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Abstract. We study the presumably unnecessary convexity hypothesis in the theorem of
Chung et al. [CFS] on perimeter-minimizing planar tilings by convex pentagons. We prove
that the theorem holds without the convexity hypothesis in certain special cases, and we
offer direction for further research.

Acknowledgements: This paper is work of the 2012 “SMALL” Geometry Group, an undergrad-
uate research group at Williams College, continued in Martin’s thesis [M]. Thanks to our advi-
sor Frank Morgan, for his patience, guidance, and invaluable input. Thanks to Professor William
Lenhart for his excellent comments and suggestions. Thanks to Andrew Kelly for contributions to
the summer work that laid the groundwork for this paper. Thanks to the National Science Foun-
dation for grants to the Williams College “SMALL” Research Experience for Undergraduates, and
Williams College for additional funding. Additionally thank you to the Mathematical Association
of America (MAA), MIT, the University of Chicago, the University of Texas at Austin, Williams
College, and the NSF for a grant to Professor Morgan for funding in support of trips to speak at
MathFest 2012, the MAA Northeastern Sectional Meeting at Bridgewater State, the Joint Meetings
2013 in San Diego, and the Texas Undergraduate Geometry and Topology Conference at UT Austin
(texTAG).



RHIT UNDERGRAD. MATH. J., VOL. 16, No. 1 PAGE 25

Figure 1: Tilings by Cairo and Prismatic pentagons provide least-perimeter tilings by unit-area
convex pentagons. Can the convexity hypothesis be removed?

1 Introduction

1.1 Tilings of the plane by pentagons

Chung et al. [CFS, Theorem 3.5] proved that certain “Cairo” and “Prismatic” pentagons provide
least-perimeter tilings by (mixtures of) convex pentagons, and they conjecture that the restriction
to convex pentagons is unnecessary. In this paper we consider tilings by mixtures of convex and
non-convex pentagons, and we prove that under certain conditions the convexity hypothesis in the
results of Chung et al. can in fact be removed. The conjecture remains open.

Throughout the paper, we assume all tilings are unit area and edge-to-edge. We focus on
tilings of flat tori, although Section 5 begins the extension of our results to the plane by limit
arguments. Our main results are Theorems 3.10 and 4.6. Theorem 3.10 shows that tilings by
an efficient pentagon, defined as a pentagon with perimeter less than a Cairo pentagon, and non-
convex quadrilaterals cannot have less perimeter than Cairo or Prismatic tilings. Theorem 4.6
shows that dihedral tilings, meaning tilings in which every tile is congruent to one of two distinct
original tiles, by efficient pentagons and a so-called Type 2 non-convex pentagons (see Proposition
2.7) cannot have less perimeter than Cairo or Prismatic tilings.

The general strategy employed in our main results begins with the assumption that there exists
a mixed tiling with convex pentagons and non-convex pentagons (or in Section 3, quadrilaterals)
that has less perimeter than a Cairo or Prismatic tiling. The first step in the proof is to show that
such tilings must have at least one degree-four efficient vertex (Propositions 3.5 and 4.3).

We then obtain a large lower bound on the ratio of the number of efficient to non-convex pen-
tagons (or quadrilaterals in Section 3; Propositions 3.7 and 4.4). This is primarily done by showing
that in order to tile the plane, the convex pentagons must have perimeter substantially higher than
the regular pentagon, though a high bound on the perimeter of the non-convex pentagons would
also suffice. Second, we show (Theorems 3.10 and 4.6) that the ratio of the number of convex pen-
tagons to non-convex pentagons (or quadrilaterals) has an upper bound by bounding the number
of efficient vertices and counting the number of angles appearing at such vertices. We derive a
contradiction by showing that the upper bound is less than the lower bound, and thus conclude that
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a mixed tiling of efficient convex and non-convex pentagons cannot have perimeter less than that
of a Cairo/Prismatic tiling.

In addition to our main results, we categorize non-convex pentagons in Proposition 2.7, and
we bound the angles and edge-lengths of efficient pentagons (Propositions 2.15 and 2.17). We
further restrict the behavior of efficient pentagons in perimeter-minimizing tilings in Proposition
2.19, which shows that some efficient pentagons in the tiling must have five angles that tile with
the efficient pentagons’ angles.

Definition 5.1 generalizes the concept of the perimeter of a tiling to the planar case by defining
the perimeter ratio as the limit supremum of the perimeters of the tiling restricted to increasingly
large disks. Lemma 5.2 shows that the limit infimum of the perimeter to area ratio of tiles com-
pletely contained within disks of radius R centered at the origin does not exceed the perimeter ratio
of a tiling. Propositions 5.3 and 5.4 generalize our results on the lower bound of the ratio of convex
to non-convex pentagons in the general case, and in the special case when all the convex pentagons
in the tiling are efficient. Proposition 5.5 shows that planar tilings by non-convex pentagons and
pentagons with angles strictly between π/2 and 2π/3 have a perimeter ratio higher than that of a
Cairo/Prismatic tiling, generalizing Proposition 2.13. Finally, Proposition A.2 finds the perimeter-
minimizing unit-area equilateral convex pentagon that tiles the plane monohedrally, that is, only
with copies of itself.

1.2 Organization

Section 2 explores tilings of large flat tori by efficient and non-convex pentagons. It provides results
restricting the angles and edge-lengths of efficient pentagons and describes particular efficient
pentagons of interest. Additionally it limits the ways in which efficient and non-convex pentagons
interact in mixed tilings with perimeter less than Cairo/Prismatic, if such tilings exist, and considers
efficient and non-convex pentagons outside the context of a tiling. The propositions in Section 2
are used to prove the main results in Sections 3 and 4. Section 3 shows that a tiling of a large, flat
torus by an efficient pentagon and any number of non-convex quadrilaterals cannot have perimeter
less than a Cairo/Prismatic tiling. Section 4 shows that a dihedral tiling of a large flat torus by an
efficient pentagon and so-called Type 2 non-convex pentagons cannot have perimeter less than a
Cairo/Prismatic tiling. Section 5 generalizes results on large, flat tori to similar results on the plane
by limit arguments. Section 6 considers special cases of the main conjecture, such as dihedral
tilings by efficient non-convex pentagons, where it may be easier to show that Cairo and Prismatic
tilings are perimeter minimizing. The final appendix section provides the perimeter-minimizing
equilateral pentagon that tiles the plane monohedrally.

2 Pentagonal Tilings

In 2001, Thomas Hales [H, Theorem 1-A] proved that the regular hexagon provides a most efficient
unit-area tiling of the plane. Of course, for triangles and quadrilaterals the perimeter-minimizing
tiles are the equilateral triangle and the square. Unfortunately, the regular pentagon doesn’t tile.
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There are, however, two nice pentagons which do tile.

Definitions 2.1. While the terms are sometimes used in a broader sense, we define a pentagon as
Cairo or Prismatic if it has three angles of size 2π/3, two right angles, nonadjacent or adjacent,
respectively, and is circumscribed about a circle, as in Figure 1. For unit area, both have perimeter
2
√

2+
√

3≈ 3.86.
In this paper, we assume that all tilings by polygons are edge-to-edge; that is, if two tiles are

adjacent they meet only along entire edges or at vertices.
We say that a unit-area pentagon is efficient if it has a perimeter less than or equal to that of a

Cairo pentagon’s, and that a tiling is efficient if it has a perimeter per tile less than half the perimeter
of a Cairo pentagon’s. Note that a non-convex pentagon can never be efficient because it has more
perimeter than a square, the optimal quadrilateral. An efficient vertex is a vertex in a tiling which
is surrounded exclusively by efficient pentagons.

Finally, given a sequence of angles ai, we say that an angle a j tiles if for some positive integers
mi including m j, ∑miai = 2π . Unless otherwise specified, when we say an angle of a particular
n-gon tiles, the sequence ai is the interior angles of the n-gon. Similarly, if an angle tiles a degree-n
vertex, the sequence is the other n−1 angles at that vertex unless otherwise specified.

Remarks 2.2. Note that an efficient pentagon cannot tile monohedrally. If it did, it would violate
Theorem 2.3. But an efficient pentagon could have five angles that tile.

An efficient pentagon cannot have more than two edges greater than
√

2 because by definition
its perimeter is less than a Cairo pentagon’s, about 3.86, which is less than 3

√
2.

While isoperimetric tilings by pentagons have been considered only recently [CFS], there has
been extensive research on pentagonal tilings in general. There are 14 known types of convex
pentagons which tile the plane monohedrally, but no proof that these types form a complete list,
despite notable recent progress by Bagina [B2] and Sugimoto and Ogawa [SugO], [Sug1], [Sug2],
[Sug3]. There is a complete list for equilateral convex pentagons ([HH1], see also [B1]) and
apparently for all equilateral pentagons [HH2]. These sources provide partial results regarding the
properties of convex pentagons which tile, and focus their attention on showing that the known list
of 14 types of pentagonal tiles is complete. Hirschhorn and Hunt consider non-convex equilateral
pentagons which tile the plane ([HH2]), but more general studies of types of non-convex pentagons
which tile are absent from the literature, as are any in-depth considerations of tilings by mixtures
of convex and non-convex pentagons.

Chung et al. [CFS, Theorem 3.5] proved that Cairo and Prismatic pentagons provide optimal
ways to tile the plane using (mixtures of) convex pentagons, but were unable to remove the convex-
ity assumption. We conjecture that their results hold without the convexity assumption, and rule
out certain tilings with mixtures of convex and non-convex pentagons, though the main conjecture
remains open. We begin with the main result from Chung et al.

Theorem 2.3. [CFS, Theorem 3.5] Perimeter-minimizing planar tilings by unit-area convex poly-
gons with at most five sides are given by Cairo and Prismatic tiles.

Various times throughout the paper we use the following planar case of a theorem of Lindelöf
([Li], see Florian [F, pp. 174-180] and Chung et al. [CFS, Proposition 3.1] from before the authors
knew about Lindelöf):
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Figure 2: A non-convex pentagon can have one or two interior angles greater than π .

Theorem 2.4 (Lindelöf’s Theorem [Li]). For n given angles, the n-gon circumscribed about a
circle is uniquely perimeter minimizing for its area.

Chung et al. give an explicit formula for finding the perimeter of an n-gon circumscribed about
a circle and add an immediate corollary to the result:

Lemma 2.5. [CFS, Proposition 3.1] Scaled to unit area, an n-gon with angles 0 < ai ≤ π has
perimeter greater than or equal to

2

√
n

∑
i=1

cot(ai/2), (1)

with equality holding if and only if the n-gon is circumscribed about a circle. For convex n-gons,
since cotangent is strictly convex up to π/2, the more nearly equal the angles, the smaller the
perimeter.

The following proposition follows directly from the above, and will be useful later on in prov-
ing our main results.

Proposition 2.6. If two angles in a pentagon average less than π/2 then the pentagon cannot be
efficient. If two angles average exactly π/2, the pentagon is efficient only if it is Cairo or Prismatic.

Proof. Suppose that at least two angles are each less than or equal to π/2. By Lemma 2.5, the
perimeter is uniquely minimized when exactly two angles equal π/2, the other angles are equal,
and the pentagon is circumscribed about a circle, that is, when the pentagon is Cairo and Prismatic.
Therefore the pentagon is not efficient if the average of two angles is less than π/2, and if the
average is equal to π/2 the pentagon is Cairo Prismatic.

We begin our analysis of non-convex pentagons, first by categorizing them into two types.

Proposition 2.7. There are two types of non-convex pentagons, as in Figure 2:

1. a non-convex pentagon with one interior angle larger than π ,

2. a non-convex pentagon with two interior angles (these can be adjacent or non-adjacent)
larger than π whose average is less than 3π/2,

A unit-area Type 1 pentagon has perimeter greater than a square’s (4). A unit-area Type 2 pentagon
has perimeter greater than an equilateral triangle’s (about 4.559).
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Proof. If a pentagon has more than two interior angles larger than π , then the sum of the interior
angles will be greater than 3π , which is a contradiction since the sum of all the interior angles of a
pentagon is always 3π . Therefore, either it has one angle larger than π , as in Case 1, or it has two.
If it has two angles larger than π , and the average of the two angles is greater than 3π/2, then they
will sum to more than 3π , which is a contradiction. Hence, the average of the two angles must be
less than 3π/2. These large angles are either adjacent or not adjacent, so we have Case 2.

To prove the final statement, just note that taking the convex hull and then scaling down to unit
area reduces perimeter, and that the square and equilateral triangle minimize perimeter for given
area and number of sides.

Remark 2.8. By Proposition 2.7 a unit-area Type 1 non-convex pentagon must have at least one
edge with length at least 4/5.

We now bound the edge-lengths of unit-area non-convex quadrilaterals and then extend this
bound to Type 2 non-convex pentagons.

Proposition 2.9. The quadrilateral formed by taking a right, isosceles triangle and adding a vertex
at the midpoint of the hypotenuse, minimizes longest edge-length for given area among quadrilat-
erals with an angle measuring π .

Proof. Given two sides of length at most a, a right isosceles triangle with sides of length a maxi-
mizes area. The result follows.

Lemma 2.10. For a unit-area non-convex quadrilateral, some edge must be greater than or equal
to
√

2.

Proof. Assume to the contrary that there existed a unit-area non-convex quadrilateral with four
edges less than

√
2. Replacing the non-convex angle with a straight line with a vertex in the center

and scaling down to unit area would contradict Proposition 2.9.

Lemma 2.11. For a unit-area Type 2 non-convex pentagon, some edge must be greater than or
equal to

√
2.

Proof. Assume to the contrary that there existed a unit-area non-convex pentagon with five edges
less than

√
2. Replacing one of the non-convex angle with a straight line with a vertex in the center

and scaling down to unit area would contradict Lemma 2.10.

Chung et al. [CFSVW, Proposition 2.11] prove that in a pentagonal tiling of a flat torus with
perimeter per tile less than a Prismatic tiling, the ratio of convex to non-convex pentagons is greater
than 2.6. We can immediately infer from their proof that the ratio of efficient pentagons to non-
convex pentagons is greater than 2.6. We further strengthen this result.

Proposition 2.12. Let T be a tiling of a flat torus by unit-area pentagons, with perimeter per
tile less than or equal to half the perimeter of a Prismatic pentagon. Then the fractions C1, N1,
and N2 of efficient, Type 1 non-convex, and Type 2 non-convex pentagons in the tiling satisfy
C1 > 2.6N1 +13.4N2.
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Proof. We follow a similar proof given by Chung et al. [CFSVW, Proposition 2.11]. The perime-
ters of a regular pentagon, a Cairo/Prismatic pentagon, the unit square, and the unit-area equilateral

triangle are P0 = 2
√

5 4
√

5−2
√

5, P1 = 2
√

2+
√

3, P2 = 4 and P3 = 3
√

4/
√

3. Let C2 be the frac-
tion of non-efficient convex pentagons in the tiling. Since each edge appears in the perimeter of
two tiles, twice the perimeter per tile is at least

C1P0 +C2P1 +N1P2 +N2P3 ≤ P1 = (C1 +C2 +N1 +N2)P1.

Therefore,

C1 ≥ N1
P2−P1

P1−P0
+N2

P3−P1

P1−P0
> 2.6N1 +13.4N2.

Under certain conditions, the convexity hypothesis is easy to rule out, as in the following
proposition.

Proposition 2.13. A unit-area tiling of a flat torus by non-convex pentagons and pentagons with
angles strictly between π/2 and 2π/3 has more perimeter per tile than half the perimeter of a
Prismatic pentagon.

Proof. Assume, on the contrary, that there exists a unit-area tiling of a flat torus by non-convex
pentagons and convex pentagons with angles strictly between π/2 and 2π/3 which has less perime-
ter per tile than half the Prismatic pentagon’s. By Proposition 2.12, the ratio of convex pentagons
to non-convex pentagons must be greater than 2.6. Since all the angles of the convex pentagons
are strictly between π/2 and 2π/3, there is at least one non-convex pentagon at each vertex. By
definition, a non-convex pentagon has at least one angle greater than π . Thus at least 1/5 of the
vertices must contain an angle greater than π . At such vertices there is at most one convex pen-
tagon. At the remaining vertices, there are at most three convex pentagons, because their angles
are greater than π/2. Thus the ratio of convex pentagons to non-convex pentagons is at most
3(4/5)+1(1/5) = 2.6. This is a contradiction of Proposition 2.12, which says the ratio of convex
to non-convex pentagons must be strictly greater than 2.6.

Remark 2.14. The reason we need the angles to be strictly between π/2 and 2π/3 is that our
argument depends on having no vertices completely covered by convex pentagons. We deal with
other cases separately. Some special cases are easy to eliminate. For example, if a pentagon has
two 3π/4 angles and three π/2 angles, then the perimeter-minimizing pentagon has perimeter
equal to about 3.91, which is more than the Prismatic pentagon’s.

The next few propositions better describe efficient pentagons by bounding their angles and
edge-lengths.

Proposition 2.15. The interior angles ai of an efficient pentagon satisfy 80.91◦ < ai < 142.29◦.
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Figure 3: A pentagon with angles far from 108◦ has lots of perimeter.

Figure 4: A method for scaling pentagon ABCDE down to unit-area, keeping edge DE fixed -
replacing line segment AE with A3E and decreasing perimeter.

Proof. By Lemma 2.5, it is enough to check the proposition when the smallest angle is 80.92◦

and the others are equal and, similarly, when the largest angle is 142.29◦ and the others are equal.
At these values, the perimeter is about 3.8638 (to four decimal places), greater than the Prismatic
perimeter of about 3.8637.

Corollary 2.16. An efficient vertex in a tiling must have degree equal to three or four.

Figure 3 shows the excess perimeter over the Prismatic perimeter for pentagons circumscribed
about a circle with one angle a and the other angles equal.

We now provide an alternate proof of a proposition of Chung et al.:

Proposition 2.17. [CFSVW, Lemma 3.6] The perimeter-minimizing unit-area pentagon with a
given edge-length e is the one inscribed in a circle with one edge of length e and the other four
equal.

Proof. Let ABCDE be a perimeter-minimizing pentagon with DE of given length l. It is well
known that for given edge-lengths, the n-gon inscribed in a circle uniquely maximizes area. If
the ABCDE were not inscribed in a circle, we can increase its area by inscribing it, keeping the
edges, and thus the perimeter, fixed. We then scale back down to unit area keeping DE fixed.
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One method to perform this is shown in Figure 4 – we simply replace line segment EA with line
segment EAi until we arrive at unit area. This decreases the perimeter, contradicting that ABCDE
is perimeter-minimizing. Therefore ABCDE must be inscribed in a circle.

Now we show that the other four edges must be equal. Suppose two such adjacent edges, say AB
and BC, have different lengths. We can replace triangle ABC with an isosceles triangle AB′C such
that |AB′|+ |B′C| = |AB|+ |AC|, but AB′C has greater area than ABC. We do not need to worry
about AB′C overlapping or bumping into another edge or vertex. Scaling down to unit-area but
keeping DE fixed (using the method in Figure 4) we have decreased the perimeter, a contradiction
as ABCDE is perimeter minimizing. Therefore the other four edge-lengths must be equal, and the
proposition follows.

Lemma 2.18. A unit-area efficient pentagon cannot have an edge greater than 1.081 or less than
.4073.

Proof. By Proposition 2.17, for a given edge-length e, the pentagon X inscribed in a circle with
four equal sides and one side e minimizes perimeter. Let r be the radius of the circle and α be the
angle between rays from the center of the circle to adjacent vertices of the four equal sides. Then
the perimeter and area formulae for P are:

P = 8r sin(α/2)+2r sin(2α),

A = 2r2 sin(α)− (1/2)r2 sin(4α).

By assumption the area is one and the perimeter of a Cairo/Prismatic pentagon is approximately
3.86, our value for P. Then solving for r2 we get

r2 =
3.862

(8sin(α/2)+2sin(2α))2

and therefore
α ≈ 62.8942,81.0705.

From this we conclude that the pentagon is efficient only when

62.8941 < α < 81.0706.

Then e = 2r sin(2α), which implies that .4073 < e < 1.081.

Recall that an angle a j tiles if given a sequence of angles ai, there exist some positive integers
mi including m j such that ∑miai = 2π . Then for tilings by efficient pentagons and Type 2 non-
convex pentagons we have the following:

Proposition 2.19. Consider a unit-area tiling of a flat torus by efficient pentagons and Type 2
non-convex pentagons. Assume that each efficient pentagon has at most four angles which tile
with efficient pentagons. Then the tiling has more perimeter per tile than half the perimeter of a
Prismatic pentagon.
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Proof. Because the efficient pentagon has at most four angles which tile, it cannot be surrounded
entirely by efficient pentagons. Therefore the ratio of efficient pentagons to non-convex pentagons
is at most the maximum number of efficient pentagons which can surround a non-convex pentagon.

At the three angles of the non-convex pentagon which are less than π , there are at most four
efficient pentagons. If there were five or more, then the angles of the efficient pentagon would
be too small, in violation of Proposition 2.15. By the same logic, there are at most two efficient
pentagons at the two angles in the non-convex pentagon which is greater than π . Since the tiling is
edge-to-edge, five of the efficient pentagons surrounding the non-convex pentagon appear at two
vertices, and we must avoid double counting these. So the total number of efficient pentagons
surrounding the non-convex pentagon is at most 4(3)+ 2(2)− 5 = 11. Then the ratio of efficient
pentagons to non-convex pentagons is at most eleven to one. Therefore by Proposition 2.12 the
tiling has more perimeter per tile than half that of a Prismatic pentagon.

We have a similar result for certain Type 1 non-convex pentagons, though the proposition does
not hold for all Type 1 non-convex pentagons.

Proposition 2.20. Consider a tiling of a flat torus by efficient pentagons and Type 1 non-convex
pentagons with perimeter greater than 4.537. Assume that each efficient pentagon has at most four
angles which tile with efficient pentagons. Then the tiling has more perimeter per tile than half the
perimeter of a Prismatic pentagon.

Proof. Because the efficient pentagon has at most four angles which tile, it cannot be surrounded
entirely by efficient pentagons. Therefore the ratio of efficient pentagons to non-convex pentagons
is at most the maximum number of efficient pentagons which can surround a non-convex pentagon.

At the four angles of the convex pentagon which are less than π , there are at most four efficient
pentagons, otherwise the efficient pentagons would contradict Proposition 2.15. By the same logic,
there are at most two efficient pentagons at the angle which is greater than π . Since the tiling is
edge-to-edge, five of the efficient pentagons surrounding the non-convex pentagon will appear at
two vertices, and we need to avoid double counting these. Then the ratio of efficient pentagons to
non-convex pentagons is at most 4(4)+2−5 = 13.

Assume such a tiling had perimeter per tile less than half that of a Cairo pentagon. Let P0, P1,
and P2 denote the perimeter of a regular pentagon, a Cairo/Prismatic pentagon, and 4.537. If there
are m convex pentagons and n non-convex pentagons then by hypothesis

mP0 +nP2 < (m+n)P1,

which implies
m
n
>

P1−P2

P0−P1
> 13,

which is a contradiction.

The following will be useful in proving our main results, as it limits the perimeter of a certain
class of efficient pentagons.
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Figure 5: The perimeter-minimizing pentagon with five angles that tile, at least one angle of which
can tile a degree-four vertex.

Proposition 2.21. The perimeter-minimizing pentagon P with five angles that tile, at least one
angle of which can tile a degree-four vertex, is the one circumscribed about a circle with one 90◦

angle, three 108◦ angles, and one 126◦ angle, as in Figure 5. The perimeter is approximately
3.8414.

Proof. First note that such a perimeter-minimizing pentagon must exist. Consider a sequence of
such pentagons Pn with perimeter converging to the infimum. We may assume that the pentagons
are convex (see Definitions 2.1). By standard compactness, the desired limit exists.

Since by hypothesis the pentagon can tile a degree-four vertex, we have the following cases:

Case 1: Exactly one angle tiles a degree-four vertex.

Note that this implies there must be one 90◦ angle and that the other four angles must tile a
degree-three vertex. If the other four angles tiled a vertex of degree greater than or equal to five the
pentagon would not be efficient by Corollary 2.16. We proceed to cover all the cases with regards
to which of the four non-right angles are equal to one another.

First note that these four angles cannot all be equal, as they would equal (112.5◦), which does
not tile with itself or 90◦.

Next suppose three of the other angles, x, are equal and one, y, is different. Then

3x+ y = 450◦,

as the angles of a pentagon sum to 540◦. Note that as x and y are not equal to each other, they
cannot both equal 120◦. This implies they must tile together in some way. So either 2x+ y = 360◦

or x+2y = 360◦. In the first case y = 180◦, which violates Proposition 2.15. The second has has
x = 108◦ and y = 126◦, and is the pentagon P.

Next suppose there are two pairs of equal angles, denoted x and y. Then 2x+ 2y = 450◦ and
as before either 2x+ y = 360◦ or x+2y = 360◦. In either case there are three 90◦ angles and two
135◦ angles. This pentagon has perimeter approximately 3.9132, greater than the perimeter of P.

Next suppose two angles are equal and two are unequal. Let x denote the equal angles and y
and z the unequal ones. Then 2x+ y+ z = 450◦. First note that if x, y, or z tile with the 90◦ angle,
they will equal either 180◦ (if there are two 90◦ angles tiling with them) or 135◦ (if there is one 90◦

and two copies of x). The first case is not efficient by Proposition 2.15. The second case does not
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have perimeter less than P by Proposition 2.6. So x, y , and z tile together. If x+ y+ z = 360◦, this
implies that x = 90◦, a contradiction that exactly one angle tiles a degree-four vertex. If x = 120◦

and it tiles with y or z the optimal pentagon of this form is Cairo, which has perimeter greater
than P. If x doesn’t tile with y or z then y and z tile together. Without loss of generality, assume
2y+ z = 360◦. Then since we also know y+ z = 210◦ we conclude that y must be 150◦, which
means the pentagon is not efficient by Proposition 2.15.

So the possible cases for how x tiles are either 2x+ y = 360◦ or x+2y = 360◦, with x 6= 120◦

(if x tiles with z just switch the labels on y and z). First note that if 2x+ y = 360◦ and 2z+ x =
360◦, x = 180◦ which contradicts Proposition 2.15. Now if 2x+ y = 360◦ then additionally either
2y+ z = 360◦ or 2z+ y = 360◦. Since we know 2x+ y+ z = 450◦, we can solve for x,y and z. In
the first case, z = 90◦, so the pentagon does not have perimeter less than P by Proposition 2.6. In
the second case, y = 180◦, which means the pentagon is not efficient by Proposition 2.15.

Similarly if x+ 2y = 360◦ either 2y+ z = 360◦ or 2z+ y = 360◦. Then we have two possible
pentagons: one has x = 108◦, y = 126◦, and z = 108◦, and so is just P, and the second has x =
720◦/7, y = 900◦/7, and z = 810◦/7, and perimeter greater than 3.849. This completes the case
when two angles are equal and two are unequal.

The final subcase is when all four angles are unequal. Then w+x+y+ z = 450◦. We have two
options with regard to how angle x tiles - either x+ y+ z = 360◦ or 2x+ y = 360◦ (switching the
labels on x and y allows us to assume this). If x+ y+ z = 360◦, then w = 90◦. As x,y and z are not
equal, this implies the pentagon is not efficient.

Assume that
2x+ y = 360◦.

Since w+ x+ y+ z = 450◦, we can express x = z+w−90◦ and y = 540◦−2(z+w). Substituting
in s for z + w, we know that the perimeter-minimizing pentagon satisfying these requirements
has angles measuring 90◦,s− 90◦,540◦− 2s,s/2,s/2. Note that here we assume w = z, and do
not consider tiling by these two angles. While this violates the conditions on these pentagons, it
provides a lower bound for pentagons of this general form.

The only case when these pentagons have perimeter less than 3.8414 is when 210◦ < s < 216◦,
by applying Lemma 2.5 and using Mathematica to calculate the perimeter for all s in the allowable
range. So 210◦ < z+w < 216◦. If 2z+w = 360◦ or z+2w = 360◦ then either w or z is greater than
144◦, so the pentagon will not be efficient by Proposition 2.15. Also note that 2x+ z = 360◦ and
2z+y = 360◦ are not allowable, as z is not equal to x or y. If z+90◦+x = 90◦ or z+y+90 = 360◦,
this implies that x or y equals 270◦−w. The largest an angle can be in a pentagon with one 90◦

angle and perimeter less than 3.8414 is 127◦. This implies x or y is at least 143◦, which implies
that the pentagon is not efficient by Proposition 2.15.

So either 2y+z= 360◦ or 2z+x= 360◦. Then given that x+y+z+w= 450◦ and 2x+y= 360◦,
we have three equations and four variables. Putting everything in terms of w, we get two pentagons.
One has angles x = (450◦−w)/2, y = 60◦+ 2w/3 and z = 240◦− 4w/3. The other has angles
x = 2(90◦+w)/3, y = 240◦−4w/3 and z = 150◦−w/3. Using Lemma 2.5 and Mathematica, we
can plot the minimum perimeter in terms of w. We observe that for no value of w will the perimeter
be less than 3.8414.

Then we have seen that no matter how the other four angles interact, pentagons with exactly
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one angle which can tile a degree-four vertex have perimeter greater than or equal to P.

Case 2: Exactly two angles tile a degree-four vertex.

If they are of the form x+ y = 180◦, by Lemma 2.6 the perimeter will be at least that of a
Cairo pentagon’s, which is greater than the perimeter of P. If they are of the form x+ 3y = 360◦

and x < y then the average of the two must be less than 90◦, so the perimeter will be greater than
that of a Cairo pentagon. If y < x then for given y the pentagon with least perimeter has angles
y,360◦− 3y,(180◦+ 2y)/3. Then for values of y from 80.92◦ to 90◦ - the only allowable ranges
for y - we can see graphically that the perimeter is greater than 3.84143 using Mathematica.

These are the only possible cases, therefore the perimeter-minimizing pentagon with exactly
two angles that tile a degree-four vertex perimeter greater than or equal to 3.8414.

Case 3: Exactly three angles tile a degree-four vertex.

In this case, we know that it is the case that 2x+y+ z = 360. Thus x+y+ z is at most 279.08◦

by Proposition 2.15. So the other two angles, a and b, average at least 260.92◦. The perimeter
is minimized when a = b, that is, when there are two angles measuring at least 130.46◦. So the
perimeter is at least 3.88 by Lemma 2.5, and the pentagon will not be efficient.

Case 4: Exactly four angles tile a degree-four vertex.

Then the fifth angle must equal 180◦, which violates Proposition 2.15.

Proposition 2.22. The least-perimeter unit-area pentagon with at least one angle outside the range
(π/2,2π/3) is circumscribed about a circle with one 2π/3 angle and four 7π/12 angles. It has
perimeter approximately 3.8192.

Proof. This follows directly from Lemma 2.5: the more nearly equal the angles, the smaller the
perimeter. Excluding pentagons with angles between π/2 and 2π/3, we are left with the following
two pentagons as the optimal choices: a pentagon circumscribed about a circle with one 2π/3
angle and four 7π/12 angles, and a pentagon circumscribed about a circle with on π/2 angle and
four 5π/8 angles. Using Lemma 2.5 to calculate the perimeter yields the result.

3 Tilings of Pentagons and Quadrilaterals
We now turn our attention to tilings by pentagons and quadrilaterals. In particular we consider
tilings with one efficient pentagon and any number of non-convex quadrilaterals, though some of
our results hold for tilings by efficient pentagons and non-convex quadrilaterals. Tilings with effi-
cient pentagons, non-convex quadrilaterals, and non-efficient convex pentagons or convex quadri-
laterals remain relatively unstudied, and we do not know whether our results might generalize to
that case.

Recall from Proposition 2.22 we have the following:
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Proposition 2.22. The least-perimeter unit-area pentagon with at least one angle outside the range
(π/2,2π/3) is circumscribed about a circle with one 2π/3 angle and four 7π/12 angles. It has
perimeter approximately 3.8192.

Proposition 3.1. The perimeter-minimizing unit-area pentagon which can tile a degree-four effi-
cient vertex has perimeter at least 3.8328.

Proof. In order to tile a degree-four vertex, the perimeter-minimizing pentagon must have at least
one angle measuring at most 90◦. By Lemma 2.5, the pentagon circumscribed about a circle
with one angle measuring 90◦ and four angles measuring 112.5◦ is perimeter-minimizing, with
perimeter greater than 3.8328.

Recall from Section 2 we have Proposition 2.21:

Proposition 2.21. The perimeter-minimizing pentagon with five angles that tile and at least one
angle which can tile a degree-four vertex is the one circumscribed about a circle with one 90◦

angle, three 108◦ angle, and one 126◦ angle. This has perimeter approximately 3.8414.

Proposition 3.2. In unit-area tiling by non-convex quadrilaterals and a single type of efficient
pentagon, a non-convex quadrilateral cannot be surrounded by efficient pentagons.

Proof. By Lemma 2.10, some edge of each non-convex quadrilateral exceeds
√

2 > 1.41, but by
Lemma 2.18, the longest edge in an efficient pentagon is less than 1.081.

The following proof is loosely based on a previous result by Chung et al. [CFSVW, Lemma
3.6], who demonstrate the perimeter-minimizing pentagon with a given edge-length. We adapt
their proof to find the perimeter-minimizing triangle with a given edge-length.

Proposition 3.3. The perimeter-minimizing triangle with given edge-length e is an isosceles tri-
angle with base e.

Proof. It is well known that for given edge-lengths, ei, i = 1,2, . . . ,n, the perimeter-minimizing
n-gon is the one inscribed in a circle. The area is given by

1
2

r2
3

∑
i=1

sinθi,

where θi is the center angle corresponding to the ei. Since sine is concave down from 0 to π , for a
fixed perimeter the area will be maximized when the angles are equal. Therefore given one edge,
the perimeter is minimized when the other two edges are equal.

Proposition 3.4. For any tiling, any m quadrilateral tiles have at least m vertices.

Proof. The angles of a quadrilateral sum to 2π , and in a tiling a vertex measures exactly 2π .
Therefore each quadrilateral contributes one vertex, so the m quadrilaterals contribute m vertices
(or portions of more than m vertices).
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Proposition 3.5. In a tiling of a flat torus by efficient pentagons and non-convex quadrilaterals, if
the ratio of efficient pentagon to non-convex quadrilaterals exceeds 14 then the tiling will have at
least one degree-four efficient vertex.

Proof. Assume a tiling of a flat torus by n efficient pentagons and m non-convex quadrilaterals.
The area of the torus is n+m, so by the Euler characteristic formula there are 3n/2+m vertices. By
Proposition 3.2, the non-convex quadrilaterals cannot be surrounded entirely by efficient pentagons
because at least one edge in each non-convex quadrilateral is too long to tile with any efficient pen-
tagons. Therefore each non-convex quadrilateral shares an edge with at least one other non-convex
quadrilateral, so there are at most 6 inefficient vertices for each pair of non-convex quadrilaterals.
By Proposition 2.15, there are at most 2(2)+ 4(4)− 6 = 14 efficient pentagons (subtracting six
because we assume the tiling is edge-to-edge) surrounding each pair of non-convex quadrilaterals.
Let k3 and k4 be the number of degree three and degree-four efficient vertices. Then counting each
efficient vertex as one-fifth of a pentagon, we know

(3/5)k3 +(4/5)k4 ≥ n− (14/5)(m/2).

Additionally
3n/2+m−m = 3n/2≥ k3 + k4,

as by Proposition 3.4 the m non-convex quadrilaterals contribute at least m inefficient vertices.
These bounds imply k4 ≥ n/2−7m. Then k4 ≥ n/2−7m > 0 when n > 14m.

Proposition 3.6. Consider a unit-area tiling of a flat torus by efficient pentagons and non-convex
quadrilaterals. Assume that each efficient pentagon has at most four angles which tile with the
efficient pentagon’s angles. Then the tiling has a ratio of convex to non-convex pentagons less than
or equal to 10.

Proof. Because the efficient pentagons have at most four angles which tile, they cannot be sur-
rounded entirely by efficient pentagons. Therefore the ratio of efficient pentagons to non-convex
quadrilaterals is at most the maximum number of efficient pentagons which can surround a non-
convex quadrilateral.

At the three angles of the non-convex quadrilateral which are less than π , there are at most
four efficient pentagons. If there were five or more, then the angles of the efficient pentagon would
be too small, in violation of Proposition 2.15. By the same logic, there are at most two efficient
pentagons at the angle in the non-convex quadrilateral which is greater than π . Since the tiling is
edge-to-edge, four of the efficient pentagons surrounding the non-convex quadrilateral appear at
two vertices, and we must avoid double counting these. So the total number of efficient pentagons
surrounding the non-convex pentagon is 4(3)+2(1)−4 = 10. Then the ratio of efficient pentagons
to non-convex quadrilaterals is at most ten to one.

We adapt Proposition 2.12 to the case of dihedral tilings with quadrilaterals and pentagons.

Proposition 3.7. In a unit-area tiling T of a flat torus by an efficient pentagon and non-convex
quadrilaterals, with perimeter per tile less than or equal to half the perimeter of a Prismatic
pentagon, the ratio of efficient pentagons to non-convex quadrilaterals is greater than 31.1753.



RHIT UNDERGRAD. MATH. J., VOL. 16, No. 1 PAGE 39

Proof. We adapt a proof given by Chung et al. [CFSVW, Proposition 2.11] and Proposition 2.12.
By Proposition 2.13, T cannot have an efficient pentagon with angles strictly between π/2 and
2π/3. Then by Proposition 2.22, the least-perimeter unit-area pentagon with angles not strictly
between π/2 and 2π/3 has perimeter, P0, greater than 3.819. The perimeter of a Cairo/Prismatic
pentagon is P1 = 2

√
2+
√

3≈ 3.86. The convex pentagons have perimeter at least P0 by definition,

and the non-convex quadrilaterals have perimeter P2 greater than an equilateral triangle (3
√

4/
√

3).
Let n and m denote the number of efficient pentagons and non-convex quadrilaterals. By hy-

pothesis,
nP0 +mP2 < (n+m)P1.

Therefore
n/m >

P2−P1

P1−P0
≈ 15.554.

Proposition 3.5 implies that the tiling must contain at least one degree-four efficient vertex, and
Propostion 3.6 implies that the efficient pentagon must have five angles which tile. Therefore by
Proposition 2.21, the efficient pentagon cannot have perimeter exceeding P′0 = 3.8414. Substituting
P′0 in for P0 yields n/m > 31.1753.

Proposition 3.8. Consider a unit-area tiling of a flat torus by an efficient pentagon and non-
convex quadrilaterals. Assume that each efficient pentagon has at most four angles which tile with
efficient pentagon’s angles. Then the tiling has more perimeter per tile than half the perimeter of
a Prismatic pentagon.

Proof. This follows immediately from Propositions 3.7 and 3.6.

Proposition 3.9. Let P be a efficient pentagon with perimeter less than 3.8574 and let s and a be
angles in P with the following properties:

1. All five angles of P tile;

2. s is strictly less than 90◦;

3. 3s+a = 360.

Then a cannot tile a degree three vertex with the angles in P.

Proof. As P is efficient, by Proposition 2.15, 80.92◦ < s < 90◦. From the given we know a =
360−3s. Let x,y be two additional angles in P. Suppose that a did tile a degree three vertex with
the angles in P. Then there are five case, corresponding to the five ways a can be combined with
itself, s, and x and y.

1. a+2s = 360;

2. a+ s+ x = 360;

3. a+ x+ y = 360;
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4. a+2x = 360;

5. 2a+ x = 360.

Case 1 can be easily ruled out, as a+3s = 360 and a+2s = 360 are true only when s is zero
and a is 360◦, which obviously violates the properties of P.

In Case 2, 360−2s+ x = 360 and therefore x = 2s. So 161.84 < x, which by Proposition 2.15
implies that P is not efficient.

By Lemma 2.5, Case 3 reduces to Case 4 as the perimeter will be lowest when x = y. Then
we can solve for x in terms of s to get x = 3/2s and therefore 540− (s+a+ x) = (180+ s/2)/2.
Using Mathematica and Lemma 2.5 to calculate the minimum perimeter of P in terms of s yields a
perimeter greater than 3.8574.

In Case 5, x = 6s− 360. So 540− (s+ a+ x) is 540− 4s, which means the remaining two
angles in the pentagon average (540− 4s)/2 (with perimeter minimized when the two are equal
to the average.) Using Lemma 2.5 and Mathematica to calculate the minimum perimeter of P in
terms of s implies P will never be efficient in this case. Therefore if the perimeter of P is less than
3.8574, none of these five cases are possible.

Recall from Proposition 2.6 we have the following:

Proposition 2.6. If two angles in a pentagon average less than π/2 then the pentagon cannot be
efficient. If two angles average exactly π/2, the pentagon is efficient only if it is Cairo or Prismatic.

Theorem 3.10. A unit-area tiling of a flat torus by an efficient pentagon and non-convex quadri-
laterals cannot have perimeter per tile less than half the perimeter per tile of a Cairo/Prismatic
tiling.

Proof. Assume there exists a unit-area tiling of a flat torus by n efficient pentagons and m non-
convex quadrilaterals with perimeter per tile less than a Cairo/Prismatic tiling. Note that m 6= 0,
otherwise the tiling would contradict Theorem 2.3. The area of the torus is n+m, so by the Euler
characteristic formula there are 3n/2+m vertices. By Proposition 3.2, a non-convex quadrilateral
cannot be surrounded entirely by efficient pentagons because at least one edge in the non-convex
quadrilateral is too long. Therefore each non-convex quadrilateral shares an edge with at least one
other non-convex quadrilateral, so there are at most six inefficient vertices for each pair of non-
convex quadrilaterals. Then we may assume that there are at most 3m inefficient vertices, so the
number of efficient vertices is at least

3n
2
+m−3m =

3n
2
−2m.

Let k3 and k4 be the number of degree-three and degree-four efficient vertices. By Corollary 2.16,
these are the only two types of efficient vertices which can appear in the tiling. Therefore

k3 + k4 ≥
3n
2
−2m.
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Figure 6: A tiling with an efficient pentagon and non-convex quadrilaterals is always worse than a
Prismatic tiling.

Additionally, since there are n efficient pentagons, considering each vertex as a fifth of a pentagon
we conclude

3
5

k3 +
4
5

k4 ≤ n.

Thus k3 ≥ n−8m and k4 ≤ n/2+6m.
Now by Proposition 3.7, it must be the case that n > 31.1753m, as the tiling has perimeter per

tile less than a Cairo pentagon’s. Therefore by Proposition 3.5, there exists at least one efficient
vertex of degree-four in the tiling. So there must be at least one angle, labeled s, in the efficient
pentagon which measures less than or equal to 90◦.

Suppose s is the only angle which tiled an efficient vertex of degree four. Then s = 90◦.
Therefore at the large angles of the non-convex quadrilateral there can be at most one efficient
angle, and at small angles there can be at most three. As the non-convex quadrilaterals are paired
because of their edge-lengths, there are at most 2(1)+4(3)−6= 8 efficient pentagons (subtracting
six because we assume the tiling is edge-to-edge) per pair of non-convex quadrilaterals. Therefore
counting each efficient pentagon as one-fifth of a vertex, we know

(3/5)k3 +(4/5)k4 ≥ n− (8/5)(m/2).

Additionally
3n/2+m≥ k3 + k4,

as there cannot be more efficient vertices than total vertices in the tiling. We can use these two
inequalities to determine that k4 ≥ n/2−7m.

We will show this implies there are too many s angles in the tiling. Recall that s is the only
angle in each efficient pentagon that can tile a degree-four efficient vertex. Then there are at least
4k4 ≥ 2n−28m s angles. But as there cannot be more than n s angles, we have that n ≥ 4k4, and
so n ≥ 2n− 28m. Then 28m ≥ n. But since n > 31.1753m by Proposition 3.7 this inequality is
false, therefore there are more than n s angles. As this is a contradiction, there must be at least two
angles which tile a degree-four vertex.

Next we show there cannot be more than one angle other than s which tiles a degree four
efficient vertex. Let a, b, and c be three angles in the efficient pentagon different than s. If a+b+
c+s= 360◦ then the four angles average 90◦ and the pentagon is not efficient by Proposition 2.6. If
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2s+a+b= 360◦, then by Lemma 2.5 the perimeter is minimized when two angles measure (360−
2s)/2, two measure (180+ s)/2, and one measures s. By definition s ≤ 90◦ and by Proposition
2.15 s > 80.92◦; it follows from Lemma 2.5 that the pentagon is not efficient. The case when
2a+ s+ b = 360◦ is similar: just replace s with a and let a range from 80.92◦ to 142.29◦ by
Proposition 2.15. As before, the pentagon is not efficient in this case. Therefore only one angle,
say a, can tile a degree four vertex with s.

If there are two s and two a angles, then they average exactly π/2. Since the pentagon is
efficient, by Lemma 2.5 and Proposition 2.6 it must be a Cairo or Prismatic pentagon, and the
theorem follows as m 6= 0.

Therefore there are either three s or three a angles at a degree-four efficient vertex. First
suppose there are three a angles and one s angle. Then 3a+ s = 360. By Proposition 2.15, s must
be greater than 80.92◦, and by hypothesis less than or equal to 90◦. It follows that the average of a
and s is between 86.973◦ and 90◦. Then by Proposition 2.6, the efficient pentagon must be Cairo
or Prismatic and the proposition follows as m 6= 0. Therefore it must be the case that 3s+a = 360.

Because there is only one type of efficient pentagon in the tiling, there are exactly n s angles. At
all k4 vertices there will be three s angles. By Proposition 2.15, there are at most 2(2)+4(4)−6 =
14 efficient pentagons surrounding each pair of non-convex quadrilaterals. Therefore counting
each efficient vertex as one-fifth of a pentagon, we know

(3/5)k3 +(4/5)k4 ≥ n− (14/5)(m/2).

Additionally
3n/2+m≥ k3 + k4,

which we can use to determine that k4 ≥ n/2−10m.
Since there are three s angles at each k4 vertex, there are at least 3k4 ≥ 3n/2− 30m s angles.

But as there cannot be more than n s angles, we have that n≥ 3k4, and so n≥ 3n/2−30m, which
means n≤ 60m.

In order to have a ratio of efficient pentagons to non-convex quadrilaterals less than or equal
to 60, the efficient pentagon must have perimeter less than 3.8458. Here it is convenient to note
that since the tiling has perimeter per tile less than Cairo/Prismatic, by Proposition 3.6 the efficient
pentagon must have five angles which tile. Thus the efficient pentagon satisfies the hypothesis of
Proposition 3.9, so it will not be the case that a tiles an efficient vertex of degree three. Therefore
a appears only at degree-four efficient vertices and inefficient vertices.

There will be at most one a angle at each degree-four vertex, and at most three at each non-
efficient vertex, as a is greater than 90◦. Since k4 ≤ n/2+6m and the number of inefficient vertices
is at most 3m, the number of a angles in the tiling is at most n/2+6m+3(3m), and therefore

n/2+6m+9m≥ n.

Solving this yields 30m≥ n; if this is not the case there will not be enough a angles in the tiling. But
this contradicts Proposition 3.7: that the ratio of efficient pentagons to non-convex quadrilaterals
must be at least 31.1753. Therefore it must be the case that the perimeter per tile is greater than or
equal to that of a Cairo/Prismatic pentagon.
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Remark 3.11. Note that the proof of Theorem 3.10 assumes at points that the non-convex quadri-
laterals are spread out in the tiling, and at other points assumes they are densely packed. This is
done in order to ensure the bounds on the number of inefficient vertices are correct. The proof may
be improved if these assumptions are either avoided or treated in some way.

Remark 3.12. An earlier draft of this paper showed the above results only for dihedral tilings
with a single efficient pentagon and a single non-convex quadrialteral. We tried several other
initial approaches to generalize the above proposition before finding the current one. Initially we
attempted to find ratios of quadrilaterals which shared an edge with the efficient pentagons and
those that didn’t, as the first type have high perimeter. Additionally, we attempted to find the
perimeter-minimizing pentagon with five angles that tile but were unable to do so.

4 Dihedral Tiling of Efficient and Type 2 Non-Convex Pen-
tagons

We adapt the technique used in Section 3 to the dihedral case with one efficient pentagon and one
Type 2 non-convex pentagon.

First recall from Section 2 that we have the following lemma:

Lemma 2.11. For a unit-area Type 2 non-convex pentagon, some edge must be greater than or
equal to

√
2.

Proposition 4.1. In a unit-area dihedral tiling by Type 2 non-convex pentagons and efficient pen-
tagons, a non-convex pentagon cannot be surrounded by efficient pentagons.

Proof. By Lemma 2.11, some edge of the non-convex pentagon exceeds
√

2 > 1.41. But by
Lemma 2.18, the longest edge in an efficient pentagon is less than 1.081.

Proposition 4.2. In a unit-area dihedral tiling by an efficient pentagon and a Type 2 non-convex
pentagon, the non-convex pentagon has perimeter at least 4.93594.

Proof. By Lemma 2.18, the longest an edge of a unit-area efficient pentagon can be is 1.081.
Therefore a non-convex pentagon in a dihedral tiling with an efficient pentagon must have an edge
measuring at least 1.081. By Proposition 3.3, the perimeter-minimizing unit-area triangle given
one edge-length, e, is the isosceles triangle with base e. Since the non-convex pentagon will have
perimeter greater than or equal to this triangle, we simply solve for the perimeter of such a triangle
with edge-length 1.081, which is at least 4.93594.

Proposition 4.3. In a dihedral tiling of a torus by efficient pentagons and Type 2 non-convex
pentagons, if the ratio of efficient pentagons to non-convex pentagons exceeds 24, then the tiling
will have at least one degree-four efficient vertex.
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Proof. Consider a tiling of a flat torus by n efficient pentagons and m non-convex pentagons. The
area of the torus is n+m, so by the Euler characteristic formula there are 3(n+m)/2 vertices. By
Proposition 4.1, the non-convex pentagons cannot be surrounded entirely by efficient pentagons.
Therefore each non-convex pentagon shares an edge with at least one other non-convex pentagon,
so there are at most eight inefficient vertices for every two non-convex pentagons.

Two non-convex pentagons which share an edge have at most four small angles and four large
angles between them. Assume there are two efficient pentagons at all four of the large angles. Then
all the large angles are less than 198.16◦ by Proposition 2.15. So the four small angles average at
least 71.84◦, and since at least one angle must be greater than or equal to the average, at one of the
small angles there are only three efficient pentagons. At the rest of the small angles there are four
efficient pentagons, so the total number of efficient pentagons around two non-convex pentagons is
at most 4(2)+3(4)+3−8 = 15 (subtracting eight because we assume the tiling is edge-to-edge).

Suppose there were not two efficient pentagons at all the large angles. Then at least two of the
large angles are greater than 198.16◦ and there is only one efficient pentagon at these two large
angles. There are two efficient pentagons at the other two large angles, and four at the four small
angles for a total of 14. We conclude that there are at most 15 efficient pentagons around each pair
of non-convex pentagons.

Let k3 and k4 be the number of degree three and degree four efficient vertices. Then counting
each efficient vertex as one-fifth of a pentagon, we know

(3/5)k3 +(4/5)k4 ≥ n− (15/5)(m/2).

We subtract (15/5)(m/2) as this is the maximum number of efficient pentagons which can tile
non-efficient vertices. Additionally

3n/2+3m/2≥ k3 + k4,

as there cannot be more efficient vertices then the total number of vertices in the tilng. Thus
k4 ≥ n/2−12m. Therefore k4 ≥ n/2−12m > 0 when n > 24m.

We adapt Proposition 2.12 to the case of dihedral tilings with efficient and Type 2 non-convex
pentagons.

Proposition 4.4. In a unit-area dihedral tiling T of a flat torus by an efficient pentagon and a
Type 2 non-convex pentagon, with perimeter per tile less than or equal to half the perimeter of a
Prismatic pentagon, the ratio of efficient pentagons to non-convex pentagons is greater than 34.77.

Proof. We adapt a proof given by Chung et al. [CFSVW, Proposition 2.11] and Proposition 2.12.
By Proposition 2.13, T cannot have an efficient pentagon with angles strictly between π/2 and
2π/3. By Proposition 2.22, the least-perimeter unit-area pentagon with angles not strictly between
π/2 and 2π/3 is defined as a Type 1 special convex pentagon. By Definition 2.22 this has perime-
ter, P0, greater than 3.8192. The perimeter of a Cairo/Prismatic pentagon is P1 = 2

√
2+
√

3 ≈
3.86. The convex pentagons have perimeter at least P0 by definition, and the non-convex pen-
tagons have perimeter greater than P2 = 4.93594 by Proposition 4.2.
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Let n and m denote the number of efficient pentagons and non-convex pentagons. By hypothe-
sis,

nP0 +mP2 < (n+m)P1.

Therefore

n/m >
P2−P1

P1−P0
≈ 24.094.

Proposition 4.3 implies that the tiling must contain at least one degree four vertex. But then
by Proposition 3.1, the efficient pentagon cannot have perimeter exceeding 3.8328. Substituting
3.8328 in for P0 yields n/m > 34.77.

Proposition 4.5. Consider a unit-area dihedral tiling of a flat torus by an efficient pentagon and a
Type 2 non-convex pentagons. Assume that each efficient pentagon has at most four angles which
tile with efficient pentagon’s angles. Then the tiling has more perimeter per tile than half the
perimeter of a Prismatic pentagon.

Proof. Because the efficient pentagon has at most four angles which tile, it cannot be surrounded
entirely by efficient pentagons. Therefore the ratio of efficient pentagons to non-convex pentagons
is at most the maximum number of efficient pentagons which can surround a non-convex pentagon.

At the three angles of the non-convex pentagon which are less than π , there are at most four
efficient pentagons. If there were five or more, then the angles of the efficient pentagon would
be too small, in violation of Proposition 2.15. By the same logic, there are at most two efficient
pentagons at the two angles in the non-convex pentagon which is greater than π . Since the tiling
is edge-to-edge, five of the efficient pentagons surrounding the non-convex pentagon appear at
two vertices, and we must avoid double counting these. So the total number of efficient pentagons
surrounding the non-convex pentagon is 4(3)+2(2)−5 = 11. Thus the ratio of efficient pentagons
to non-convex pentagons is at most eleven to one. Therefore by Proposition 4.4 the tiling has more
perimeter per tile than half that of a Prismatic pentagon.

Theorem 4.6. A unit-area dihedral tiling of a flat torus by an efficient pentagon and a Type 2
non-convex pentagon cannot have perimeter per tile less than half the perimeter per tile of a
Cairo/Prismatic tiling.

Proof. Assume there exists a unit-area tiling of a flat torus by n efficient pentagons and m Type 2
non-convex pentagons with perimeter per tile less than a Cairo/Prismatic tiling’s. Note that m 6= 0;
otherwise the tiling would contradict Theorem 2.3. The area of the torus is n+m, so by the Euler
characteristic formula there are 3(n+m)/2 vertices. By Proposition 4.1, the non-convex pentagon
cannot be surrounded entirely by efficient pentagons because at least one edge in the non-convex
pentagon is too long. Therefore each non-convex pentagon shares an edge with at least one other
non-convex pentagon, so there are at most eight inefficient vertices for each pair of non-convex
pentagons. Therefore there are at most 4m inefficient vertices, so the number of efficient vertices
is at least

3n
2
+

3m
2
−4m =

3n
2
− 5m

2
.
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Let k3 and k4 be the number of degree three and degree four efficient vertices. By Corollary 2.16,
these are the only two types of efficient vertices which can appear in the tiling. Thus

k3 + k4 ≥
3n
2
− 5m

2
.

Additionally, since there are n efficient pentagons, considering each vertex as a fifth of a pentagon
we conclude that

3
5

k3 +
4
5

k4 ≤ n.

Therefore that k3 ≥ n−10m and k4 ≤ n/2+(15/2)m.
Now by Proposition 4.4 it must be the case that n > 34.77m, as the tiling has perimeter per tile

less than a Cairo pentagon’s. By Proposition 4.3, there exists at least one efficient vertex of degree
four in the tiling. So there must be at least one angle, s, in the efficient pentagon which measures
less than or equal to 90◦.

Suppose s is the only angle that tiles an efficient vertex of degree four. Then s = 90◦. Therefore
at the large angles of the non-convex pentagon there can be at most one efficient angle, and at small
angles there can be at most three. As the non-convex pentagons are paired because of their edge-
lengths, there are at most 4(1)+ 4(3)− 8 = 8 efficient pentagons (subtracting eight because we
assume the tiling is edge-to-edge) per pair of non-convex pentagons. Therefore counting each
efficient pentagon as one-fifth of a vertex, we know

(3/5)k3 +(4/5)k4 ≥ n− (8/5)(m/2).

Additionally
3n/2+3m/2≥ k3 + k4,

as there cannot be more efficient vertices than total vertices in the tiling. We can use these two
inequalities to determine that k4 ≥ n/2− (17/2)m.

We will show this implies there are too many s angles in the tiling. As s is the only angle
that can tile a degree-four efficient vertex, there are at least 4k4 ≥ 2n−34m s angles. But as there
cannot be more than n s angles, we have that n ≥ 4k4, and so n ≥ 2n− 34m. Thus 34m ≥ n. But
since n > 34.77m by Proposition 4.4 this inequality is false, that is, there are more than n s angles.
As this is a contradiction, there must be at least two angles which tile a degree four vertex.

Next we show there cannot be more than one angle other than s which tiles a degree four
efficient vertex. Let a, b, and c be three angles in the efficient pentagon different than s. If a+b+
c+s= 360◦ then the four angles average 90◦ and the pentagon is not efficient by Proposition 2.6. If
2s+a+b= 360◦, then by Lemma 2.5 the perimeter is minimized when two angles measure (360−
2s)/2, two measure (180+ s)/2, and one measures s. By definition s ≤ 90◦ and by Proposition
2.15 s > 80.92◦; it follows from Lemma 2.5 that the pentagon is not efficient. The case when
2a+ s+ b = 360◦ is similar: just replace s with a and let a range from 80.92◦ to 142.29◦ by
Proposition 2.15. As before, the pentagon is not efficient in this case. Therefore only one angle,
say a, can tile a degree four vertex with s.
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If there are two s and two a angles, then they average exactly π/2. Since the pentagon is
efficient, by Lemma 2.5 and Proposition 2.6 it must be a Cairo or Prismatic pentagon, and the
proposition follows as m 6= 0.

Therefore there are either three s or three a angles at a degree four efficient vertex. First suppose
there are three a angles and one s angle. Then 3a+s = 360. By Proposition 2.15, s must be greater
than 80.92◦, and by hypothesis less than or equal to 90◦. It follows that the average of a and s
is between 86.973◦ and 90◦. Then by Proposition 2.6, the efficient pentagon must be Cairo or
Prismatic and the proposition follows as m 6= 0. Therefore it must be the case that 3s+a = 360.

Because the tiling is dihedral, there are exactly n s angles. At all k4 vertices there will be
three s angles. By Proposition 2.15, there are at most 2(4)+ 4(4)− 8 = 16 efficient pentagons
surrounding each pair of non-convex pentagons. Therefore counting each efficient vertex as one-
fifth of a pentagon, we know

(3/5)k3 +(4/5)k4 ≥ n− (16/5)(m/2).

Additionally
3n/2+3m/2≥ k3 + k4,

which we can use to determine that k4 ≥ n/2− (25/2)m.
Then since there are three s angles at each k4 vertex, there are at least 3k4 ≥ 3n/2− (75/2)m

s angles. But as there cannot be more than n s angles, we have that n ≥ 3k4, and so n ≥ 3n/2−
(75/2)m which means n≤ 75m.

In order to have a ratio of efficient pentagons to non-convex pentagons less than or equal to 75,
the efficient pentagon must have perimeter less than 3.8495. Here it is convenient to note that since
the tiling has perimeter per tile less than Cairo/Prismatic, by Proposition 4.5 the efficient pentagon
must have five angles which tile. Then the efficient pentagon satisfies the hypothesis of Proposition
3.9, so it will not be the case that a tiles an efficient vertex of degree three. Therefore a appears
only at degree four efficient vertices and inefficient vertices.

There will be at most one a angle at each degree four vertex. Because at least two-fifths of the
inefficient angles have a large angle at them, there is at most one a angle at at least two-fifths of the
non-efficient vertices, and at most three a angles at at most three-fifths of the non-efficient vertices,
as a is greater than 90◦. Since k4 ≤ n/2+(15/2)m and the number of inefficient vertices is at most
4m, the number of a angles in the tiling is at most n/2+(15/2)m+(2/5)(4m)+ (3)(3/5)(4m),
and therefore

n/2+(163/10)m≥ n.

Solving this yields 32.6m≥ n; if this is not the case there will not be enough a angles in the tiling.
But this contradicts Proposition 4.4: that the ratio of efficient pentagons to Type 2 non-convex
pentagons must be at least 34.77. Therefore it must be the case that the perimeter per tile is greater
than or equal to that of a Cairo/Prismatic pentagon.

Remark 4.7. We have to slightly improve two important values in this section to get the proof to
apply to tilings by an efficient pentagon and any number of non-convex Type 2 pentagons to work.
We need to get the ratio of efficient to non-convex Type 2 pentagons which implies there exists at
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least one degree four vertex down to 22.57 from 24, and we need to get the upper-bound for the
ratio of efficient to non-convex Type 2 pentagons in a tiling which is better than Cairo/Prismatic
tilings down to 31.26.

Remark 4.8. Considering trihedral tilings is a logical in generalizing the results from this section.
While we have solved the case of one efficient pentagon two non-convex Type 2 pentagons in
Theorem 4.6, there is still the case of two different efficient pentagons and a Type 2 non-convex
pentagon, and the case of an efficient pentagon, a non-efficient convex pentagon, and a Type 2
non-convex pentagon, both of which remain open.

5 Extension of Results to the Plane
This section contains early attempts and work to extend the above results, many of which hold only
for large flat tori, to the plane. We first generalize the concept of the perimeter, as considered on a
flat torus, to the plane.

Definition 5.1. The perimeter ratio, ρ , of a planar tiling is the limit supremum as R goes to infinity
of the perimeter inside a disk of radius R about the origin, divided by πR2. We intend to prove that
this does not depend on the choice of origin.

The following result allows us to generalize results from finite cases on large tori to infinite
cases in the plane.

Lemma 5.2 (Truncation Lemma). [Mo, 15.3] Consider a tiling of the plane. Let P(R) and A(R)
be the perimeter and area of the tiling in a disk of radius R centered at the origin. Additionally
let P0(R) and A0(R) be the perimeter and area of tiles completely contained within the disk. Then
given ε > 0, R0 > 0, there exists some R≥ R0 such that the number N(R) of points where the circle
S(0,R) intersects edges of tiles is less than εA(R). In particular, the number of tiles which intersect
the disk but are not contained in the disk is at most εA(R). Furthermore

liminf
R→∞

P0

A0
≤ ρ.

The following proposition generalizes Proposition 2.12 to the plane:

Proposition 5.3. Let T be a tiling of the plane by unit-area pentagons, with perimeter ratio less
than or equal to half the perimeter of a Prismatic pentagon. Then the fractions C1, N1 and N2 of
the pentagons completely inside a disk about the origin of radius R which are efficient, non-convex
Type 1, and non-convex Type 2, respectively, satisfy:

liminf
R→∞

(C1−2.6N1 +13.4N2)≥ 0.

Proof. The perimeters of a regular pentagon, a Cairo/Prismatic pentagon, the unit square, and the

unit-area equilateral triangle are P1 = 2
√

5 4
√

5−2
√

5, P2 = 2
√

2+
√

3, P3 = 4 and P4 = 3
√

4/
√

3.
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Let ε > 0. By the definition of ρ , there exists an R0 > 0 such that for R1 > R0 the perimeter
to area ratio of the disk of radius R1 is less than ρ + ε . By the Truncation Lemma 5.2 there exists
an R > R0 such that the perimeter P0(R) and area A0(R) of the tiles completely within the disk of
radius R satisfy

P0

A0
< ρ + ε.

Then since the efficient, non-efficient convex, Type 1 non-convex, and Type 2 non-convex pen-
tagons have perimeter at least P1,P2,P3 and P4 respectively,

C1P1 +C2P2 +N1P3 +N2P4 ≤ 2
P0

A0
.

Therefore C1P1 +C2P2 +N1P3 +N2P4 ≤ 2(ρ + ε), which by hypothesis implies

C1P1 +C2P2 +N1P3 +N2P4 < P2 +2ε.

Then,
C1P1 +C2P2 +N1P3 +N2P4 < P2(C1 +C2 +N1 +N2)+2ε,

and
C1 > N1

P3−P2

P2−P1
+N2

P4−P2

P2−P1
− 2ε

P2−P1
.

By the definition of the Pi,
C1−2.6N1−13.4N2 >−40ε.

By the definition of the limit inferior the proposition holds.

Proposition 5.4. Let T be a tiling of the plane with only efficient and non-convex pentagons, with
perimeter ratio less than or equal to half the perimeter of a Prismatic pentagon. Then the fractions
C1, N1, and N2 of the pentagons completely inside a disk about the origin of radius R which are
efficient, non-convex Type 1, and non-convex Type 2, respectively, satisfy:

C1 > 2.6N1 +13.4N2.

Proof. The perimeters of a regular pentagon, a Cairo/Prismatic pentagon, the unit square, and the

unit-area equilateral triangle are P1 = 2
√

5 4
√

5−2
√

5, P2 = 2
√

2+
√

3, P3 = 4 and P4 = 3
√

4/
√

3.
Let ε > 0. By the definition of ρ , there exists an R0 > 0 such that for R1 > R0 the perimeter

to area ratio of the disk of radius R1 is less than ρ + ε . By the Truncation Lemma 5.2 there exists
an R > R0 such that the perimeter P0(R) and area A0(R) of the tiles completely within the disk of
radius R satisfy

P0

A0
< ρ + ε.

Then since the efficient, Type 1 non-convex, and Type 2 non-convex pentagons have perimeter at
least P1,P3 and P4 respectively,

C1P1 +N1P3 +N2P4 ≤ 2
P0

A0
.
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Therefore C1P1 +N1P3 +N2P4 ≤ 2(ρ + ε), which by hypothesis implies

C1P1 +N1P3 +N2P4 < P2 +2ε.

Then,
C1P1 +N1P3 +N2P4 < P2(C1 +N1 +N2)+2ε,

and
C1 > N1

P3−P2

P2−P1
+N2

P4−P2

P2−P1
− 2ε

P2−P1
.

Then since C1 +N1 +N2 = 1,

C1 > 2.63N1 +13.43N2−38.63ε(C1 +N1 +N2),

and therefore
C1 >

2.63−38.63ε

1+38.63ε
N1 +

13.43−38.63ε

1+38.63ε
N2.

Choosing any value of ε < 5.39×10−5 implies

C1 > 2.6N1 +13.4N2.

We extend Proposition 2.13 to the plane :

Proposition 5.5. A unit-area tiling of the plane by non-convex pentagons and pentagons with
angles strictly between π/2 and 2π/3 has a perimeter ratio more than half the perimeter of a
Prismatic pentagon.

Proof. By the Truncation Lemma 5.2, we can find some R large enough so that for tiles within a
disk of radius R, the perimeter per tile is less than half the perimeter of a Prismatic pentagon. Note
that the pentagons in DR will be a finite collection.

Assume, on the contrary, that there existed some large R such that a tiling of DR by non-convex
pentagons and efficient pentagons with angles strictly between π/2 and 2π/3 had a perimeter ratio
less than half the Prismatic pentagon’s. By Proposition 5.3, the ratio of the number of efficient pen-
tagons to the number of non-convex pentagons must be greater than 2.6. Since all the angles of the
efficient pentagons are strictly between π/2 and 2π/3, there is at least one non-convex pentagon
at each vertex. By definition, a non-convex pentagon has at least one angle greater than π . Thus at
least 1/5 of the vertices must contain an angle greater than π . At such vertices there is at most one
efficient pentagon. At the remaining vertices, there are at most three efficient pentagons, because
their angles are greater than π/2. At vertices near the boundary, where truncation occurs, these
bounds may not hold, as some pentagons may be removed. However by the Truncation Lemma
5.2 for any ε we can find some R such that the number of pentagons being removed is εA(R).
Therefore for large R the number of such pentagons is insignificant. Thus the ratio of efficient
pentagons to non-convex pentagons is at most 3(4/5)+ 1(1/5) = 2.6. This is a contradiction of
Proposition 5.3, which says the ratio of efficient to non-convex pentagons must be strictly greater
than 2.6.
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We extend Proposition 2.19 to the plane:

Proposition 5.6. Consider a unit-area tiling of a the plane by efficient pentagons and Type 2 non-
convex pentagons. Assume that each efficient pentagon has at most four angles which tile with
efficient pentagons. Then the tiling has a perimeter ratio greater than half the perimeter of a
Prismatic pentagon.

Proof. At the three angles of a non-convex pentagon which are less than π , there are at most four
efficient pentagons. If there were five or more, then the angles of the efficient pentagon would
be too small, in violation of Proposition 2.15. By the same logic, there are at most two efficient
pentagons at the two angles in the non-convex pentagon which is greater than π . Since the tiling
is edge-to-edge, five of the efficient pentagons surrounding a non-convex pentagon appear at two
vertices, and we must avoid double counting these. So the maximum number of efficient pentagons
surrounding a non-convex pentagon in the tiling is 4(3)+2(2)−5 = 11.

Now given ε > 0, by Lemma 5.2 there is a large disk of radius R such that the number of
pentagons which intersect the disk but are not contained within it is at most εA(R). Let C1 and N2
be the fraction of efficient and Type 2 non-convex pentagons with at least one vertex in the disk.
Note that by hypothesis each efficient pentagon within shares a vertex with at least one non-convex
pentagon, and by the conclusion of the first paragraph there are at most 11 efficient pentagons
which surround each non-convex pentagon, so we might expect that C1 < 11N2. However near the
boundary of the disk we may have efficient pentagons within the disk which share a vertex with
a non-convex pentagon which is not contained within the disk. There are at most εA(R) efficient
pentagons of this type, so in fact we have

C1 < 11N2 + εC1.

Therefore C1 < 11N2/(1− ε). But if ε < 1− 11/13.4 and the perimeter ratio of the tilings
is less than or equal to half the perimeter of a Prismatic pentagon this contradicts Proposition 5.4
as C1 6> 13.4N2. Therefore the tiling has a perimeter ratio greater than half that of a Prismatic
pentagon.

6 Projects for Future Study
This section marks future projects which might be used to remove the convexity assumption in
Theorem 2.3 and prove the main conjecture:

Conjecture 6.1. Perimeter-minimizing planar tilings by unit-area polygons with at most five sides
are given by Cairo and Prismatic tiles.

Project 6.2. Extend the results from Section 5 and 6 on flat tori to similar results on the plane,
considering methods from Morgan [Mo] and Chung et al. [CFS]. See Section 7 for partial progress.

The following may be a more accessible version of Conjecture 6.1:
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Figure 7: There are two cases when an equilateral pentagon has two angles, a1 and a2, summing
to π .

Projects 6.3. (1) Prove 6.1 on flat tori of area n for small n, known for n= 4 ([CFSVW, Proposition
3.9]) and some tori of area 2 ([CFSVW, Proposition 3.3]).
(2) Prove 6.1 for dihedral tilings (the case with Type 1 non-convex pentagons remains open).
(3) Prove 6.1 for tilings of the plane by convex pentagons and Type 2 pentagons.

The following may be helpful in proving some of the above or 6.1:

Projects 6.4. (1) Prove that if a tiling by convex and non-convex pentagons has less perimeter than
Cairo tilings, then the convex pentagons must have at least one angle of 90◦ or 120◦.
(2) Without using Theorem 2.3, show a tiling of a large flat torus by unit-area convex pentagons and
unit squares must have more perimeter per tile then one half the Prismatic pentagon’s perimeter.
(3) Without using Theorem 2.3, show a tiling of a large flat torus by unit-area convex pentagons
and unit-area equilateral triangles must have more perimeter per tile then one half the Prismatic
pentagon’s perimeter.

A Perimeter-minimizing Equilateral Pentagonal Tilings
Theorem A.2 provides the perimeter-minimizing monohedral tiling of the plane by equilateral
pentagons. We begin with a description of equilateral pentagonal convex tiles given by Hirschhorn
and Hunt.

Theorem A.1. [HH1] An equilateral convex pentagon tiles the plane if and only if it has two
angles adding to π , as in Figure 7, or it is the unique equilateral convex pentagon X of Figure 8
with angles A,B,C,D,E satisfying A+2B = 2π,C+2E = 2π, A+C+2D = 2π . (A≈ 70.88◦,B≈
144.56◦,C ≈ 89.26◦,D≈ 99.93◦,E ≈ 135.37◦.)

We now turn our attention to perimeter-minimizing equilateral pentagons which tile the plane
monohedrally, and provide the perimeter-minimizing pentagon of this type. If we remove the
monohedral assumption or allow for the addition of non-convex tiles we might be able to do better
– this question remains open .

Theorem A.2. The perimeter-minimizing unit-area equilateral convex pentagon P which tiles
the plane monohedrally is circumscribed about a circle and has two non-adjacent π/2 angles,
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Figure 8: The special equilateral pentagonal tile X of Theorem A.1

two adjacent angles measuring π/4+ arccos(1/2
√

2) ≈ 1.995 and one angle measuring 3π/4−
2arccos(1/2

√
2)≈ 2.294. P has perimeter approximately 3.879.

Proof. We first show that such a perimeter-minimizing tiling exists. Consider a sequence of such
tilings Tn with perimeter per tile approaching the infimum. By Definition 2.1, we may assume that
the pentagons are convex, as P has perimeter less than four. By standard compactness, the desired
limit exists.

By Theorem A.1 an equilateral convex pentagon which tiles the plane must be one of three
types: a pentagon with two adjacent angles summing π , a pentagon with two non-adjacent angles
summing to π , or the special pentagon X .

First consider a unit-area equilateral convex pentagon where the two angles, a1 and a2, which
sum to π are adjacent, and the side length is denoted x1. Note that pentagons of this type are
formed by a parallelogram that can be divided into two congruent triangles, each denoted A, and
an equilateral triangle, as in Figure 7. A is isosceles, with two sides of length x1; therefore A has a
base of length 2x1 sin(a1/2) and a height of x1 cos(a1/2). Because the pentagon has unit area, we
can express x1 in terms of a1 by solving the equation

1 = x2
1

(
2sin(a1/2)cos(a1/2)+

√
3/4
)
,

to get

x2
1 =

1
sina1 +

√
3/4

.

Note that x1 is minimized when a1 = π/2.
The perimeter is clearly just 5x1, so the perimeter is minimized when a1 = π/2. Solving the

above equation to determine this value yields x1 ≈ .8353, so the perimeter of P1 is approximately
4.177.

Second consider an equilateral convex pentagon where the two angles, a1 and a2, are non-
adjacent. Let x2 be the side-length of the perimeter-minimizing pentagon, P2, of this type. This
pentagon can be broken into three triangles, as in Figure 7: two of which have two sides of length
x2, denoted T1 and T2, and one of which has one side of length x2, denoted T3. We first show that
a1 = a2 = π/2 maximizes the area of T3.
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Let Ai be the side of Ti opposite angle ai. Since the Ti are isosceles triangles, we can write
sin(a1/2) = A1/2x2 and sin(a2/2) = A2/2x2. Substituting a2 = π−a1 we get that

A2

2x2
= sin

π−a1

2
= cos

a1

2
=

h
x2
,

where h is the height of T1. The Pythagorean Theorem implies h =
√

x2
2− (A2

1/4); therefore

A2 = 2
√

x2− (A2
1/4).

The T3 triangle has sides A1,A2,x2 and by Heron’s formula the area is

|T3|=
√

p(p−A1)(p−A2)(p− x2),

where p is half the perimeter of T3. Since x2 is given and we can substitute for A2, we use Math-
ematica to take the derivative of |T3| with respect to A1 and get that the area is maximized when
x2 = A1/

√
2. This is the case precisely when a1 = a2 = π/2, as desired.

We now show that P2 must have a1 = a2 = π/2. Assume a1 6= π/2 in P2. Setting a1 = a2 = π/2
increases the area of T1 and T2, and we can adjust the angle between T1 and T2 to ensure that T3 still
has a side of length x2 (in other words, that the pentagon is still equilateral). Since this maximizes
the area of T3, the overall area of P2 increases while the perimeter stays the same. Then scaling
back down to unit-area by just shrinking the pentagon decreases the perimeter, a contradiction that
P2 is perimeter-minimizing. So a1 = a2 = π/2 in this case as well.

The area of P2 is given by

1 = 2T1 +T2 = x2
2 +

√
7x2

2
4

,

which implies that x2 ≈ .7758 and that the perimeter is about 3.879.

For the final case, the special pentagon X pictured in Figure 8, we note that by Lemma 2.5 the
perimeter of P3 is greater than 3.994. Comparing the three cases, we find that P2 has the lowest
perimeter.

By definition P2 had two non-adjacent π/2 angles. T1 and T2 each have two angles of π/4.
Therefore T3 has two angles which measure arccos(1/2

√
2) and one which measures π−2arccos(1/2

√
2).

By construction P2 has two adjacent angles measuring π/4+ arccos(1/2
√

2) and one angle mea-
suring 3π/4−2arccos(1/2

√
2), as desired.
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