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Subrings of C Generated by Angles

Jackson Bahr Arielle Roth

Abstract. Consider the following inductively defined set. Given a collection U
of unit magnitude complex numbers, and a set initially containing just 0 and 1,
through each point in the set, draw lines whose angles with the real axis are in U .
Add every intersection of such lines to the set. Upon taking the closure, we obtain
R(U). We investigate for which U the set R(U) is a ring. Our main result holds
for 1 ∈ U and |U | ≥ 4. If P is the set of real numbers in R(U) generated in the
second step of the construction, then R(U) equals the module over Z[P ] generated
by the set of points made in the first step of the construction. This lets us show
that whenever the pairwise products of points made in the first step remain inside
R(U), it is closed under multiplication, and is thus a ring.

Acknowledgements: Thanks to Gregory Johnson for advising this research.
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1 Introduction

When creating origami, sometimes one will fold the paper just to obtain the intersection
point of two folds as a reference point. If we can fold only along certain angles through
reference points, and only start with two points, what new reference points can be reached?
To understand this, we’ll consider the plane to be the complex plane, C, and study an
algebraic question about the reference points.

Suppose we are given a collection U of unit length elements of C. If we have some
collection of points in C, we can draw lines through each of them with every angle in U
(with respect to the real axis). In this way we can construct intersections of lines and repeat
the process. Specifically, if we start with 0 and 1 in the complex plane and continue this
construction indefinitely, when is the resulting collection of points, denoted R(U), a subring
of the complex numbers? Buhler et al. first introduced this question with a discussion of
origami [1].

Note that even though we are drawing lines, only the intersection points, our reference
points from before, are considered to be constructed. Throughout this paper, we assume
that we can always draw a horizontal line, that is, 1 ∈ U . Figure 1 illustrates the first two
steps in the construction of R(U) where U = {1, eiπ/4, eiπ/2}.

0 1

Figure 1: Construction of R(U)

It is known that R(U) is a group. Specifically, it’s a Z-module generated by an infinite
collection of points called monomials. We prove that R(U) is also a module over Z[P ], where
we adjoin special points called projections. The generating set is the set of elementary
monomials, which is finite whenever U is finite, unlike the set of all monomials. Effectively,
the ring becomes more complicated, but the generating set is much simpler. This trade-off
lets us compute and prove statements about R(U) for specific sets of angles.

After some preliminary definitions in Section 2, we consider the case when |U | = 3 in
Section 3. We prove that the set of reference points forms a lattice and use this fact to
understand when the reference points form a ring. Next, in Section 4, we study the case
when |U | ≥ 4. In this case, the set of reference points are dense in the complex plane. We’ll
show three main results about the structure of R(U). The first of these results states that
R(U) ∩R is always a ring. In fact, this ring is generated by the real numbers formed in the
second step of the construction of R(U), called projections. We denote this ring Z[P ] where
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P is the set of projections. Next, we prove that R(U) is exactly the Z[P ]-module generated
by the set of points added in the first step of the construction. This leads us to our last
result, that if every pairwise product of points from the first step of the construction lies in
R(U), then R(U) is a ring. With this theorem, in Section 5 we consider certain sets of angles
and prove that the corresponding sets of reference points are rings. Finally, in Section 6, we
consider open questions that arose in our research.

2 Background and Definitions

We now formally define R(U) and state some known results.

Definition 2.1. Let p, q, α, β ∈ C with |α| = |β| = 1. Define Lα(p) to be the line through
p with angle α. In other words, Lα(p) := p + Rα. Define Iα,β(p, q) := Lα(p) ∩ Lβ(q) when
α 6= ±β so that an intersection exists.

Definition 2.2. Let U be a set of unit magnitude complex numbers. Set S0 = {0, 1}. For
each n ∈ N, set

Sn+1 = {Iα,β(p, q) | α, β ∈ U , p, q ∈ Sn, and α 6= ±β}.

We then define R(U) =
⋃
n∈N Sn.

Definition 2.3. Define T := {z ∈ C | |z| = 1}, which is viewed as a group under complex
multiplication. We can use T/{±1} as the collection of angles, since α and β are considered
equivalent if and only if α = ±β. Unless otherwise specified, U ⊆ T/{±1}.

Definition 2.4. Given U ⊆ T/{±1}, we define all elements z ∈ R(U) of the form Iα,β(0, 1)
to be elementary monomials, or length 1 monomials.

Next, if m is a length k monomial, then Iα,β(0,m) ∈ R(U) is a length k + 1 monomial.
In this way we inductively define monomials.

Definition 2.5. Let 1 ∈ U . The length 2 monomials on the real axis are called projections.

Proposition 2.6 (Buhler, Butler, de Launey, Graham [1]). For p, q ∈ C and α 6= β ∈
T/{±1},

Iα,β(p, q) =
[α, p]

[α, β]
β +

[β, q]

[β, α]
α,

where [x, y] = xȳ − yx̄ and z̄ is the complex conjugate of z.

Proposition 2.7 (Buhler, Butler, de Launey, Graham [1]). We list some properties of
Iα,β(p, q) below for w ∈ T/{±1} and r ∈ R.

(Symmetry) Iu,v(p, q) = Iv,u(q, p)

(Reduction) Iu,v(p, q) = Iu,v(p, 0) + Iv,u(q, 0)
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(Linearity) Iu,v(rp+ q, 0) = rIu,v(p, 0) + Iu,v(q, 0)

(Rotation) For w ∈ T/{±1}, wIu,v(p, q) = Iwu,wv(wp,wq)

Lemma 2.8 (Buhler, Butler, de Launey, Graham [1]). Let |U | ≥ 3 with 1 ∈ U . Then R(U)
is closed under addition and additive inverses.

Theorem 2.9 (Buhler, Butler, de Launey, Graham [1]). Let |U | ≥ 3. Then R(U) is the
collection of integer linear combinations of monomials.

Remark. Since R(U) is a group under addition whenever |U | ≥ 3, we need only check
closure under multiplication to ensure that R(U) is a ring.

Buhler et. al. then studied the case when U is a group [1]. Specifically, they took the
set of unit magnitude complex numbers T , the unit circle, and considered it to be a group
under complex multiplication. Then they took the quotient of T by {−1,+1}. The result
can be viewed as the top half of the unit circle. By convention, whenever we use U , we will
refer to U ⊆ T/{±1} where the elements are viewed as complex numbers.

Theorem 2.10 (Buhler, Butler, de Launey, Graham [1]). Let U be a subgroup of T/{±1}
with |U | ≥ 3. Then, R(U) is a ring.

In their paper, Buhler et al. observed that R(U) may be a ring even when U is not a
group. They left the question of what properties U must satisfy exactly for R(U) to be a
group open.

3 Three Angles

In order to understand R(U), first we look at |U | = 3 with 1 ∈ U . We find that R(U) has the
structure of a lattice and can be understood in terms of one of the elementary monomials.

Lemma 3.1. Let U = {1, u, v}. We claim that R(U) is a lattice in C with the form R(U) =
Z + Iu,v(0, 1)Z.

Proof. Set x = Iu,v(0, 1). From Lemma 2.8, we know that R(U) is a subgroup of C with
addition. Since 1 ∈ R(U) and x ∈ R(U), we clearly see that R(U) ⊇ Z + xZ.

We will prove the other containment with induction. We know that S1 = {x, 1−x, 0, 1} ⊆
Z + xZ. Let p, q ∈ Sn, which are assumed to be in Z + xZ. Let α, β ∈ U .

We claim that z = Iα,β(p, q) ∈ Z + xZ. Since Iα,β(p, q) = Iα,β(p, 0) + Iβ,α(q, 0), it suffices
to prove that Iα,β(a+ bx, 0) ∈ Z + xZ. Further note that

Iα,β(a+ bx, 0) = Iα,β(a, 0) + Iα,β(bx, 0)

= aIα,β(1, 0) + Iα,β(bx, 0).

by linearity.
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Iα,β(1, 0) ∈ S1, so Iα,β(1, 0) = 1, 0, x, or 1− x. There are only four choices since if one of
the angles is 0 radians, the resulting point is 0 or 1. If α, β 6= 1, then there are two choices
left, α = u, β = v or α = v, β = u. One of these yields the point x and the other yields (by
the parallelogram law) 1− x. Thus Iα,β(a, 0) ∈ Z + xZ.

Next, note that Iα,β(bx, 0) = bIα,β(x, 0). Thus it suffices to prove that Iα,β(x, 0) ∈ Z+xZ.
We have six cases.

(u, v) Since x = ru for some r ∈ R, Iu,v(x, 0) = rIu,v(u, 0) = 0 ∈ Z + xZ.

(v, u) Iv,u(x, 0) is the projection of x onto the line ru in the direction of v, but x ∈ Ru, so
Iv,u(x, 0) = x.

(u, 1) Iu,1(x, 0) is the projection of x onto the real axis in the direction of u. It is easy to
see that this must be 0, since the line from 0 (which is on the real axis) extending in
the u direction intersects x.

(v, 1) Iv,1(x, 0) = 1, for a similar reason. The line extending from 1 (which is on the real
axis) in the v direction intersects x.

(1, u) I1,u(x, 0) is the line crossing through x+ s and ru for s, r ∈ R, but since x ∈ Ru, this
intersection is clearly at x.

(1, v) I1,v(x, 0) is at x− 1 which is demonstrated by the fact that I1,v(x, 0) + Iv,1(x, 0) = x
and Iv,1(x, 0) = 1.

All of these points line in Z+ xZ, so we have shown that R(U) for |U | = 3 is of the form
Z + xZ where x = Iu,v(0, 1).

Remark. Given U = {1, u, v}, if we find u′, v′ such that Iu′,v′(0, 1) = m+Iu,v(0, 1) for m ∈ Z
and set U ′ = {1, u′, v′}, by the above structural result, R(U) = R(U ′).

Theorem 3.2 expands on this remark and shows when U and U ′ of size three generate
the same lattice.

Theorem 3.2. Let Iu,v(0, 1) = x and let Iu′,v′(0, 1) = y. Let x = a+ bi and y = c+ di. Set
U = {1, u, v} and U ′ = {1, u′, v′}. We claim that R(U) = R(U ′) if and only if b = ±d and
a∓ c ∈ Z.

Proof. If Z + xZ = Z + yZ then {m + nx | m,n ∈ Z} = {p + qy | p, q ∈ Z}. For arbitrary
m,n ∈ Z, we have that m+ nx ∈ {p+ qy | p, q ∈ Z} holds if and only if nx ∈ Z+ yZ, which
is equivalent to na+ nbi = p+ qc+ qdi for some p, q ∈ Z.

In order for this to hold, the imaginary parts must equal: nbi = qdi (for any n, there
is some q). Thus d | b (using n = 1). We can make the same argument swapping x and y,
which tells us that b | d, so b = ±d and thus n = ±q.

Also, the real parts must be equal: na − qc = p (for any n there are such p, q). Above
we determined that n = ±q, so n(a ∓ c) = p. Such a p exists for any n, so a ∓ c ∈ Z. We
thus know that if Z + xZ = Z + yZ, then b = ±d and a∓ c ∈ Z.
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Now, if we assume that b = ±d and a∓ c ∈ Z, then for any Z + xZ = m+ na+ nbi, we
have

m+ na+ nbi = m+ n(k ± c) + n(±d)i

= (m+ nk)± nc± ndi ∈ Z + yZ.

This shows that Z + xZ ⊆ Z + yZ. Likewise, Z + yZ ⊆ Z + xZ.
Since R(U) = Z + xZ and R(U ′) = Z + yZ, we have that R(U) = R(U ′) if and only if

b = ±d and a∓ c ∈ Z, so Z + xZ = Z + yZ.

Now that we understand what form R(U) has for |U | = 3 with 1 ∈ U , we can easily show
exactly when R(U) is a ring. The only point that gives any difficulty is x, one of the two
elementary monomials off of the real line. If we can square this point and the result lies in
R(U), then R(U) = Z + xZ must be closed under multiplication.

Now we characterize all U with 1 ∈ U and |U | = 3 such that R(U) is a ring.

Theorem 3.3. Let U = {1, u, v} and let Iu,v(0, 1) = x. Then R(U) is a ring if and only
if x is a (non-real) quadratic integer, that is, x is the root of some monic integer quadratic
polynomial.

Proof. First we will prove that if x is a quadratic integer, then R(U) is a ring. Note that
R(U) = Z+xZ where x = Iu,v(0, 1). Since R(U) is already a group, we need to show closure
under multiplication. We write (a + bx)(c + dx) = ac + (bc + ad)x + bdx2. Since x is a
quadratic integer, x2 = λx+ µ for some λ, µ ∈ Z. Then,

(a+ bx)(c+ dx) = ac+ (bc+ ad)x+ bd(λx+ µ)

= (ac+ bdµ) + (bc+ ad+ bdλ)x

so in fact R(U) is closed under multiplication.
Now assume that R(U) is closed under multiplication and that x /∈ R, since otherwise

R(U) is degenerate. Then (a+ bx)(c+ dx) ∈ Z + xZ, but we can expand this:

(a+ bx)(c+ dx) = ac+ (bc+ ad)x+ bdx2 ∈ Z + xZ

Since ac + (bc + ad)x ∈ Z + xZ, we know that bdx2 ∈ Z + xZ for every b, d ∈ Z. In
particular, this holds for b = d = 1, so x2 ∈ Z + xZ. In other words, x must be a quadratic
integer.

We can compute the intersection point x in terms of arg(u) and arg(v) and rephrase
Theorem 3.3.

Corollary 3.4. Let arg(U) = {0, θ, φ} with φ < θ. Then R(U) is a ring if and only if

tan θ

tan θ − tanφ
+

tanφ tan θ

tan θ − tanφ
i

is a quadratic integer.
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Proof. We can see from Figure 2 that

(1 + w) tanφ = h = w tan θ,

so w = tanφ
tan θ−tanφ . Immediately, we see also that h = tanφ tan θ

tan θ−tanφ . Thus,

x =
tan θ

tan θ − tanφ
+

tanφ tan θ

tan θ − tanφ
i.

1

h

w

x

φ θ

Figure 2: Relating angles when arg(U) = {0, θ, φ}

Remark. Nedrenco independently characterized R(U) where |U | = 3, describing R(U) =
Z + xZ and generalized to when 1 /∈ U [2]. In the same paper, Nedrenco also noted that
R(U) is dense when |U | = 4. We present what we found independently.

4 Four or More Angles

Since we understood R(U) for |U | = 3 in terms of an elementary monomial, we wish to
understand R(U) for |U | ≥ 4 in terms of elementary monomials. Because R(U) is now dense
in the complex plane, we cannot hope for an integral basis. By linearity if we have some
p ∈ R ∩R(U), then Iα,β(0, p) = pIα,β(0, 1). This means we can scale points. This motivates
our interest in “projections” onto the real axis.

Figure 3 depicts the construction of projections, each the intersection of a line through
an elementary monomial and the horizontal line through 0.

Proposition 4.1. Let U = {1, u, v, w} with arg(u) < arg(v) < arg(w) < π. There are
at most eight length-two monomials on the real axis. Also, there are at most five length-
two monomials constructed from elementary monomials of the form Iα,β(0, 1) with arg(α) <
arg(β). They are 0, 1, x, 1/x, x/(x− 1) where x = Iv,1(Iu,w(0, 1), 0).
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0 1

z1

z2

z3

1− z1

1− z2
1− z3

p1 p2p3

p4p5 p6

Figure 3: Construction of projections when |U | = 4

Proof. With the exception of 0 and 1, the only way to construct a length-two monomial
on the real axis is to intersect a line through an elementary monomial and the line passing
through 0 and 1. For any given elementary monomial, there are already two lines passing
through the point: one passes through 0 and one passes through 1. Thus there can be at
most six extra length-two monomials on the real axis, at most three of which are created
from z1, z2, z3 in the form described in the claim, and at most three of which are created
from 1− z1, 1− z2, 1− z3 which are of the opposite form.

Note that p1 = 1− p4, p2 = 1− p5, and p3 = 1− p6. As proof, we calculate

I1,α(0, Iβ,γ(0, 1)) = I1,α(0, 1− Iγ,β(0, 1))

= I1,α(0, 1)− I1,α(0, Iγ,β(0, 1))

= 1− I1,α(0, Iγ,β(0, 1)).

Now we will show that the projections have the described form. Figure 4 depicts the
various triangles referred to in this proof. Set x = p1. Note that the triangle (0, p1, z1) is
similar to the triangle (0, 1, z2), so p1

1
= z1

z2
. Also, the triangle (0, 1, z1) is similar to the

triangle (0, p2, z2), so 1
p2

= z1
z2

. Thus, p2 = 1/x.

Next, the triangle (0, p1, z1) is similar to the triangle (p3, 0, z3), so |z1|
|z3−p3| = |p1|

|p3| . Also,

the triangle (0, 1, z1) is similar to the triangle (p3, 1, z3), so |z1|
|z3−p3| = 1

|1−p3| . We conclude the
following.

|x|
|p3|

=
1

|1− p3|
|p3 − 1| |x| = |p3|

|p3| =
∣∣∣∣ x

x− 1

∣∣∣∣
To remove the absolute value signs, we note that since arg(z3) > arg(z1), the line through
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0 1

z1

z2

z3

p1 p2p3

Figure 4: Similar triangles relating the projections when |U | = 4

z3 with angle arg(z1) must intersect the negative real axis, so p3 < 0. Furthermore, since
x < 1, x

x−1 < 0, so we deduce that p3 = x/(x− 1).

Now that we understand a small amount of R∩R(U), we can quickly construct an entire
ring inside R ∩ R(U) with the scaling mentioned earlier. Later we will show that what we
construct next is exactly R ∩R(U)

Proposition 4.2. Let 0 ∈ arg(U) with |U | ≥ 4. Let P be the set of length-two monomials
on the real axis. For any x ∈ R(U) and any p ∈ P , px ∈ R(U). As a result, the ring Z[P ]
is constructible, which is to say that Z[P ] ⊆ R(U).

Proof. Let p be a projection. Since R(U) is the collection of finite linear combinations of
monomials, it suffices to construct pm for a given monomial m, since if we have x ∈ R(U),
we can simply represent x =

∑n
i=1 cimi for ci ∈ Z and then write px =

∑n
i=1 ci(pmi).

The proof that pm ∈ R(U) follows from linearity. Formally, we rely on induction.

Base Case: The length of m is one, so m = Iα,β(0, 1) for some α, β ∈ U . Then, pm =
Iα,β(0, p) by linearity, which is in R(U) since p ∈ R(U).

Inductive Step: Suppose every length n − 1 monomial satisfies the claim. Let m be of
length n. Then, m = Iα,β(0, q) for some length n − 1 monomial q. By linearity,
pm = Iα,β(0, pq) which is constructible since pq ∈ R(U) by the inductive hypothesis.

Thus every monomial can be arbitrarily multiplied by projections, so in fact everything
in R(U) can be arbitrarily multiplied by projections. In particular, so can the projections
themselves. This means that arbitrary powers of projections are in R(U). Furthermore,
since R(U) is a group under addition, Z[P ] ⊆ R(U).

Remark. This holds even when |U | > 4.

Our current goal is to characterize all monomials in terms of Z[P ] and elementary mono-
mials. By Theorem 2.9, if the monomials have a nice enough form, we will be able to
understand all of R(U). Characterizing all monomials starts with the length two monomials.
First, however, we need a quick lemma.
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Lemma 4.3. Let 0, α, β ∈ arg(U). Let p, q ∈ R(U), and let x = Iα,β(p, q) and y = Iβ,α(p, q).
Then, x = p+ q − y.

Proof. Since the lines from x to q and from p to y are parallel, and also the lines from x to
p and from q to y are parallel, this forms a parallelogram, as shown in Figure 5. It is clear
that 0, x − q, p − q, and y − q form a parallelogram and that x − q + y − q = p − q, so
x = p+ q − y.

α
β

p

q

x

y

Figure 5: Relationship between x = Iα,β(p, q) and y = Iβ,α(p, q)

Lemma 4.4. Let |U | ≥ 4 and let 1 ∈ U . Let P be the set of projections from the elementary
monomials to the real axis along angles in U . Every length two monomial is a Z[P ]-linear
combination of elementary monomials.

Proof. Let z = Iα,β(0, 1) for some α, β ∈ U and let our length two monomial m = Iγ,δ(0, z).
We will prove that m is a Z[P ]-linear combination of elementary monomials by cases.

(δ = 1): Note that
Iγ,0(0, z) + I0,γ(0, z) = z,

so Iγ,δ(0, z) = z − I0,γ(0, z). Since I0,γ(0, z) ∈ P , m is a Z[P ]-linear combination of
elementary monomials.

(δ = α): Since the line through z = Iα,β(0, 1) with angle arg(α) passes through the origin,
m = Iγ,α(0, z) = 0. This is trivially a Z[P ]-linear combination of elementary monomi-
als.

(δ = β): Since the line through z = Iα,β(0, 1) with angle arg(β) passes through 1, m =
Iγ,β(0, z) = Iγ,β(0, 1), which is an elementary monomial.

(δ ∈ U \ {1, α, β}): Let p = I0,γ(0, z) be the projection from z to the real axis in the direction
of γ. Note that Iγ,δ(0, p) = pIγ,δ(0, 1) by linearity.
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Set x = Iγ,δ(0, p). We know that x+z−p = m, and since x = pIγ,δ(0, 1), this is enough
to prove that m is a Z[P ]-linear combination of elementary monomials. Restated, the
claim is that

Iγ,δ(0, I0,γ(0, z)) + z − I0,γ(0, z) = Iγ,δ(0, z).

To prove this, we will show that Iγ,δ(x, z) = m. This follows by the fact that x ∈ Rγ,
so the line through x with angle arg(δ) also passes through 0 and thus Iγ,δ(x, z) =
Iγ,δ(0, z) = m.

Furthermore, Iδ,γ(x, z) = p. To see this, first note that Iγ,0(z, 0) = p. Also, Iδ,0(x, 0) =
p, because

Iδ,0(x, 0) = Iδ,0(Iγ,δ(0, p), 0),

and both x and p lie along the same line through p with angle arg(δ) by construction
of x.

This means that x and z lie on opposite corners of a parallelogram which has a corner
at p through the real axis and another corner through m. Thus, 0, (x − p), (z − p),
and (m − p) form the corners of a parallelogram and (x − p) + (z − p) + p = m so
m = x+ z − p, concluding the proof.

Since in all cases m is a Z[P ]-linear combination of elementary monomials, we know that
every length two monomial is of this form.

Now that we understand length two monomials, we can apply induction to characterize
all monomials, and thus all of R(U).

Theorem 4.5. Let 1 ∈ U . Let P be the set of projections of elementary monomials along
lines with angles from arg(U) onto the real axis. Then, every monomial in R(U) is a Z[P ]-
linear combination of elementary monomials. Indeed, R(U) is the set of Z[P ]-linear combi-
nations of elementary monomials.

Proof. We will prove this by induction on the length of the monomial. Length one mono-
mials are already elementary and length two monomials follow from the above theorem. Let
m be length n and suppose that all length n− 1 monomials are of this form. Then,

m = Iα,β(0,m′)

= Iα,β(0,
k∑
i=1

cizi)

=
k∑
i=1

ciIα,β(0, zi)

=
k∑
i=1

(
ci
∑̀
j=1

dixi

)
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using linearity and the fact that all length two monomials are of this form. The ci and di
are in Z[P ] and the xi and zi are elementary monomials. After simplification, it is easy to
see that m is in fact a Z[P ]-linear combination of elementary monomials.

Since everything in R(U) is an integer linear combination of monomials, everything in
R(U) is a Z[P ]-linear combination of elementary monomials.

Furthermore, since Z[P ] is constructible by Proposition 4.2, and pR(U) ⊆ R(U) for all
p ∈ P , we can construct every Z[P ]-linear combination of elementary monomials. Thus,
R(U) equals the set of Z[P ]-linear combinations of elementary monomials.

Remark. We can alternatively say that R(U) is a Z[P ]-module in C generated by the
elementary monomials.

As in the three angle case, understanding the structure of R(U) leads us to understand
when R(U) is a ring in terms of products of elementary monomials. In fact Theorem 3.3 can
be seen as a special case of the following theorem.

Theorem 4.6. Let U with |U | ≥ 4 and 0 ∈ arg(U) and let P represent the collection of
projections. R(U) is a ring if and only if every pairwise product of elementary monomials is
a Z[P ]-linear combination of elementary monomials.

Proof. First note that R(U) equals the collection of Z[P ]-linear combinations of elementary
monomials. We know that the Z[P ]-linear combinations of elementary monomials are closed
under multiplication if and only if every pairwise product of elementary monomials is a
Z[P ]-linear combination of elementary monomials.

Assume that every pairwise product of elementary monomials is as above. Then, for
any x, y ∈ R(U), we write x =

∑n
i=1 cixi and y =

∑m
j=1 djyj for ci, dj ∈ Z[P ] and xi, yj

elementary monomials.
Then, xy =

∑
i,j cidjxiyj. Since xiyj is a Z[P ]-linear combination of elementary mono-

mials, so is xy. Thus R(U) is a ring.
Now, suppose that R(U) is a ring. It must be closed under multiplication, so the pairwise

product of elementary monomials must be in R(U), but R(U) is the Z[P ]-linear combinations
of elementary monomials, so the claim holds.

When we have four or more angles, we have at least one projection p ∈ (0, 1), so we can
construct points close to zero. Because elements of R(U) scaled by p are still in R(U) and
R(U) is a group, it is actually dense in C as we will prove below.

Theorem 4.7. If 1 ∈ U and |U | ≥ 4, then R(U) is dense in C.

Proof. Since R(U) is the set of Z[P ]-linear combinations of elementary monomials, if z is
a non-real elementary monomial and p ∈ Z[P ] ∩ (0, 1), we can construct pn and pnz which,
informally, go to zero from two different directions.

Let ε > 0 and let x ∈ C. Since R(U) is a group under addition, we can construct
apN1 + bpN2z for all N1, N2 ∈ N.
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Since p ∈ (0, 1), we can find N2 such that
∣∣Im(z)pN2

∣∣ < ε/2. To simplify the following
expression, write θ = Im(z)pN2 . Then there exists a unique b ∈ Z such that

b− 1 ≤ Im(x)

θ
≤ b.

So we can show that ∣∣b Im(z)pN2i− Im(x)i
∣∣ = |bθ − Im(x)| ≤ ε/2.

Likewise we can find a,N1 such that
∣∣apN1 −

(
Re(x)− bpN2 Re(p)

)∣∣ < ε/2. Once we have
such a ∈ Z and N1 ∈ N, we have the following.∣∣apN1 + bpN2z − x

∣∣ =
∣∣apN1 + bpN2 Re(z)− Re(x) + bpN2 Im(z)i− Im(x)i

∣∣
≤
∣∣apN1 + bpN2 Re(z)− Re(x)

∣∣+
∣∣bpN2 Im(z)− Im(x)

∣∣
< ε

Since apN1 + bpN2z ∈ R(U), and this holds for any x ∈ C and for every ε > 0, we can
always find a point in R(U) arbitrarily close to any point of C. Thus, R(U) is dense in C.

5 Some U for Which R(U) Is a Ring

Now we can use Theorem 4.6 to prove that R(U) is a ring for a particular example of U .

Example 1. Let U = {1, eiπ/6, eiπ/3, eiπ/2}. Then R(U) is a ring.

Proof. It suffices to show that all products of elementary monomials are Z[P ]-linear com-
binations of elementary monomials. Our elementary monomials are 0, 1, z1, z2, z3, 1− z1, 1−
z2, 1− z3.

z1 =
2
√

3

3
eiπ/6

z2 =
√

3eiπ/6

z3 = 2eiπ/3

First we calculate the projections and get 2/3, 3/2,−2. Note that Z[2/3, 3/2,−2] =
Z[2/3, 3/2] = Z[1/3, 1/2] = Z[1/6].

We calculate all pairwise products of z1, z2, z3, since calculating more would be redundant,
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as the others are either 0, 1, or an integer linear combination of {1, z1, z2, z3}.

z21 =
4

3
eiπ/3 =

2

3
z3

z1z2 = 2eiπ/3 = z3

z1z3 =
4√
3
eiπ/2 =

4i√
3

= 4(z1 − 1)

z22 = z21
z22
z21

=
9

4
· 2

3
z3 =

3

2
z3

z2z3 =
z2
z1
z1z3 = 6(z1 − 1)

z23 = z1z2z3 = 6(z21 − z1) = 4z3 − 6z1

These are all in R(U), so R(U) is closed under multiplication and is a ring.

Remark. We suspected that perhaps any subset U of a finite group containing a generator
for that finite group would result in a ring. The following example shows that this cannot
be necessary.

Example 2. Let U = {1, eiπ/6, eiπ/4, eiπ/3}. Then R(U) is a ring.

Proof. As above, it suffices to show that the products of all elementary monomials are
Z[P ]-linear combinations of elementary monomials. We go by the convention that z1 =
Ieiπ/6,eiπ/2(0, 1), z2 = Ieiπ/6,eiπ/3(0, 1), and z3 = Ieiπ/3,eiπ/2(0, 1) and that p1, p2, p3 are projec-
tions from z1, z2, z3 to the real axis.

We calculate the following products.

z1z2 = p3(1− z3)
z1z3 = −p1z2 − (p2p3)z3 + 2p3

z2z3 = −p3z2 − (p2p3)z3 + 2p2p3

z21 = p1p3(1− z3)
z22 = p2p3(1− z3)
z23 = −6z2 − 3p2p3z3 + 3p3

Remark. We then suspected that any subset of a finite group might result in a ring. Our
next result shows this too cannot be necessary.

Example 3. Let U = {1, ei, e2i, e3i}. Then R(U) is a ring.

This example is a special case of Theorem 5.1.

Remark. We strongly suspect that R({1, eiπ/5, eiπ/4, eiπ/3}) is not a ring, so we suspect that
it is not sufficient for U to just be a subset of a finite group.
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Theorem 5.1. Let U = {1, α, α2, α3}. Then R(U) is a ring.

Proof. Set z1 = Iα,α3(0, 1), z2 = Iα,α2(0, 1), and z3 = Iα2,α3(0, 1). Since the only elementary
monomials are 0, 1, z1, z2, z3, 1 − z1, 1 − z2, 1 − z3, it suffices to check pairwise products of
{z1, z2, z3}.

Set p1 = I1,α2(0, z1), p2 = I1,α3(0, z2), and p3 = I1,α(0, z3). Then Z[P ] = Z[p1, p2, p3],
since the other projections are 0, 1, 1− p1, 1− p2, and 1− p2.

First we claim that z1z2 = z3. We will prove this by calculation.

z1z2 =
[1, α3]

[α, α3]

[1, α2]

[α, α2]
α2

=
e−3iθ − e3iθ

e−2iθ − e2iθ
e−2iθ − e2iθ

e−iθ − eiθ

=
[1, α3]

[α, α2]
α2 =

[1, α3]

[α2, α3]
α2

= z3

Next we claim that z1/z2 = p1 and z2/z1 = p2. These can also be calculated, but Figure
6 should make it clear.

The first claim follows from the fact that the triangles 0−p1−z1 and 0−1−z2 are similar.
The second claim follows from the similarity of the triangles 0− 1− z1 and 0− p2 − z2.

0 1

z1

z2

z3

p1 p2p3

Figure 6: Similarity of triangles in R({1, α, α2, α3})

So far we can construct the following pairwise products of elementary monomials.

z21 = z1z2
z1
z2

= p1z3

z1z2 = z3

z22 = p22p1z3 = p2z3

We need only construct z23 and z2z3 since z1z3 = p1z2z3.
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First we show z23 = p23(z3 − z2) algebraically. We calculate z23 using the formula given in
Proposition 2.6 and obtain

z23 = 1 + 2α2 + 3α4 + 2α6 + α8

which is exactly what we find by calculating p23(z3 − z2), so the two are equal.
Likewise, we calculate z2z3 to be

z2z3 = 1 + 2α2 + 2α4 + α6

which precisely equals p3(1− z3).
Thus all 6 pairwise products of {z1, z2, z3} are Z[P ]-linear combinations of elementary

monomials, so R(U) is a ring.

6 Conclusion

Previously, it was known that R(U) was a Z module generated by monomials. We have
replaced the ring with Z[P ] and the generating set by elementary monomials, so R(U) is a
Z[P ]-module generated by elementary monomials. This lets us understand R(U) after only
two steps of the construction and simplifies checking of examples.

We showed this by first showing that elements of R(U) could be scaled by real numbers in
R(U), which implies that Z[P ] is constructible. Next we showed that degree two monomials
are Z[P ]-linear combinations of elementary monomials. This let us show by induction that
all monomials are of this form. Since the monomials generate R(U) over the ring Z, we
concluded that R(U) is the set of Z[P ]-linear combinations of elementary monomials.

This characterization of R(U) makes finding examples of rings R(U) a matter of verifying
that finitely many products are contained in R(U). In some cases, this can be done quickly
with computer aid. However, finding counter-examples is still difficult, as proving that
products stay outside of R(U) involves solving linear equations over an arbitrary ring, which
can be non-trivial.

Some U that are very difficult to work with like {1, ei, e2i, e3i} yield rings, while other
nicer sets like {1, eiπ/5, eiπ/4, eiπ/3} are suspected to not yield rings. It is unknown how our
current conditions on the elementary monomials translate into conditions on U . Some open
questions are posed below.

1. How does 1 /∈ U affect our current results? Can we still express R(U) as a module over
some ring generated by elementary monomials?

2. When exactly are the products of elementary monomials Z[P ]-linear combinations of
elementary monomials in terms of the set U?

3. Is R({1, eiπ/5, eiπ/4, eiπ/3}) a ring?

4. Are there non-rings for any |U |?
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5. What subrings of C are of the form R(U) for some U?

6. Given p ∈ C, for which U is p ∈ R(U)?

7. We can write Iu,v(p, q) = [u,p]
[u,v]

v + [v,q]
[v,u]

u where [x, y] = xȳ − yx̄. Note that [x, y] is an

alternating bilinear map. If V is some vector space equipped with [·, ·], an alternating
bilinear map into C and we have some S ⊆ V of allowable “angles”, we can define
I : S2 × V 2 → V via

Iu,v(p, q) =
[u, p]

[u, v]
v +

[v, q]

[v, u]
u

Do similar results hold for this generalization? Perhaps we could require V to be a
complex normed vector space and say that S is the sphere of radius one.
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