free arcs,
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we obtain the following collection C(D2):

, , , , , ,

, , , ,

, , , , ,

, , , , ,

,,,,

,

Remark 4. We want to emphasize that our collection is a multiset, unlike the collection
obtained by Kauffman in Invariants on graphs in three-space [7]. Specifically, for the spatial
graph diagram D1 in Example 2, the associated collection of knot and link diagrams as
defined in Kauffman’s work retains the diagram of the Hopf link and the unknot; that is,
it retains the knot or link type and not the number of times a knot or link type appears in
the resulting collection. Our collection retains the Hopf link as well as four diagrams of the
unknot, two from the left circle that we denoted with an L and two from the right circle
that we denoted with an R. Also, oriented spatial graphs were not considered in Invariants
on graphs in three-space [7].

Definition 5. A cycle in a graph Γ is a sequence of adjacent vertices such that only the first
and last vertex are the same. Denote such a cycle by C. Let f : Γ → R3 be an embedding
of Γ into R3 with f(Γ) = G the corresponding spatial graph. The image of a cycle C in Γ
under the embedding f is called a constituent knot of the spatial graph G. A disjoint union
of constituent knots in G is called a constituent link of G (see Kawauchi’s A survey of Knot
Theory [10] for additional details).

Remark 6. A careful analysis reveals that for a spatial graph G with diagram D, the
multiset C(D) contains diagrams of the constituent knots and links of G, some of which
appear with a certain multiplicity.

Proposition 7. Let G be any spatial graph and D a diagram of G. When regarded up to
Reidemeister moves I-III, the collection C(D) is an ambient isotopy invariant for G.

Proof. The proof follows similarly to the proof outlined in Kauffman’s Invariants on graphs in
three-space [7]. We observe first that since we consider the collection C(D) up to Reidemeister
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moves I-III, we only need to show that C(D) is invariant under the moves of types IV and
V. Notice that to prove the move IV, we will only show the equivalence of sliding a strand
under the vertex, but the proof for sliding a strand over the vertex is similar. We will show
in detail that this holds for 4-valent vertices, both unoriented and oriented. For vertices in
D of other valency, the proof follows similarly. For unoriented 4-valent vertices we have:

, , , , ,

, , , , ,

Removing the free arcs, the two collections above are the same, up to planar isotopy and the
Reidemeister move II. For an oriented 4-valent vertex we have:

, , ,

, , ,

Once again, the above two collections with the free arcs removed are the same, up to planar
isotopy. As in Remark 1, this is just one of a few possible local orientations for the directed
vertex. However, since the other orientations produce similar sets up to rotations of the
resolutions and orientations of the strands, we only consider one local orientation for this
proof. Therefore, the invariance under the move of type IV is upheld.

Given an unoriented 4-valent vertex with a twist inserted, we associate the collection
that we obtain by performing the vertex replacements. Applying a Reidemeister I move and
planar isotopy, we obtain the collection corresponding to resolving a 4-valent vertex without
a twist, as shown below:

,, , ,

,, , ,

,

,

For an oriented 4-valent vertex with a twist, we have:

, , ,

, , ,
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Note that the collection in the second row above contains the untwisted vertex replacements.
Similar to our example for an oriented vertex for type IV, this is only one of a few possible
orientations. As before, we only consider one orientation for this proof because all the other
cases will resolve into similar sets with different orientations. Therefore, in both unoriented
and oriented cases, the invariance under the move of type V is upheld, at least for 4-valent
vertices.

Now in general, we need to show that the statement holds for an n-valent vertex in D,
where n > 3. For the generalized Reidemeister move of type IV to hold, we need to have
the collection from a diagram with a strand to the left of the vertex to be the same as the
collection from a diagram with a strand to the right of the vertex. This move is upheld
because to have matching diagrams between our two collections, we simply have to allow a
strand to slide over or under any given arc and, if the arc is not a free arc, we can apply a
Reidemeister move II. If the arc is free the situation is even simpler since the free arcs are
discarded regardless of their locations in a diagram.

The generalized Reidemeister move of type V is upheld if the collection associated to a
vertex is the same as the collection associated to a vertex with a twist inserted. We noticed
that by only joining two strands at a time at any vertex in D, we eliminate the possibility
of creating an additional crossing, as any crossing is removed when we discard the free arcs
or by applying a Reidemeister move I. Also, every possible way to resolve the vertex will be
present in our collection with the twist inserted, since we do not allow for two strands to be
joined multiple times and our strand orientation does not change when a twist is performed.
Each strand will be joined to every other strand that it is joined to in the original graph,
and the matches between collections will all be made after the arcs are discarded and a
Reidemeister move I have been performed on one of the resulting diagrams. This completes
the proof.

We use the multiset C(D) to construct a more practical set, which we now define.

Definition 8. The weighted state set of a spatial graph diagram D, denoted CW(D), is the
set of ordered pairs (S,mS) where S is a state of D and mS is the multiplicity of S in the
multiset C(D) considered up to Reidemeister moves I-III.

To exemplify this new set, we return to the spatial graph diagrams D1 and D2 in Exam-
ples 2 and 3, respectively. The corresponding weighted state sets are given below:

CW(D1) = {( , 1), ( , 4)}

CW(D2) = {( , 1), ( , 25)}.

The following statement follows immediately from Proposition 7.

Proposition 9. The weighted state set is an ambient isotopy invariant of spatial graphs.

Notice that we could have defined the invariant CW(D) by using instead of the multiplicity
mS, the probability pS that a knot type with diagram S appears in C(D) (in a similar fashion
as in The theory of pseudoknots [4] for the case of pseudoknots), but that does not give us
any advantages over the current definition.
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Remark 10. We note that both of our invariants, C(D) and CW(D), are more powerful than
the similar invariant introduced in Kauffman’s Invariants on graphs in three-space [7], in the
sense that they do better at distinguishing non-equivalent spatial graphs. Under Kauffman’s
invariant, if two distinct spatial graphs produce the same knots when resolved the invariant
will not distinguish them. Under our new invariants, if the two spatial graphs produce the
same knots but not the same number of each type of knot, our invariants will tell us that
the two are not equivalent spatial graphs.

Example 11. Consider the spatial graph diagram D3 given below:

D3 =

The multiset C(D3) that we obtain is

, , = C(D3),

and therefore, the weighted state set of D3 is CW(D3) = {(01, 2), (31, 1)}, where 31 stands
for the trefoil diagram and 01 for the unknot diagram.

Recall the spatial graph diagram D2 in Example 3. The weighted state set of D2 is
CW(D2) = {(01, 25), (31, 1)}. Thus, the two sets of ordered pairs are distinct, and therefore
D2 and D3 do not represent equivalent spatial graphs, which was already clear since the two
graphs have different number of vertices and the vertices have different valency. However,
the invariant used in Kauffman’s Invariants on graphs in three-space [7] does not distinguish
them, as it associates the unknot and the trefoil to both diagrams D2 and D3.

Definition 12. Let G be a spatial graph with diagram D, and let CW(D) = {(Si,mSi
)} be

the weighted state set of D. Let P be a known polynomial invariant for knots and links.
Define a polynomial P associated with the diagram D, as given below:

P(D) =
∑
i

mSi
P (Si),

where the sum is over all ordered pairs in CW(D) and P (Si) is the polynomial invariant P
computed from the knot/link diagram Si.

Remark 13. As examples of polynomial invariants P for knots and links that can be em-
ployed in the previous definition we list the following:

• If G is a directed graph, the states Si are oriented constituent knots or links of G. In this
case, the polynomial P can be the Alexander polynomial which is defined in Alexander’s
Topological invariants of knots and links [2], or the Jones polynomial which can be
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found in Jones’ A polynomial invariant for links via von Neumann algebras [3], or the
HOMFLY-PT polynomial which is discussed in both A new polynomial invariant of
knots and links by Freyd, et. al. [5] and Invariants of links of Conway type by Przytycki
and Traczyk [11].

• If G is an undirected graph, the states Si are unoriented constituent knots or links
of G. In this case, we can employ the Kauffman bracket polynomial which can be
found in State models and the Jones polynomial [6], or the two-variable Kauffman
polynomial which is in An invariant of regular isotopy [8] to play the role for the
knot/link polynomial P .

Theorem 14. The polynomial P(D) is independent on the diagram D for the spatial graph
G. That is, P is an invariant for spatial graphs.

Proof. Let D1 and D2 be diagrams of a spatial graph G. Then D1 and D2 differ by a
finite sequence of the generalized Reidemeister moves. By Proposition 7, we have that
the sets C(D1) and C(D2) are the same up to the Reidemeister moves I-III. Moreover, by
applying a polynomial invariant for knots and links to the diagrams in the two multisets
above, we obtain collections of polynomials that are the same. Taking the sum of all of
the polynomials of the diagrams in C(D1) and separately in C(D2), results in equal sums.
Therefore, P(D1) = P(D2).

3 Second approach and a deletion-contraction recur-

rence relation

For a spatial graph G containing vertices of large valency, there are many constituent knot
and links in G and therefore many states in the collection C(D), where D is a diagram of G.
To find all of the corresponding states for the diagram D may be cumbersome, and thus we
wanted to know whether the invariants for spatial graphs that we have defined so far satisfy
a contraction-deletion recurrence relation. We have arrived at a positive answer for the case
of undirected graphs, if we modify our approach to the collection of knot and link diagrams
associated to D, as we now explain.

Recall that the multiset C(D) contains all of the states associated to D, where each state
is a diagram of a constituent knot or link of the spatial graph G with diagram D. In addition,
a constituent knot or link diagram may appear more than once in C(D). It turns out that
if we consider a modified collection, C(D), containing each constituent knot or link diagram
exactly once, we obtain a contraction-deletion recurrence formula for the new collection C(D)
(which is an invariant for G), and consequently, for the corresponding polynomial invariants
for G. We refer to the collection C(D) as the constituent link diagram set of D.

It is important to observe that C(D) may still be a multiset, since distinct constituent
knots/links of G may be equivalent knots/links.
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Example 15. Consider again the diagrams D1 and D2 from Examples 2 and 3, respectively:

D1 = D2 =

Their corresponding constituent link diagram sets are as follows:

C(D1) = , ,L R L R

C(D2) = , , , , , ,

, , , ,

Proposition 16. If D and D′ are diagrams of ambient isotopic spatial graphs, then the sets
C(D) and C(D′) are the same, up to Reidemeister moves I-III. That is, when regarded up to
Reidemeister moves I-III, the collection C( · ) is an ambient isotopy invariant for (unoriented
and oriented) spatial graphs.

Proof. The proof is similar to that for Proposition 7.

Similar to our approach in Section 2, we can use the constituent link diagram set C(D) to
construct various polynomials associated to the original spatial graph diagram D by applying
known knot/link polynomial invariants to the elements in the collection C(D).

Definition 17. Let G be a spatial graph with diagram D, and let C(D) be the constituent
link diagram set of D with elements Di. Let P be a polynomial invariant for knots and links.
Define a polynomial P associated with the diagram D and given by the following formula:

P(D) =
∑
i

P (Di),

where the sum is over all elements Di in C(D) and P (Di) is the polynomial P associated to
the knot or link diagram Di.

Theorem 18. If D and D′ are diagrams of isotopic spatial graphs, then P(D) = P(D′).
That is, P is an isotopy invariant for spatial graphs.

Proof. The proof follows similarly as that for Theorem 14, by replacing the collection C( · )
with C( · ) and the polynomial P( · ) with P( · ).
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Remark 19. If the polynomial P is an ambient (or regular) isotopy invariant for knots and
links then our polynomials P and P are ambient (or regular) isotopy invariants for spatial
graphs.

From here on we restrict to undirected spatial graphs. Let G be an undirected spatial
graph and e an edge of G. Let G/e be the graph obtained from G by contracting the edge
e, and G− e be the graph obtained from G by deleting the edge e, as shown below:

G = , G/e =
e

, and G− e =

The three diagrams above are parts of spatial graph diagrams that are the same except in
the neighborhood where they differ as shown. Note that the two vertices incident with the
edge e in G do not need to be of the same valency; we represent them as having the same
valency for purely aesthetic reasons. For simplicity, we will denote here both a spatial graph
and its diagram by the symbol G.

Using the second approach where we only consider the distinct constituent knots and links
of a spatial graph, we found a relation among the collections C(G), C(G/e) and C(G − e).
To exemplify this relation, we start by looking at the case when we have vertices of small
valency. For example, if the two vertices incident to the edge e in G are trivalent, the
corresponding collection C(G) is as shown below:

e , , ,,,,

where all of the resulting free arcs have been discarded. For the vertex in G/e obtained by
contracting the edge e, we have the following associated collection C(G/e):

, , , , ,

Finally, the corresponding collection C(G− e) in this case is as follows:

since vertices of valency two are ignored. Looking at the three collections above, we see that
we have arrived at the relation C(G/e) = C(G) \ C(G − e), at least for the particular case
considered so far. We will show now that this relation holds in general.

Theorem 20. The following contraction-deletion recurrence relation holds:

C

( )
= C

( )
\ C

( )
,
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where the three diagrams are parts of spatial graph diagrams that are the same except in the
neighborhood where they differ as shown. The equality can also be written as

C(G/e) = C(G) \ C(G− e),

where G is a spatial graph diagram and e is an edge of G.

Proof. When we consider the distinct cycles that can be obtained by resolving the two
vertices incident with the edge e in G, we find that we can both join strands on the left and
right of the edge e separately, as well as join a strand on the left with a strand on the right
of e. Thus, in a small neighborhood of the edge e, the constituent knot and link diagrams of
G include diagrams that contain one strand, as well as diagrams that contain two strands.
When we resolve the two vertices in G− e that result after deleting the edge e, we can only
join the left and right strands separately. Therefore, in a small neighborhood of these two
vertices in G−e, all of the constituent knot and link diagrams in G−e will have two strands.
Moreover, when we resolve the vertex in G/e obtained from G by contracting the edge e, we
can only have one strand (in a small neighborhood of this vertex) in each of the constituent
knot or link diagram in G. Furthermore, we observe that the diagrams in C(G) with two
strands are the same as those in C(G − e), and that the diagrams with one strand in C(G)
are exactly the same as those in C(G/e). Therefore, the statement holds.

Remark 21. An equivalent statement of the relation can be written as

C(G) = C(G/e) ∪ C(G− e).

In the proof of Theorem 20, we showed that C(G/e) = C(G) \ C(G− e), which tells us that
the new statement is a disjoint union. Then we can also write

|C(G)| = |C(G/e)|+ |C(G− e)|.

This equality gives us a method of finding the number of elements in each set, if desired.

Example 22. Consider again the graph diagram D3 from Example 11.

D3 =

We will assign the label e to the red edge that joins the two vertices in the left hand corner
of the diagram. Then D3/e and D3 − e are the graph diagrams obtained by contracting the
edge e and deleting the edge e, respectively. All three diagrams are shown below.

D3 = , D3/e =

e

, and D3 − e =
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We know from Example 11 that the multiset C(D3) that we obtain is

, , = C(D3).

Since D3 − e has only bivalent vertices, we have only a single diagram in the collection
C(D3 − e). Thus we have that

= C(D3 − e),

Then we have that

C(D3) \ C(D3 − e) = ,

Now, let’s consider C(D3/e). After discarding the free arcs, we have that

, = C(D3/e),

Notice that

, = ,

which demonstrates that
C(D3/e) = C(D3) \ C(D3 − e).

We want to emphasize that the contraction-deletion recurrence relation in Theorem 20
is relevant because it can be used to compute the polynomial P of a spatial graph in terms
of polynomials of other spatial graphs with vertices of smaller valency, as explained in the
following statement.

Corollary 23. Let G be a spatial graph and e an edge of G. Then

P(G/e) = P(G)− P(G− e),

or equivalently,

P

( )
= P

( )
− P

( )
,

where the three diagrams are parts of spatial graph diagrams that are the same except in the
neighborhood where they differ as shown.
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Proof. This follows at once from Theorem 20 and the definition of the polynomial P .

Example 24. Recall the diagrams from Example 22.

D3 = , D3/e =

e

, and D3 − e =

To demonstrate Corollary 23, we will be implementing the Kauffman bracket for unoriented
knots. It is well known that the Kauffman bracket for the trivial diagram of the unknot is 1
and for the diagram of the unknot with one twist is −A3 or −A−3, depending on the sign of
the twist. Moreover, the Kauffman bracket for the trefoil is A−7 −A−3 −A5. Thus we have
that

P

( )
= 1 + (A−7 − A−3 − A5) + (−A3),

P

( )
= 1 + (−A3), P

( )
= A−7 − A−3 − A5.

Therefore, we have the following equality

1− A3 = (1 + A−7 − A−3 − A5 − A3)− (A−7 − A−3 − A5)

which implies that

P(D3/e) = P(D3)− P(D3 − e).

4 Open Questions

We close with a few open questions:

1. Does there exist a contraction-deletion recurrence relation for oriented spatial graphs?

2. We only were able to create a contraction-deletion recurrence relation by considering
the collection C of a graph diagram. Does there exist a modified contraction-deletion
recurrence relation by considering the collection C instead?

3. Is there a recurrence relation among the collections of two graphs and their connected
sum?

4. Can we utilize the concept of the minor of a graph to describe our collections C and C?
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