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Abstract 
Our objective is to provide real-time classification of treadmill usage patterns based on accelerometer 

and magnetometer measurements. We collected data from treadmills in the Rose-Hulman Student 

Recreation Center (SRC) using Shimmer3 sensor units. We identified useful data features and classifiers 

for predicting treadmill usage patterns. We also prototyped a proof of concept wireless, real-time 

classification system.  
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Introduction 
The outline of this technical report is as follows: We begin with a review of the basics of data mining and 

machine learning. The methods section contains a detailed description of the Shimmer3 Sensor Unit, 

used to generate the data for this project; how we established the ground truth data set; how features 

and classifiers were selected; and a description of our prototype Bluetooth-based data classification 

system. The Results section contain tables of the features selected and the accuracy of several classifiers 

over the ground truth data set. We summarize what we have learned in the course of this project and 

highlight areas for further research in the Conclusions section. Software tools and supporting technical 

information are provided in the Appendices.  

Machine Learning 
Machine learning is the use of methods to categorize and cluster data. In broad terms, it is the collection 

of data pertaining to some event, recognizing what characteristics or values calculated from the data 

best describe the phenomena in question, forming a set of rules to separate the sub-events into 

categories based on the data, and then recognizing and categorizing new occurrences based on 

collected rules. For example, say we collected information about different fruits such as size, color, skin 

texture, weight, etc. Can we identify fruits based on these descriptive characteristics? For example, say 

that color tells us the most information about the identity of a fruit. We could then make a rule using 

color that red fruits are apples, and orange fruits are oranges. When given a new fruit, we can examine 

our rule to determine what fruit it may be. If it is red, we say that is an apple. As more data or fruits are 

collected, we can continue to refine our rule to better determine the identity of new fruits. This process 

is outlined in Figure 1. 

Gathering Data 
In our example, gathering data is the process of collecting and observing multiple fruits. If we only 

gather a small subset of fruits, a small data set, then we might not have enough information if a new, 

unknown fruit is introduced later. For this reason we seek to gather a “Ground Truth Data Set”, or a data 

set where we have information on all possible expected outcomes. The goal is to possess enough 

information to determine what makes one outcome unique compared to others. These different 

expected outcomes are called “classes” and depending on intent can be labeled by hand or using 

software to generate labels automatically. In our fruit example, our class labels would be “Apple,” 

“Orange,” etc. A Ground Truth Data Set could consist of 5 of each of the desired fruit types that are free 

of bruises. This will give us an idea of what the “ideal” apple or orange is.  

Features 
From our data set we can select features. Features are observed or calculated attributes of our classes. 

In the fruit example, this might include data attributes such as fruit color, weight, or size, along with 

computed values such as mean number of seeds, maximum weight, or standard deviation of size. Once 

features have been collected, we want to see which features best describe the classes. For this we use a 

processes called Feature Selection. Feature Selection consists of tests that determine how much a 

feature or set of features relate to the classes. Intuition and logic is also involved. With fruits, by 

intuition color would very easily distinguish between apples and oranges, but using color alone may 

prove problematic in recognizing the difference between an apple and a cherry. For this reason, multiple 

features are normally used to help define our data set. 
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Classifiers 
Classifiers are methods/algorithms used to find a set of rules created with selected features to 

categorize our data. A simple classifier might be the rule “Orange fruits are Oranges,” or a more complex 

sets of rules such as “Red fruits under 1 inch in diameter with a single seed are Cherries”. These rules are 

created automatically over a data set based on the selected features by the classifier. Many different 

classifiers exist. Each classifier has their own advantages and disadvantages in terms of accuracy and 

speed. Once a classifier has been run over a set of data, it forms what is called a “Model”, and is 

considered “Trained”. These rules can be further modified over time by “Retraining” the model. 

Classifiers are compared via a procedure called cross-validation. This process is used to prevent under-

fitting and over-fitting of the model. 

 
Figure 1. The conventional machine learning pipeline 
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Methods 

Shimmer3 Sensor Unit 
The Shimmer3 Sensor Unit is a small device housing multiple sensors, as listed in Table 1. It was created 

by Shimmer Sensing to provide a method to collect data during periods of physical action. The device is 

activated either upon removal from the base station or by pressing the orange button on the front of 

the unit, depending on settings available while connected to the base station and PC via Consensys. 

Once data values are recorded by the unit, the data can then be downloaded to a PC for investigation 

via connection to the base station and Consensys or via Bluetooth.  

Sensor name  Calibrated Units   Description 

Timestamp  Milliseconds Time of data point  

Acceleration_WR: X,Y,Z  Meters/seconds2 Handles large fluctuations  

Acceleration_LN: X,Y,Z  Meters/seconds2 Handles smaller precision values  

Gyrometer: X,Y,Z  Degrees/second Returns angular velocity values  

Magnetometer: X,Y,Z  Local flux Returns strength and direction of local 
magnetic field  

Pressure  Kilopascals Scalar ambient atmospheric pressure  

Temperature  Degrees Celsius Scalar ambient temperature  

Battery Life  Millivolts Scalar battery voltage 
Table 1. Default active Shimmer sensors with the corresponding units and descriptions 

In our project these sensors were placed on treadmills in the Rose-Hulman SRC. We examined the data 

produced by running on the treadmill, walking on the treadmill, and activating the treadmill with no 

user on the device to form our classes of interest: Running, Walking, Not_Walking. We focused our 

investigations on the Acceleration_WR, Acceleration_LN, Gyrometer, and Magneometer to attempt and 

locate useful features in classifying treadmill usage into our three classes of interest. As shown in Figure 

2, Shimmer sensor units were placed under one or both of the locations displayed – the front center and 

back left of the treadmill. 

 

Figure 2. Shimmer Sensor Units were placed under one or both locations for data collection as shown in green in the image: the 
front center and the back left of the machine 
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Logging Data 
Initial gathering, synchronization, and examination of data was based on the physical connection of the 

Shimmer units to a PC via the base station and Consensys software. This method produced the majority 

of the data sets examined at the beginning of this project, including the Ground Truth data set which 

was used in the examination of different attributes, classifiers, and attempts to build a trained classifier 

for live usage. Following this method of logging data, we then moved to a Bluetooth connection, with 

the intent to categorize live streaming data. Due to differences in how the data was provided through 

these methods, classifiers trained on the base station synced data were incompatible with data acquired 

wirelessly, and new training sets had to be formed.  

Information on gathering data from the Shimmer units via the base station can be found in the Shimmer 

user manual, and steps on connecting wirelessly are located in Appendix 4. 

Gathered Data Sets 
Data was collected from Shimmers on the treadmills in the SRC. The placements of the Shimmer Sensor 

Units are marked in the above image by the smaller dotted squares in the front middle and back left of 

the treadmills as illustrated in Figure 2 and Figure 3. 

 

Figure 3. A diagram illustrating the potential placement of Shimmer locations on the testing treadmills. Which location is utilized 
differs between data sets. 

Ground Truth Data Set 
This data set was gathered on a Saturday morning prior to the official opening of the SRC, allowing for a 

controlled set of actions without interference from other treadmill users. Data was collected with a 

single Shimmer unit placed on the front center of each treadmill. Testing was primarily focused around 

Treadmill 2, with certain tests including runners using other treadmills simultaneously to examine 

potential unwanted feedback. Testing involved different runners of various heights and weights running 

at set speeds for known periods of time in order to form a baseline of categorical data. A full breakdown 

of the activities performed can be found in the Ground Truth Journal on the server. Unfortunately, data 

collected on Treadmill 4 was lost. 

This dataset was collected to provide a controlled data set to perform feature analysis, and train our 

initial classifier. As such, this data set has been labeled with “Running,” “Walking,” and “Not_Walking,” 

and video footage of all tests was collected to support our data and potentially allow for step counting 

in further developments of this system. This data is of particular note as it provides similar actions 

(running at a set of designated speeds) across multiple users of various weights and step size, along with 

providing examples of the major usage scenarios without additional noise. Additionally, another data set 

examining potential features calculated from the Ground Truth Data was formed. This compiled data set 
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includes the Mean, Max, and Standard Deviation over each sensor value, as well as the Mean, Max, and 

Standard Deviation over the Power Spectrums and Frequency Spectrums formed on the original data. 

Multi-day Data Set 
A multi-day “real-world usage” data set collected prior to the start of the project by Dr. Galluzzi using 

two Shimmer units per treadmill. This dataset was collected to experiment with the capabilities and 

quirks of the shimmers, and to become more familiar with larger datasets. 

Introductory Data Set 
A sub-hour “real-world usage” data set collected at the beginning of the project using two Shimmer 

units per treadmill on a Monday afternoon with other patrons using the SRC during data collection.  This 

dataset was collected as an introduction for the class to see how the data looks in a "real world" 

situation. Since it was collected during a busy period of the gym, we were able to see how much noise 

we would expect, as well as how strongly signals will transfer between nearby treadmills. 

Streaming Training Set 
Due to differences in configuration of the shimmers units between logging and streaming over 

Bluetooth, we had to collect a new ground truth training set for streaming. This dataset was collected in 

relative isolation at night, so it is not entirely representative of real world usage. During collection, we 

noted that the classifier may overfit on certain parameters, so a wide variety of situations were 

recorded; This included letting the treadmill operate with nobody actually on it, running next to the 

treadmill, and walking backwards and other strange patterns. 

Processing the Data 
Data collected via the Shimmer Base Station, as in all but our Streaming Training Set, is initially 

downloaded as a .csv (Comma Separated Values) file from Consensys, which was examined by hand via 

MATLAB. Our initial efforts were to examine these raw values for any immediately obvious patterns 

corresponding to activity type, along with building possible features from these values by creating 

Power Spectrums and Frequency Spectrums, and then finding values such as Mean, Max, and Standard 

Deviation. Once these potential features were constructed from our data set, further data exploration 

was performed via Weka, which operates best on .arff (Attribute-Relation File Format) files, a 

proprietary format for Weka. Code for converting .csv files to .arff files is provided in Appendix 2; 

alternatively, online .csv to .arff converters are also available. Once the data was converted to an .arff 

file, examination of the data was handled via the Weka GUI (Graphic User Interface) in order to select 

attributes and train a classifier. 

Live Classification System 
In the last few weeks of the quarter, we used wireless data streaming capabilities together with the 
machine learning methods that had been researched throughout the quarter to create an operational 
model that is able to estimate the state of a treadmill user (not moving, walking, and running).  We also 
attempted to build a step counter to estimate the number of steps taken by a person on the treadmill. 
 
The BtStream 0.7.0 firmware was used in conjunction with modified Python scripts from the shimmer3 

repository (https://github.com/ShimmerResearch/shimmer3) to pair a PC with a shimmer3 device (via 

Bluetooth).  Once paired, the PC could wirelessly configure the shimmer and receive streaming data 

from the onboard sensors. Steps for this process can be found in Appendix 4. Due to differences in how 

https://github.com/ShimmerResearch/shimmer3
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the data is provided, classifiers trained on data gathered via connection to the Shimmer Base Station are 

not compatible with our current streaming system. As such, a new training set was formed via streaming 

data and a classifier was trained via the Random Forest classifier. We used all data provided by the 

Accel_WR, Accel_LN, and Mag sensors, following the results provided by Attribute Selection and 

Classification over our previous data. 

Description of the System 
Figure 4 shows a block diagram of the current operational system.  The liveClassify_v2.py script and 
associated modules (iotdata_simpleMostlyStatic, ShimmerBluetooth) are the heart this system. 
 

 

Figure 4. Operational model system diagram.  Data is unpacked in the ShimmerBluetooth class, calibration occurs in 
liveClassify_v2, feature generation is performed in iotdata_simpleMostlyStatic, and Classification is carried out by a random 

forest in liveClassify_v2.  Step counting (which happens in the countSteps function in liveClassify_v2) still needs work. 

Successful calibration required digging through the C# source code for Shimmer Capture. This source 
code is provided to all shimmer customers who get an account on their website.  Sampled signals from 
the magnetometer and accelerometer were the only sources used to generate features, as the attribute 
selection methods in Weka repeatedly indicated that features generated on the other signals were not 
helpful.  This makes sense: the other signals are samples from gyroscope, ambient temperature, 
ambient pressure, and battery voltage. 
 
Testing in Weka revealed that Random Forest models were accurate and quick to train; further research 
and input from professors revealed that this classifier is hard to overfit as relative to other classifiers 
(e.g. multi-layer perceptron, J48 decision tree).  For these reasons, the operational system used random 
forests from the Scikit-Learn python library.  The classifier was trained in 'scikitlearn_classifier2.ipynb' 
which is a Jupyter notebook containing python code. 
 
The step counting module is unfinished.  Code in MATLAB shows that the current peak detection 
scheme works, but when the code was ported to python for implementation in the operational system 
the lack of a robust peak finding method caused the module to fail.  This group ran out of time, but if a 
robust peak detection function can be written or found online, the step counting will work. 

Results 

Selecting Attributes 
Attribute evaluation was performed from the Weka GUI, the process of which is included in the Weka 

GUI guide in Appendix 3. Through the course of this project, multiple different evaluators were 

examined over the Ground Truth "Compiled" data set, the top results of which are available in Table 2. A 

description of each of the feature selection methods that we used and the top attributes selected by the 
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method it can be noted that regardless of Attribute Evaluator used, results consistently pointed to a 

combination of both the Magnetometer and Accelerometers 

Attribute Evaluator Brief Description Top Attributes 

CorrelationAttributeEval A component-by-component linear 
comparison between change in label and 
change in a single attribute. 

Mag X Frequency Spectrum Stdev 
Mag X Frequency Spectrum Mean 
Mag X Mean 
Accel WR Y Stdev  
Accel LN Y Stdev 

PrincipalComponents Using each data type as a separate 
dimension, this method transforms the 
data into a new orthogonal coordinate 
system in order to find the dimension 
with the highest variance.  

Mag Z Window Stdev 
Mag X Power Spectrum Max 
Mag Z Power Spectrum Max 
Accel LN X Frequency Spectrum Mean 
Accel LN Y Frequency Spectrum Mean 

ClassifierSubsetEval A Method to select features by running 
an arbitrary classifier over different 
subsets of features. 

Accel Y Zero Crossing Rate 
Accel Y Power Spectrum Mean 
Mag Y Power Spectrum Max 
Mag Y Power Spectrum Mean 

WrapperSubsetEval A Method to select features by running 
an arbitrary classifier over different 
subsets of features. A streamlined 
extension to ClassifierSubsetEval. 

Accel Y Power Spectrum Mean 
Mag Y Power Spectrum Max 
Accel Y Zero Crossing Rate 
Mag Y Mean 

Table 2. A description of each of the feature selection methods that we used and the top attributes selected by the method it can 
be noted that regardless of Attribute Evaluator used, results consistently pointed to a combination of both the Magnetometer 

and Accelerometers 

Based off of these alternative evaluators, we noted that the Magnetometers and Accelerometer sensors 

appeared to best correlate to the classes of Running, Walking, or Not_Walking. 

Classifier Selection 
Once attributes were selected, different classifiers were applied to the Ground Truth "Compiled" data 

set via 10-fold cross validation in order to examine the expected accuracy of each set of attributes and 

of each of the potential classifiers.  

In Table 3. Cross validation results from testing trained J48, random forest, and naïve bayes classifiers 

while using the top 3, 5, and 10 features as well as the full feature set.  Results showed that using a 

random forest classifier trained on all attributes gave the best result., different classifiers were tested 

over the set of attributes produced by the CorrelationAttributeEval evaluator in order to examine the 

effect of using more or less attributes in our classifier. Not all subsets of attributes were performed on 

NaiveBayes due to excessive run time. 

Selected 
Attributes 

Classifier True Positive 
Rate 

False Positive 
Rate 

Precision Recall 

Top 3 Decision Tree (J48) 0.936 0.299 0.931 0.936 

 RandomForest 0.930 0.295 0.926 0.930 

Top 5 Decision Tree (J48) 0.968 0.130 0.967 0.968 

 RandomForest 0.973 0.104 0.972 0.973 

Top 10 Decision Tree (J48) 0.967 0.120 0.967 0.967 

 RandomForest 0.977 0.082 0.977 0.977 
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All Attributes Decision Tree (J48) 0.971 0.104 0.971 0.971 

 NaiveBayes 0.594 0.034 0.904 0.594 

 RandomForest 0.981 0.086 0.980 0.981 
Table 3. Cross validation results from testing trained J48, random forest, and naïve bayes classifiers while using the top 3, 5, and 
10 features as well as the full feature set.  Results showed that using a random forest classifier trained on all attributes gave the 

best result. 

Based on this result, we found that for our data set, training on all pertinent attributes provided a more 

accurate result than utilizing a smaller subset.  

Live Classification System Results 
Unfortunately, the calibration settings and general setup of the shimmers was not documented when 
collecting the ground truth dataset (Ground Truth Data Set: 03_27_16) which prompted the collection of 
a new dataset.  The main problem with the ground truth set is the fact that we did not record which 
accelerometer was sampled.  An important discovery that the team made in the process of setting the 
shimmers up for streaming is that there are multiple accelerometer sensors available on a single sensor.  
Future groups should note which accelerometer they sampled prior to data collection.  Temporarily, a 
small ad-hoc dataset (Streaming Training Set: 05_12_16 – 05_13_16) was collected and used to train the 
classifier. Cross validation of the model showed 97% accuracy in classification, but formal quantitative 
results were not collected on the system. To formally test the system, a validation dataset would need 
to be collected, but (after observing the system work in real time) it can be said that the system looks 
promising overall. 

Conclusions 
We found most of our time was spent in data exploration and feature selection. The Accelerometer_WR, 

Accelerometer_LR, and Magnetometer sensors provided the highest accuracy for classification. Of the 

classifiers examined, Random Forest provided the most accurate classification results for the selected 

features. One classifier that we did not fully explore is Neural Networks. These classifiers have the 

potential to reduce the amount of work required in feature selection. We plan on further exploring 

Neural Networks in future works.  

The collection of a good ground truth data set is essential for the proper evaluation of classification 

methods. We found that as our system matured, especially with the introduction of Bluetooth data 

syncing, our initial ground truth data set became incompatible with the new data collected. As such, in 

order to provide proper evaluation of classifiers we note the importance of collecting a new ground 

truth data set that matches the final system layout.  

We observed battery life of the Shimmer3 units proved to be a shortcoming in long term deployment. 

As such, a data transfer method that reduces power consumption or a classifier that reduces the 

amount of data that needs to be transferred is an area worthy of further consideration.  

One subject not covered within the scope of this project is data security. For a full implementation of a 

similar system, steps would need to be taken to preserve the security of user data. 

Appendix 1: Useful Applications 

Consensys 
Download Link: http://www.shimmersensing.com/shop/consensys 

http://www.shimmersensing.com/shop/consensys
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The official Windows software provided by Shimmer Sensing, allowing for the syncing of data from the 

Shimmer sensor units via the provided base station. Can be downloaded at the above link. 

Weka 
Download Link: http://www.cs.waikato.ac.nz/ml/weka/downloading.html 

Command Line Guide: http://www.uky.edu/~nyu222/tutorials/Weka.htm  

Software produced by The University of Waikato that allows for easy classification and investigation of 

large data sets. Furthermore, models (used for classification) can be constructed based off existing data 

sets and new data can be classified based off these pre-created models. Many different classifiers and 

clustering methods are provided within the Weka GUI (Graphic User Interface), and further tools can be 

accessed via the Weka Command Line. 

MATLAB 
Available via Rose Intranet 

Software that allows for further data exploration. Initial data examination for our project group began in 

MATLAB, but extended to Weka for its ease and integration with Python. MATLAB can be of use if more 

complex customized data manipulations is required. 

Python 
Download Link: https://www.python.org/downloads/  

NOTE: 2.7 was needed for the Python Weka Wrapper at time of writing (May 2016)  

Used as our primary programming language to collect, manipulate, and classify our data via the Python 

Weka Wrapper (See Below).  

Python Weka Wrapper 
Download Link and Guide: http://pythonhosted.org/python-weka-wrapper/install.html 

Usage Guide: http://pythonhosted.org/python-weka-wrapper/index.html  

Used to integrate Weka and its constructed models within Python. Installation can be complex for 

Windows machines, but all required files and steps are included in the first link. The second link 

connects to multiple examples for both command line and Python script usage.  

SSH Client 
Windows SSH Client PuTTY: http://www.putty.org/ 

Linux command: ssh <username>@shimmer.csse.rose-hulman.edu 

Used to access the provided server containing collected data and journals. 

FTP Client 
SecureFX should be available on current Rose Laptops 

Alternative Windows application: https://filezilla-project.org/ 

Linux command: ftp shimmer.csse.rose-hulman.edu 

http://www.cs.waikato.ac.nz/ml/weka/downloading.html
http://www.uky.edu/~nyu222/tutorials/Weka.htm
https://www.python.org/downloads/
http://pythonhosted.org/python-weka-wrapper/install.html
http://pythonhosted.org/python-weka-wrapper/index.html
http://www.putty.org/
https://filezilla-project.org/
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Used to easily download and upload the potentially large data sets. This is suggested to be done on 

campus instead of over the VPN.  

Appendix 2: Links to existing code 

MATLAB 
https://github.com/cowen314/IoT_Work/ 

Python 
https://github.com/Healbadbad/InternetOfThingsClass 

Appendix 3: Weka Tutorials 
The following is a short tutorial on how to quickly find attributes and classify data from within the Weka 

GUI. 

Open Weka on your computer and select “Explorer” from the GUI Chooser page that appears.  

Preprocessing 

 

Open the file from the Weka Explorer window via the “Open File” button, and then utilize the Attributes 

window in the lower left to remove unneeded data types such as Time Stamp, Temperature, Pressure, 

and Battery by selected all undesired data types and pressing “Remove” in the lower left. The Select 

Attribute Tab can then be used to evaluate attributes of the file. 

Attribute Selection 

 

The CorrelationAttributeEval option in the Attribute Evaluator will provide rapid ordered results of the 

most significant attributes in a linear comparison of each attribute with the “class” selected in the drop 

down box under Attribute Selection Mode (if available). It is also highly suggested to use Cross-

validation whenever data is being examined within Weka to avoid overfitting.  

https://github.com/cowen314/IoT_Work/
https://github.com/Healbadbad/InternetOfThingsClass
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Classification 

 

Classification within the Weka GUI can be reached from the “Classify” tab. For the purposes of this 

project, a majority of our Classification was performed with the Trees > RandomForest classifier, with 10 

Fold Cross-validation. Although other classifiers were examined, as noted in “Classifiers”, RandomForest 

was used as it produced the best results in testing. Further experiments can be performed by removing 

additional low-correlation fields via the “Preprocess” tab. Once a model has been trained, right click on 

it in the Result List on the lower left corner to save the model for future classification. 

Reading Weka Classifier Output 

 

Figure 5. Example Weka output including accuracy & classification statistics by class, and a confusion matrix. Relevant fields are 
highlighted, displaying the accuracy of this particular classifier. 

Figure 5. Example Weka output including accuracy & classification statistics by class, and a confusion 

matrix.shows an example of the output produced from Weka when a classifier is run. The initial values 

at the top provide a quick overview of the accuracy of the chosen classifier, providing quantitative 

results on how many instances were correctly classified. The middle of the image displays True Positive 

Rate, False Positive Rate, Precision, and Recall as defined in the same figure. Finally, a confusion matrix 

appears at the bottom of the figure, displaying a numeric breakdown of exactly how many values were 

classified as a given label via the columns, and which label they actually belonged to in each row. Via this 

matrix, items on the upper left to lower right diagonal are correctly classified. Items off of this diagonal 

were incorrectly identified.  

True Positive Rate 

False Positive Rate 

True Positive Rate: 

Percentage of correctly 

classified instances 

False Positive Rate: 

Percentage of incorrectly 

classified instances 

Precision: The percentage of correctly detected values for a 

single class over all values detected over that class 

Recall: Another term for True Positive Rate 
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Appendix 4: Bluetooth Connection 
Follow these steps to establish a link: 

I. Load the latest version of the BtStream firmware onto a shimmer of choice 

II. Pair the shimmer with a computer.  For pairing with a Windows 7 machine, see the sub-

instructions below.  Be sure that the shimmer is turned on prior to attempting to pair. 

o In control panel, navigate to the 'Add a Device' panel.  The device should show up here 

as 'Shimmer3-EXXX'.  Double click on the device.  If the pairing code has not been set 

manually, it will be '1 2 3 4' by default. 

 
Figure 6: The "Add a device" window 

 
o If everything above works correctly, driver software will begin to install.  Once the 

installations have finished, press the Start button and search for 'Bluetooth'.  Click on 
'Change Bluetooth Settings'.  Click on the 'COM Ports' tab and remember the outgoing 
port number of the connected shimmer device. 
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Figure 7: The "Bluetooth Settings" window, which shows that COM30 is the port to be passed to the python script when 

communicating with the device from the PC. 

 
III. With the pairing complete, the connection between shimmer and computer can be checked by 

executing the following steps: 
o Download the python_scripts  folder from the shimmer3 repository.  From the 

command line set the current path to this folder, then execute the line 'python  
aAccelGsrGyro51.2Hz.py ComXX' where XX is the outgoing COM port number of the 
connected shimmer. 

o If the shimmer is properly connected raw accelerometer, GSR, and gyroscope values will 
continuously print to the command window. 

 

 

https://github.com/ShimmerResearch/shimmer3/tree/master/apps/BtStream/python_scripts
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