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Abstract 

 

Nash, Austin L. 

M.S.M.E.  

Rose-Hulman Institute of Technology  

May 2015 

Euler-Lagrange Optimal Control of Indirect Fire Symmetric Projectiles 

Thesis Advisor:  Dr. Bradley T. Burchett 

 

 An important aspect of controls engineering is the dynamic modeling and flight control 

of smart weapons.  One division of this area involves the guidance, navigation, and control of 

smart projectiles.  In recent decades, methods for controlling projectiles have become much more 

sophisticated. 

 In this thesis, principles of optimal control are used to develop a controller for indirect 

fire symmetric projectiles, or high-launch projectiles.  A plant model is created to simulate the 

flight of a 2.75-inch Hydra-70 rocket.  Two pairs of forward-mounted controllable canards are 

used as actuators to modify the flight toward a downrange target.  A linear optimal regulator is 

used to compute control inputs which minimize a cost function. 

 Results are demonstrated through impact point dispersion plots which show both the 

effectiveness and robustness of the controller.  Additionally, defining characteristics of the 

control method are explored and optimized. 



 

 

 

TO 

 

 

 

 

 

 

To my parents, who have been outstanding role models and have provided unwavering 

support throughout my life.  To my sister, who has always been a best friend to me. 

To the entire faculty and staff of the Rose-Hulman Mechanical Engineering department.  

You have created an environment which enables students to maximize their potential. 

And to Caitlin, who has handled the last six years with grace and understanding.  Your 

support means everything to me. 

 

 

 

 

Thank you.



Acknowledgments 

 

 

I would like to acknowledge the following people for their help in the creation, editing, 

and formatting of this thesis and all of its contents. 

 

Dr. Bradley Burchett 

Dr. Daniel Kawano 

Dr. Ronald Artigue 

Dr. Caroline Carvill 

Darryl Mouck 

 

 

 

  

 

 

 

 

 

 

 



ii 

 

Table of Contents 

 

List of Figures ............................................................................................................................... iv 

List of Tables ................................................................................................................................ vi 

Nomenclature .............................................................................................................................. vii 

1. Introduction ........................................................................................................................... 1 

1.1 History of Ballistic Missile Dynamic Modeling ................................................................... 2 

1.2 Common Methods of Projectile Control ............................................................................... 4 

1.3 Modified Projectile Linear Theory ........................................................................................ 5 

1.4 Introduction to this Work ...................................................................................................... 5 

2. Introduction to Optimal Control.......................................................................................... 7 

2.1 A Brief History of Optimal Control ...................................................................................... 7 

2.2 Basic Fundamental Principles of Optimal Control ............................................................... 8 

2.3 Control Law for a Linear Piecewise Time-Varying Optimal Regulator ............................. 11 

2.4 Development of LPTV Control Law via Matrix Riccati Differential Equation ................. 14 

3. Projectile Dynamic System ................................................................................................. 17 

3.1 Aerodynamic Forces and Moments Acting on a Projectile in Flight .................................. 17 

3.2 Coordinate Systems and Reference Frames ........................................................................ 24 

3.3 Six-Degree-of-Freedom Projectile Dynamic Equations ..................................................... 27 

3.4 Introducing Canards as Nonlinear Actuators ...................................................................... 33 

4.     Implementing Control ........................................................................................................ 40 

4.1 Inherent Assumptions of Modified Projectile Linear Theory ............................................. 41 

4.2 Preliminary Manipulation to MPLT for Implementing Feedback Control ......................... 44 

4.3 Estimation of Time-Varying Parameters Using a Point Mass Vacuum Approach ............. 46 

4.4 General Linearization via Taylor Series Expansion to Better Control Altitude ................. 55 

4.5 State-Space Representation of System for Feedback Control ............................................. 59 

4.6 Use of Optimal Control to Obtain Control Input ................................................................ 62 

4.7 Summary of Control Implementation Algorithm ................................................................ 64 

4.8 Overall Flowchart of Projectile Flight and Control ............................................................ 65 

5.     Results and Discussion ........................................................................................................ 67 

5.1 Examining a Trajectory:  Uncontrolled vs. Controlled States ............................................ 69 

5.2 Controller Robustness:  Impact Point Dispersion Results .................................................. 76 



iii 

 

5.3 Controller Trade Studies:  Investigating Optimal Performance .......................................... 81 

5.3.1 Impact of Segmentation on Performance ..................................................................... 81 

5.3.2 Impact of Sampling Period on Performance ................................................................. 83 

5.4 Vacuum Model Prediction Accuracy .................................................................................. 84 

5.5 Vacuum Model Robustness ................................................................................................. 89 

5.6 Tracking Miss Distances as a Function of Launch Angles ................................................. 90 

5.7 Observing the Canard Actuator Deflections ....................................................................... 91 

5.8 Summarizing the Results ..................................................................................................... 93 

6.     Conclusions .......................................................................................................................... 94 

6.1 Summarizing Work Performed in this Thesis ..................................................................... 94 

6.2 Future Work ........................................................................................................................ 95 

6.3 Final Acknowledgment ....................................................................................................... 96 

References .................................................................................................................................... 97 

Appendices ................................................................................................................................... 99 

Appendix A:  MATLAB Code Used in Thesis ....................................................................... 100 

Appendix B:  Hydra-70 Mach-Dependent Properties ............................................................. 117 

Appendix C:  Canard Mach-Dependent Properties and Dynamic Properties ......................... 118 

Appendix D:  Canard Angle Properties................................................................................... 119 

Appendix E:  Initial Yaw and Pitch Angle Random Sets ....................................................... 120 

 

  



iv 

 

 

List of Figures 

Figure 3.1:  Depiction of aerodynamic drag force ........................................................................ 18 

Figure 3.2:  Depiction of aerodynamic lift force .......................................................................... 19 

Figure 3.3:  Depiction of axial and normal forces ........................................................................ 20 

Figure 3.4:  Depiction of spin damping moment .......................................................................... 22 

Figure 3.5:  Depiction of pitch damping moment ......................................................................... 23 

Figure 3.6:  Relationship between inertial and body frames (adapted from [13]) ........................ 25 

Figure 3.7:  Relationship between fixed-plane and body frames (adapted from [13]) ................. 26 

Figure 3.8:  Translational degrees of freedom .............................................................................. 27 

Figure 3.9:  Rotational degrees of freedom .................................................................................. 28 

Figure 3.10:  Depiction of canard actuators .................................................................................. 33 

Figure 3.11:  Canard angles and their orientations ....................................................................... 34 

Figure 4.1:  Projectile as a point mass in a vacuum ...................................................................... 47 

Figure 4.2:  Modeling future states with the vacuum trajectory ................................................... 49 

Figure 4.3:  Segmentation of predicted trajectory ........................................................................ 51 

Figure 4.4:  Prediction sine and cosine values .............................................................................. 52 

Figure 4.5:  Illustration for altitude control .................................................................................. 58 

Figure 4.6:  Flowchart of simulation and control algorithm ......................................................... 66 

Figure 5.1:  Crossrange comparison ............................................................................................. 69 

Figure 5.2:  Altitude comparisons ................................................................................................. 70 

Figure 5.3:  Yaw angle comparisons............................................................................................. 70 

Figure 5.4:  Pitch angle comparisons ............................................................................................ 71 



v 

 

Figure 5.5:  Roll angle comparisons ............................................................................................. 71 

Figure 5.6:  IB velocity comparisons ............................................................................................. 72 

Figure 5.7:  JB velocity comparisons............................................................................................. 72 

Figure 5.8:  KB velocity comparisons ........................................................................................... 73 

Figure 5.9:  Roll rate comparisons ................................................................................................ 73 

Figure 5.10:  Pitch rate comparisons............................................................................................. 74 

Figure 5.11:  Yaw rate comparisons ............................................................................................. 74 

Figure 5.12:  Target plane and desired Monte Carlo characteristics ............................................ 76 

Figure 5.13:  Construction of Monte Carlo pitch angles .............................................................. 78 

Figure 5.14:  Ballistic and controlled impact points ..................................................................... 79 

Figure 5.15:  Ballistic and controlled impact points with CEP..................................................... 80 

Figure 5.16:  Impact of added segments on CEP .......................................................................... 82 

Figure 5.17:  Impact of sampling period on CEP ......................................................................... 84 

Figure 5.18:  Prediction comparison for projectile altitude .......................................................... 85 

Figure 5.19:  Prediction comparison for projectile velocity ......................................................... 86 

Figure 5.20:  Prediction comparison for projectile roll rate .......................................................... 86 

Figure 5.21:  Prediction comparison for projectile pitch angle .................................................... 87 

Figure 5.22:  Improved altitude control via theta perturbation state ............................................. 88 

Figure 5.23:  Robustness of using vacuum model for control ...................................................... 89 

Figure 5.24:  Miss Distances resulting from input pitch angle dispersion ................................... 90 

Figure 5.25:  Commanded canard deflections .............................................................................. 92 

  



vi 

 

 

List of Tables 

 

Table 3.1: Twelve states involved in the projectile dynamic model............................................. 29 

Table 5.1:  Projectile properties required for simulations............................................................. 68 

  



vii 

 

 

Nomenclature 

 

𝑷,𝑸, 𝑹 Optimal control weighting matrices 

𝑨,𝑩 Linear control state-space matrices 

𝐶𝑁𝐴 Normal force aerodynamic coefficient 

𝐶𝑀𝐴 Pitch moment due to angle of attack aerodynamic coefficient 

𝐶𝑋0, 𝐶𝑋2 Axial force aerodynamic coefficients 

𝐶𝐿𝑃  Spin damping moment aerodynamic coefficient 

𝐶𝐷𝐷  Fin cant rolling moment aerodynamic coefficient 

𝐶𝑀𝑄  Pitch damping aerodynamic coefficient 

𝐷 Projectile reference diameter (ft) 

𝑔 Gravitational constant, 32.2 (ft/s2) 

𝑚 Projectile mass (slug) 

𝑰 Identity matrix 

𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 Inertia components in projectile reference frame (slug-ft2) 

𝑚 Projectile mass (slug) 

𝑝, 𝑞, 𝑟 Angular velocity vector components expressed in fixed-plane reference frame 

(rad/s) 

𝑆𝐿𝑐𝑔 Station line of projectile c.g. location (ft) 

𝑆𝐿𝑐𝑝 Station line of projectile c.p. location (ft) 

𝑠 Downrange distance (calibers) 

𝑢, 𝑣, 𝑤 Translational velocity components of projectile center of mass in fixed-plane 

referene frame (ft/s) 

𝑉 Magnitude of mass center velocity (ft/s) 

𝑥, 𝑦, 𝑧 Position vector components of projectile mass center in inertial reference frame 

(ft) 

𝜓, 𝜃, 𝜙 Euler yaw, pitch, and roll angles (rad) 

  



viii 

 

 

𝒖 Optimal control input (rad) 

𝜼, 𝜉, �̇� State vector terms for linear controller which make up state vector 𝒙 

𝜦, 𝜮,𝜱, 𝜩, 𝜞 Terms in control state dynamics matrix 

𝑋, 𝑌, 𝑍 Total force components on projectile (lbf) 

𝐿,𝑀,𝑁 Total moment components on projectile (lbf-ft) 

𝜌 Air density (slug/ft3) 

𝑀𝑎 Mach number 

𝑐 Speed of sound (ft/s) 

𝛼𝐶 Canard angle of attack (rad) 

𝛿𝐶 Canard pitch angle (rad) 

𝐶𝑌0, 𝐶𝑍0 Aerodynamic trim force coefficients 

𝑀1, 𝑀2 Vacuum trajectory coefficients 

ℎ Arc length (calibers) 

�̅� Pitch angle(s) predicted by vacuum model for respective segment 

𝛿𝜃  Theta perturbation state for altitude control 

𝐶𝐿𝛼 Lift coefficient to convert controller output to dimensional form (rad-1) 

𝑵 Solution to matrix Riccati differential equation 

𝑅𝐶𝐴𝑋, 𝑅𝑀𝐶𝑃 Distance from stationline c.g. to stationline c.p. (ft) 

𝑭, 𝒁 Matrix Hamiltonian and back-propagation algorithm terms for controller 

𝑆 Projectile reference area (ft2) 

𝑆𝐶 

 

Canard reference area (ft2) 

 

subscript 

 

𝑐 Denotes term is representing canards, rather than projectile itself 



1 

 

 

 

 

1.  Introduction 

In recent decades, the design and control of autonomous weapons has become an 

important aspect of controls engineering.  One division of this area involves the guidance, 

navigation, and control of missiles and projectiles.  The term guidance refers to the determination 

of an optimal trajectory for a system, while navigation concerns tracking the current state of the 

system, and control refers to the use of some mechanism to alter the trajectory such that it 

reaches a desired location [1].  

In the pre-World War era, missiles were commonly used as area weapons.  Launches 

were made with the intent of targeting a general area.  Since the Second World War, guided 

missiles have become prevalent weapons due to advancements in science and technology.  

Autonomous control is impactful in many regions of missile use such as underwater homing 

torpedoes, intercontinental ballistic missiles, and guided projectiles [2]. 

This work will focus on the control of guided projectiles.  Feedback controllers can be 

implemented such that the trajectory of a projectile is altered throughout its flight and its impact 

is guided to a very precise location.  Methods of controlling missiles and projectiles range from 

the use of pulse jets to fin control.  In the case of pulse jet control, sets of pulse jets are often 

installed near the nose of the rocket.  The pulses of the jets are then controlled in order to cause 

the rocket to exhibit a desired behavior, such as minimizing yaw rate or pitch rate [3].  With fin 

control, pairs of controllable fins, or canards, are located near the nose of the rocket and 
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controlled such that their orientation causes certain aerodynamic reactions to be imparted onto 

the rocket, which then alters its flight. 

In this thesis, principles of optimal control theory will be used in order to manipulate two 

pairs of forward-mounted canards.  This work seeks to expand on previous efforts in controlling 

direct fire projectiles in part by incorporating a series of implicit pitch angle predictions to better 

allow for altitude control of indirect fire launches, or launches at high initial pitch angles.  The 

goal is to minimize impact point dispersion for a wide range of initial pitch and yaw launch 

angles.  In this chapter, a history of aerodynamic modeling of ballistic missiles will be presented.  

Additionally, recent work on projectile control will be discussed. 

 

1.1 History of Ballistic Missile Dynamic Modeling 

The following section is adapted from information via the work of Hainz and Costello [4] 

and the work of McCoy [5].  Prior to the 16th century, it was widely accepted that projectiles flew 

in a straight line.  Galileo Galilei recognized that the flight was parabolic in nature.  Galilei 

modeled a projectile as a point mass with gravity being the only acting external force.  In the late 

1600s and early 1700s, Isaac Newton established the framework for modern classical mechanics.  

Newton devoted time to the idea of a projectile in a resisting medium, effectively advancing the 

idea of aerodynamic drag which had been established by Johann Bernoulli.  As centuries have 

passed, aerodynamic models have become much more sophisticated.   

 In the 19th century, scientists throughout the western world undertook experimental firings 

in order to improve the accuracy of drag measurements.  Ballisticians from England, France, 

Germany, Russia, and the United States each conducted tests for measuring drag coefficients as a 
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function of projectile velocity.  Additionally, advancements were made in optimizing the shapes 

of projectiles with respect to drag, with the discovery that the use of long, slender projectile shapes 

could cut drag significantly at high speeds. 

 Prior to the 20th century, researchers always assumed that long projectiles flew with small 

yaw.  That is to say, it was assumed that projectiles typically had enough spin such that they would 

not fly off course in an out-of-plane direction.  In the first decades of the 20th century, this 

assumption was relaxed and researchers began developing ballistic flight models which accounted 

for yawing motion and gyroscopic stability and are still in use today. 

In 1919, English researchers Fowler, Gallop, Lock, and Richmond introduced the modern 

six-degree-of-freedom (6DOF) rigid aerodynamic force-moment system for spinning projectiles.  

They also presented several key simplifications to the model which allowed the first approximate 

analytical solution to be formed.  The set of resulting equations became known as projectile linear 

theory.  Small adjustments were made to the 6DOF model over the following years and in 1943 

Canadian researchers introduced the complete model in use today. 

With the advent of projectile linear theory (PLT), it became possible to design linear 

feedback controllers which could help in guiding and controlling projectiles to precise target 

locations.  Over recent decades, methods of projectile control have become much more prevalent 

and sophisticated. 
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1.2 Common Methods of Projectile Control 

In recent years, projectile control has commonly been implemented using model 

predictive control (MPC) or similar methods.  Strategies have included impact point prediction, 

conversion of plant dynamics to discrete-time systems, and providing reference trajectories to the 

target.   

Ollerenshaw and Costello demonstrated the use of MPC in a 2005 publication [6].  Their 

method involved minimizing a quadratic cost function defined by a comparison of predicted 

states and a predetermined reference trajectory.  The desired reference trajectory must be loaded 

into the onboard computer prior to the projectile’s launch.  It is necessary to convert the 

dynamics into a discrete-time system and thus a discretization of the solution is required.   

Additionally, a 2002 paper by Burchett and Costello made use of a predictive flight 

control system via MPC [3].  More specifically, an impact point predictor was utilized.  

Projectile linear theory was used to transform the task of controlling the projectile over the 

trajectory into one of controlling the impact point in the target plane.  Control was based on a 

comparison of the commanded target location and the predicted impact point in crossrange and 

altitude.  In general, most of the common methods of control require trajectory discretization and 

pre-loaded trajectories.     
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1.3 Modified Projectile Linear Theory 

Projectile linear theory gives a set of linear ordinary differential equations (ODEs) which 

can reasonably model the full 6DOF nonlinear set of equations associated with projectile flight.  

However, a key assumption in PLT involves small Euler pitch angles.  This simplification means 

that the analytical solution to the linear set of equations will deviate from that of the 6DOF set of 

equations at higher launch angles and longer ranges.  Because of this, controlling flight at high 

pitch angles is more difficult. 

In 2005, Hainz and Costello introduced a modified set of assumptions to the 6DOF 

equations that would produce a set of quasi-linear equations which would better approximate a 

solution at higher launch angles [4].  The largest difference was the relaxation of the assumption 

of small Euler pitch angle.  It was shown that the modified projectile linear theory equations 

closely matched the solution to the full non-linear simulation at both low and high launch angles.  

Consequently, the modified linear equations can be used in a feedback controller to better guide 

indirect fire launches. 

 

1.4 Introduction to this Work 

Recently, Burchett and Nash presented a method for using optimal control to guide the 

flight of a symmetric projectile [7].  The benefit of this technique is that in part by treating 

gravity as an uncontrollable mode, a control problem can be formulated without the need for 
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reference trajectories or discrete-time conversions.  The result is a continuous-time finite horizon 

Euler-Lagrange optimal controller.  Performance was demonstrated through the use of a time-

varying linear optimal regulator in which roll rate and total velocity become time-varying 

parameters in a piecewise solution. 

In this thesis, the work of Burchett and Nash will be extended to incorporate control of 

indirect fire projectiles via a piecewise time-varying linear optimal regulator.  Since optimal 

control is being utilized, there is still no need for a reference trajectory.  This means that control 

can happen in real time on board the projectile.  Rather than implementing control using the 

traditional projectile linear theory equations, a feedback controller is designed using the modified 

projectile linear theory equations.  The pitch angle will be treated as a time-varying parameter 

and recursively predicted from current position to target at each time in a control sampling 

period.  A perturbation state will be designed and used as a means to track projectile altitude and 

control it to a desired value.  The combination of these factors allows for improved trajectory 

control at high launch angles.  The results will be demonstrated through impact point dispersion 

plots and an examination of the controller’s defining characteristics.
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2. Introduction to Optimal Control          

Optimal control is a fundamental control technique which attempts to act such that a 

system in question behaves in an optimized fashion by getting from a current state to a desired 

end state with the least effort or cost.  A basic criterion, or performance index, is generated and 

the control law is developed such that the control input given to the system either maximizes or 

minimizes the chosen performance index.  In this chapter, the proper control law for a linear 

piecewise time-varying (LPTV) optimal regulator will be derived from basic principles of 

optimal control. 

 

2.1  A Brief History of Optimal Control 

The information in this section is adapted from Sussmann and Willems [8].  Conventional 

belief holds that today’s theory of optimal control was born in the Soviet Union in the 1950s.  

However, the basic principles upon which optimal control was founded were first conceived in 

the late 17th century in the Netherlands during scientists’ attempts to solve the brachystochrone 

problem which posed a general question about the quickest and most optimal way of getting an 

object from a start position to a desired end position.  Various solutions were presented to the 

problem in 1697, making it the first known problem to ever deal with dynamical behavior while 

asking explicitly for an optimal path.  

Through the next three centuries, today’s familiar principles of optimal control and the 

calculus of variations were developed by world class scientists such as Euler and Lagrange.  
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Today, optimal control lies at the heart of control theory and has important influences on the 

control of a wide variety of objects including guided missiles and projectiles.   

 

2.2 Basic Fundamental Principles of Optimal Control 

The following information and derivation is adapted from [9] and [10].  In order to 

develop a control law to govern a specific system, the process starts with a dynamic system of 

the most general form: 

 �̇� = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡) 

𝒙(𝑡𝑖) = 𝒙𝑜 
(2.1) 

 

where 𝒙(𝑡) is the state vector as a function of time 𝑡, 𝒖(𝑡) is the input to the dynamic system, 

and xo is the initial state.  It is sought to find the input which will take the system from its initial 

state to a desired end state 𝒙(𝑡𝑓) in the most optimal way.  

 To execute this task, a performance criterion, or cost function, must be developed.  The 

performance criterion will be the basis by which the input is judged with respect to its 

corresponding output.  That is to say, the goal will be to minimize the performance index.  In its 

simplest form, this scalar cost function can be written as  

 
𝐽 = 𝜙(𝒙(𝑡𝑓), 𝑡𝑓) + ∫ 𝐿(𝒙(𝑡), 𝒖(𝑡), 𝑡) 𝑑𝑡

𝑡𝑓

𝑡𝑖

 (2.2) 

 

where 𝜙 is a scalar function of the dynamic states and time, and 𝐿 is a scalar function of the 

states, the input, and time.   
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A Lagrange multiplier approach [11] is used to append the state dynamics (2.1) as a 

constraint.  The result is given as  

 

 𝐽 = 𝜙(𝒙(𝑡𝑓), 𝑡𝑓) + ∫ [𝐿(𝒙(𝑡𝑓), 𝒖(𝑡𝑓), 𝑡) + 𝝀𝑇(𝑡){𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡) − �̇�}]𝑑𝑡
𝑡𝑓

𝑡𝑖

 (2.3) 

 

where 𝝀 is termed the co-state and will aid in the optimization process.  Next, a scalar function 

termed the Hamiltonian is defined as 

 

𝐻(𝒙(𝑡), 𝒖(𝑡), 𝑡) =  𝐿(𝒙(𝑡), 𝒖(𝑡), 𝑡) + 𝝀𝑇(𝑡)𝒇(𝒙(𝒕), 𝒖(𝒕), 𝑡) (2.4) 

 

With the definition of the Hamiltonian in (2.4), the cost function can be written as 

 
𝐽 = 𝜙(𝒙(𝑡𝑓), 𝑡𝑓) + ∫ [𝐻(𝒙(𝑡), 𝒖(𝑡), 𝑡) − 𝝀𝑇(𝑡)�̇�] 𝑑𝑡

𝑡𝑓

𝑡𝑖

 (2.5) 

 

In order to make (2.5) easier to evaluate, an integration by parts is performed on the 𝝀𝑇(𝑡)�̇� term 

in the integral.  Thus, the equation becomes 

 𝐽 = 𝜙(𝒙(𝑡𝑓), 𝑡𝑓) − 𝝀𝑇(𝑡𝑓)𝒙(𝑡𝑓) + 𝝀𝑇(𝑡𝑖)𝒙(𝑡𝑖) 

+∫ 𝐻(𝒙(𝑡), 𝒖(𝑡), 𝑡) + �̇�𝑇(𝑡)𝒙(𝑡) 𝑑𝑡
𝑡𝑓

𝑡𝑖

 
(2.6) 

 

 To optimize the system, variations in J must be considered with respect to variation in 

input 𝒖.  This is done through a calculus of variations approach.  The result is seen in (2.7). 

 

𝛿𝐽 = [
𝜕𝝓

𝜕𝒙
− 𝝀𝑇]

𝑡𝑓

𝛿𝒙 + [𝝀𝑇𝛿𝒙]𝑡𝑖 + ∫ {[
𝜕𝐻

𝜕𝒙
+ �̇�𝑇] 𝛿𝒙 +

𝜕𝐻

𝜕𝒖
𝛿𝒖 } 𝑑𝑡

𝑡𝑓

𝑡𝑖

 (2.7) 
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The assumption that 𝐽 becomes optimized implies that an extremum has been reached.  For an 

optimal performance criterion, 𝛿𝐽 = 0.  This implies that each term in (2.7) will vanish at the 

optimal condition.  Using this information, the following criteria are developed: 

 
𝝀𝑇(𝑡𝑓) =

𝜕𝝓

𝜕𝒙
|
𝑡𝑓

 (2.8) 

 

�̇�𝑇 = −
𝜕𝐻

𝜕𝒙
 (2.9) 

 𝜕𝐻

𝜕𝒖
= 𝟎 (2.10) 

 

𝝀𝑇(𝑡𝑖) = 𝟎 (2.11) 

 

 Equations (2.8) - (2.11) are commonly known as the Euler-Lagrange equations in the 

calculus of variations.  From these equations, constraints and conditions for optimality can be 

formed, and when solved with the system dynamics, the optimal input can be found.   

First, (2.9) is expanded and transposed using the definition of the Hamiltonian in (2.4) to 

obtain 

 

�̇� = − (
𝜕𝒇

𝜕𝒙
)
𝑇

𝝀 − (
𝜕𝐿

𝜕𝒙
)
𝑇

 (2.12) 

 

Similarly, (2.10) can be expanded and transposed along with the use of (2.4), resulting in 

 

(
𝜕𝒇

𝜕𝒖
)
𝑇

𝝀 + (
𝜕𝐿

𝜕𝒖
)
𝑇

= 𝟎 (2.13) 
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Thus, the problem ultimately entails solving the differential equations given by the state and co-

state dynamics: 

 

�̇� = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝑡) (2.14) 

 

�̇� = − (
𝜕𝒇

𝜕𝒙
)
𝑇

𝝀 − (
𝜕𝐿

𝜕𝒙
)
𝑇

 (2.15) 

 

with 𝒖(𝑡) determined by evaluating 

 

(
𝜕𝒇

𝜕𝒖
)
𝑇

𝝀 + (
𝜕𝐿

𝜕𝒖
)
𝑇

= 𝟎 (2.16) 

 

with boundary conditions defined by 

 

𝝀(𝑡𝑓) = (
𝜕𝜙

𝜕𝒙
|
𝑡𝑓

)

𝑇

;  𝒙(𝑡𝑖) = 𝒙𝒐 (2.17) 

 

 The preceding process is the basis for optimal control.  The process will sufficiently yield 

a control input 𝒖(𝑡) which produces an extremum of a defined performance index 𝐽, thus leading 

the dynamic states 𝒙(𝑡) to their desired end conditions. 

 

2.3 Control Law for a Linear Piecewise Time-Varying Optimal Regulator 

For the work in this thesis, it is sought to develop a linear optimal regulator that varies 

with time.  This will be done in a piecewise fashion [10], with the trajectory of the projectile 

being broken into segments from current position to target at each time step in the sampling 
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period.  As such, it is desired to make the system matrices 𝑨 and 𝑩 time-varying.  Consider a 

general dynamic system of linear ODEs with state vector 𝒙, input 𝒖 and initial state 𝒙𝒐.   

 �̇�(𝑠) = 𝑨(𝑠)𝒙(𝑠) + 𝑩(𝑠)𝒖(𝑠) 

𝒙(𝑠 = 0) = 𝒙𝑜 
(2.18) 

 

Here, the system is not a function of time, but of downrange calibers 𝑠 and �̇�(𝑠) represents a 

caliber derivative.  The process will remain the same; an independent variable change has simply 

been made.  The reasoning for the change of variables will be further discussed in Chapter 4. 

 The goal is to control a linear combination of the states over a caliber interval {𝑠𝑖, 𝑠𝑓}.  

Thus, let matrix transformation 𝒁 be defined as 

 
𝒁(𝑠) = 𝑬(𝑠)𝒙(𝑠) (2.19) 

 

The performance index for this system can be temporarily written as 

 
𝐽 =

1

2
𝒙𝑇(𝑠𝑓)𝑺𝒙(𝑠𝑓) + ∫

1

2
(𝒁𝑇(𝑠)𝑻𝒁(𝑠) + 𝒖𝑇(𝑠)𝑹𝒖(𝑠))𝑑𝑠

𝑠𝑓

𝑠𝑖

 (2.20) 

 

where 𝑺, 𝑹 and 𝑻 are weighting matrices and are required only to be positive, semi-definite 

matrices.   By defining another weighting matrix 𝑸(𝑠) = 𝑬𝑇(𝑠)𝑻𝑬(𝑠), the performance index 

can be re-written as 

 
𝐽 =

1

2
𝒙𝑇(𝑠𝑓)𝑺𝒙(𝑠𝑓) + ∫

1

2
(𝒙𝑇𝑸𝒙 + 𝒖𝑇𝑹𝒖)𝑑𝑠

𝑠𝑓

𝑠𝑖

 (2.21) 

  

By matching terms with (2.2), it can be said that  
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𝜙 =
1

2
𝒙𝑇(𝑠𝑓)𝑺𝒙(𝑠𝑓) (2.22) 

 

and 

 

𝐿 =
1

2
(𝒙𝑇𝑸𝒙 + 𝒖𝑇𝑹𝒖) (2.23) 

 

In accordance with (2.4), the scalar Hamiltonian H is defined as 

 

𝐻 =
1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖 + 𝝀𝑇(𝑨𝒙 + 𝑩𝒖) (2.24) 

 

By utilizing the Euler-Lagrange equations for optimal control, the derivative of the co-state can 

be developed as  

 

�̇� = −𝑸𝒙 − 𝑨𝑇𝝀 (2.25) 

 

The control 𝒖 can be found by taking the partial derivative of 𝐻 with respect to 𝒖 as seen in 

(2.26). 

 𝜕

𝜕𝒖
(
1

2
𝒙𝑇𝑸𝒙 +

1

2
𝒖𝑇𝑹𝒖) +

𝜕

𝜕𝒖
(𝝀𝑇(𝑨𝒙 + 𝑩𝒖)) = 𝟎 (2.26) 

 

Evaluating (2.26) with 𝑸 = 𝟎 yields the correct control law for this problem. 

 

𝒖𝑇𝑹 + 𝝀𝑇𝑩 = 𝟎 (2.27) 
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A simple rearrangement makes it possible to solve directly for the control input as a function of 

the system’s control matrix 𝑩 and the co-state 𝝀: 

 

𝒖 = −𝑹−1𝑩𝑻𝝀 (2.28) 

 

 Additionally, the set of differential equations necessary to evaluate the control effort can 

be written in matrix form as 

 
{
�̇�
�̇�
} = [

𝑨 −𝑩𝑹−𝟏𝑩𝑻

−𝑸 −𝑨𝑻 ] {
𝒙
𝝀
} (2.29) 

  

Through solving the sets of ODEs given in (2.29) and evaluating (2.28), the control input which 

optimizes the system can be found at each step in the control sampling period.  In order to 

accomplish this, a way of solving for the time-varying co-state is needed. 

 

2.4 Development of LPTV Control Law via Matrix Riccati Differential Equation 

In order to account for the time-varying nature of the system matrices desired in this 

problem, an alternative form of (2.28) is considered.  From the boundary condition given in (2.8) 

and the definition of 𝜙 in (2.22), it is known that at the final state, the co-state 𝝀 is related to the 

system states x by a gain matrix S.  It can then be inferred that the co-state is related to the state 

vector by a time-varying mapping matrix N, as seen in (2.30).   

 
𝝀(𝑠𝑓) = 𝑺𝒙(𝑠𝑓)   ⇒    𝝀(𝑠) = 𝑵(s)𝒙(𝑠) (2.30) 
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Using this information and (2.28), the equation for the control input can be re-written as  

 

𝒖(𝑠) = −𝑹−1𝑩𝑻(𝑠)𝑵(𝑠)𝒙(𝑠) (2.31) 

 

In order to solve for the optimal control input, a solution to N must be found.  It is worth noting 

that the matrices in the following derivation are functions of arc-length s which has units of 

calibers.  For convenience, the s will be left out of the next few equations.  Because both N and x 

are time-varying, the derivative of (2.30) can be written as 

 

�̇� = �̇�𝒙 + 𝑵�̇� (2.32) 

 

Substituting (2.32) into the definition of the co-state derivative given in (2.25), it is found that  

 

�̇�𝒙 + 𝑵�̇� = −𝑸𝒙 − 𝑨𝑇𝝀 (2.33) 

 

Making use of (2.29), this can be further developed as 

 

𝑵(𝑨𝒙 − 𝑩𝑹−𝟏𝑩𝑻𝝀) + �̇�𝒙 = −𝑸𝒙 − 𝑨𝑇𝝀 (2.34) 

 

Equation (2.34) can be expanded and rearranged. First, the substitution 𝝀 = 𝑵𝒙 is made, which 

provides an equation in which x is present in every term.  This implies that the equation is valid 

for any x.  Thus, equation (2.34) can be written as 

 

�̇�(𝑠) = −𝑵(𝑠)𝑨(𝑠) − 𝑨𝑇(𝑠)𝑵(𝑠) + 𝑵(𝑠)𝑩(𝑠)𝑹−1𝑩𝑻(𝑠)𝑵(𝑠) − 𝑸 (2.35) 
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Equation (2.35) is known as the matrix Riccati differential equation.  It is one of the most 

fundamental equations in control theory.  In this thesis, it will be used to solve for the control 

input 𝒖 which will help guide the projectile to the desired target location.  After a solution to 

(2.35) is obtained, the control input 𝒖 can be backed out via (2.31). 

 There are multiple techniques used to solve for the gain matrix 𝑵.  The technique used 

for solving the Riccati equation in this thesis involves the use of block pulse functions and 

requires the evaluation of a matrix Hamiltonian with a reverse integration process to back 

propagate for the correct solution [12].  This will be covered in a later chapter about the 

development of the controller.  
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3. Projectile Dynamic System 

 

This chapter introduces the dynamic equations needed to run a full simulation of 

projectile flight.  The dynamic description of the projectile involves 12 highly nonlinear ODEs 

which describe its location and attitude in an inertial reference frame.  Initially, the forces and 

moments acting on the projectile will be discussed and presented.  The dynamic equations of the 

projectile itself will then be presented, followed by a description of the control mechanism, the 

forward-mounted controllable canards.  Finally, the dynamic equations for modeling canard 

behavior will also be presented.   

 

3.1 Aerodynamic Forces and Moments Acting on a Projectile in Flight 

 

 The information and figures in this section have been adapted from the text of McCoy 

[5].  In modeling the flight of a projectile, the external forces and moments acting on the system 

are of great importance.  These forces and moments alter the flight dynamics from launch to 

target, and must be precisely accounted for.  Aerodynamic forces and moments are characterized 

by coefficients which are obtained experimentally as functions of local Mach number.  As the 

projectile’s mass center velocity changes, so too does the Mach number.  Consequently, the 

coefficients vary throughout the flight and should be properly incorporated. 
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One of the most prominent forces acting on the projectile throughout its flight is termed 

the drag force.  The aerodynamic drag force is depicted in Figure 3.1.   

 

 

 

Figure 3.1:  Depiction of aerodynamic drag force 

 

Aerodynamic drag directly resists the total velocity vector of the projectile and accounts 

for yawing motion (out-of plane) by allowing for variation of the total yaw angle 𝜓.  Two terms, 

𝐶𝐷0 and  𝐶𝐷2, are used to calculate the total drag force coefficient.  In general, the total drag force 

coefficient is found as  

 

 
𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷2𝜓

2 (3.1) 
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and the total magnitude of the drag force would be represented by 

 

 
𝐹𝐷 =

1

2
𝜌𝑉2𝑆𝐶𝐷 (3.2) 

 

where 𝜌 is the air density, 𝑉 is the magnitude of the total mass center velocity of the projectile, 

and 𝑆 is the projectile reference area with 𝐷 being the projectile reference diameter. 

Another primary force acting on the projectile throughout its flight is the lift force.  The 

aerodynamic lift force is depicted in Figure 3.2.   

 

 

Figure 3.2:  Depiction of aerodynamic lift force 
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The lift force acts perpendicular to the trajectory.  Like the drag force coefficient, the lift 

coefficient also varies with yaw and is represented by 

 

 
𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿2𝜓

2 (3.3) 

 

where 𝐶𝐿0 and 𝐶𝐿2 are Mach number dependent.  The total lift force is represented by  

 

 
𝐹𝐿 =

1

2
𝜌𝑉2𝑆𝐶𝐿sin (𝜓) (3.4) 

 

 Oftentimes for ease of computation, authors will work in a body frame with axes parallel 

and perpendicular to the projectile’s axis of symmetry.  In this type of axis system, the lift and 

drag forces are resolved into axial (𝐹𝑋) and normal (𝐹𝑁) forces, seen in Figure 3.3. 

 

 

Figure 3.3:  Depiction of axial and normal forces 
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The resulting normal force aerodynamic coefficient is termed 𝐶𝑁𝐴 and the magnitude of 

the normal force is calculated as  

 

 
𝐹𝑁 =

1

2
𝜌𝑉2𝑆𝐶𝑁𝐴sin (𝜓) (3.5) 

 

Under small yaw angles, the axial force and drag force will act in exactly opposite directions.  

Therefore, for small yaw, 

 

 
𝐶𝑋 = −𝐶𝐷 ⇒ 𝐶𝑋0 = −𝐶𝐷0 ;  𝐶𝑋2 = −𝐶𝐷2 (3.6) 

 

and the total magnitude of the axial force is seen as 

 

 
𝐹𝑋 =

1

2
𝜌𝑉2𝑆𝐶𝑋 (3.7) 

 

 Several moments also act on the projectile during its flight.  One of these moments is 

termed the spin damping moment, and it always opposes the spin of the projectile and decreases 

axial spin, or roll.  The spin damping moment is depicted in Figure 3.4. 
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Figure 3.4:  Depiction of spin damping moment 

 

The spin damping moment coefficient is always negative and is represented by 𝐶𝐿𝑃.  The 

magnitude of the spin damping moment on a projectile is calculated by  

 

 
𝑀𝑆𝐷 =

1

2
𝜌𝑉2𝑆𝐷 (

𝑝𝐷

𝑉
)𝐶𝐿𝑃 (3.8) 

 

where 𝑝 represents the axial spin rate. 

 Another moment acting on the projectile during flight is a rolling moment due to fin cant.  

This applies only to finned missiles with differentially canted fins.  This moment tends to cause 

increasing spin at the exact time the spin damping moment is causing decreasing spin.  The two 

moments typically serve to cancel each other out and cause the spin rate to approach a small 

magnitude.  The fin cant rolling moment is calculated by 
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𝑀𝐹𝐶𝑅 =

1

2
𝜌𝑉2𝑆𝐷𝛿𝐹𝐶𝐷𝐷 (3.9) 

 

where 𝛿𝐹 is the fin cant angle and 𝐶𝐷𝐷 is the fin cant rolling moment coefficient. 

 

 A third moment acting on the projectile during flight is the pitch damping moment.  This 

is a moment resulting from the aerodynamic lift force.  The pitch damping moment is depicted in 

Figure 3.5. 

 

Figure 3.5:  Depiction of pitch damping moment 

   

The coefficient for the pitch damping moment is 𝐶𝑀𝑄 and the moment is represented by 

 

 
𝑀𝑃𝐷 =

1

2
𝜌𝑉2𝑆𝐷 (

𝑞𝑡𝐷

𝑉
)𝐶𝑀𝑄  (3.10) 
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where 𝑞𝑡 is the total transverse angular velocity. 

Another force and moment pair typically acting on a projectile during flight deals with 

the Magnus effect.  The Magnus force is due to uneven pressure forces on opposite sides of a 

spinning body.  Due to the presence of differentially canted fins on the projectile in this thesis, a 

fin cant rolling moment is present and serves to oppose the spin damping moment.  This causes 

the axial spin rate to be small enough in magnitude that the Magnus effect will be assumed to be 

negligible throughout the duration of this thesis.  

 

3.2 Coordinate Systems and Reference Frames  

 

This section is adapted from [13].  In this thesis, several reference frames and coordinate 

systems are used to help simulate the flight of the projectile and to aid in ensuring a 

computationally efficient controller.  In general, the position and attitude states are derived in the 

inertial frame.  Commonly, the inertial frame is placed such that its x-axis runs through the 

center of the target and the z-axis points positive downward.   Another reference frame, termed 

the body frame, is frequently used in aerodynamic modeling.  The body frame is placed such that 

its x-axis remains parallel to the stationline axis of the projectile.  The coordinate systems are 

right-handed.  The representation of the two frames and coordinate systems is seen in Figure 3.6.  
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Figure 3.6:  Relationship between inertial and body frames (adapted from [13]) 

 

The two frames are related by the standard (Z-Y-X) aerospace rotation sequence where 

𝜓, 𝜃, and 𝜙 are the Euler angles of rotation, and the transformation is represented by 

 

𝑹𝐵𝐼 = [

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓

𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓

−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

] (3.11) 

 

It is worth noting that in all equations presented, the notation for trigonometric functions is:  

sin(𝛼) ≡ 𝑠𝛼, cos(𝛼) ≡ 𝑐𝛼, tan(𝛼) ≡ 𝑡𝛼 for any angle 𝛼.  

Another set of coordinates, fixed-plane coordinates, are often used with the body frame.  

The fixed-plane coordinate system is attached to the body of the projectile with the y-axis 

remaining parallel to the ground at all times.  The relationship between the inertial and fixed-

plane coordinate systems is given as 
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𝑹𝐹𝑃𝐼 = [

𝑐𝜃𝑐𝜓 −𝑠𝜓 𝑠𝜃𝑐𝜓

𝑐𝜃𝑠𝜓 𝑐𝜓 𝑠𝜃𝑠𝜓

−𝑠𝜃 0 𝑐𝜃

] (3.12) 

 

 Additionally, the relationship between body-fixed and fixed-plane coordinates can be 

shown to be 

 

𝑹𝐵𝐹𝑃 = [

1 0 0
0 𝑐𝜙 𝑠𝜙

0 −𝑠𝜙 𝑐𝜙

] (3.13) 

 

and Figure 3.7 depicts the relationship graphically. 

 

Figure 3.7:  Relationship between fixed-plane and body frames (adapted from [13]) 

  

The fixed-plane coordinate system offers computational advantages and thus will be used at 

times, especially in the development of the controller. 
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3.3 Six-Degree-of-Freedom Projectile Dynamic Equations 

  

In order to model the flight dynamics of the projectile, a six-degree-of-freedom (6DOF) 

rigid model is utilized.  The six degrees of freedom are depicted in Figures 3.8 and 3.9 and 

comprise the three positional coordinates of the projectile’s mass center (𝑥, 𝑦, 𝑧) and the three 

Euler angles describing the attitude of the projectile with respect to an inertial reference frame 

(𝜓, 𝜃, 𝜙).  

  

 

Figure 3.8:  Translational degrees of freedom 
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Figure 3.9:  Rotational degrees of freedom 

 

As previously stated, this thesis will work in multiple reference frames to deal with the 

equations of motion.  The projectile plant dynamics are derived in the roll frame using body-

fixed coordinates.  Presented in a subsequent chapter, the modified linear projectile dynamics, 

which are used to implement feedback control, are derived in the no-roll frame which uses fixed-

plane coordinates.   

The twelve states used in the projectile dynamic model are presented in Table 3.1. 

  



29 

 

 

Table 3.1: Twelve states involved in the projectile dynamic model 

State Description 

x position in inertial 𝐼𝐼 dimension; downrange 

y position in inertial 𝐽𝐼 dimension; crossrange 

z position in inertial �⃗⃗⃗�𝐼 dimension; negative of altitude 

ψ yaw angle 

θ pitch angle 

ϕ roll angle 

u 𝐼𝐵 translational velocity component 

v 𝐽𝐵 translational velocity component 

w �⃗⃗⃗�𝐵 translational velocity component 

p roll rate 

q pitch rate 

r yaw rate 

 

The nonlinear dynamic equations representing these states are given as follows, with 𝑚 being 

projectile mass, 𝑰 being the inertia matrix, and 𝑋, 𝑌, 𝑍 and 𝐿,𝑀,𝑁 denoting force and moment 

components on the projectile mass center: 

 

{
�̇�
�̇�
�̇�
} = [

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓

𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓

−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

] {
𝑢
𝑣
𝑤

} (3.14) 

 

 

{

�̇�

�̇�
�̇�

} = [

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙

0 𝑠𝜙/𝑐𝜃 𝑐𝜙/𝑐𝜃

] {
𝑝
𝑞
𝑟
} (3.15) 

 



30 

 

 

{
�̇�
�̇�
�̇�

} =
1

𝑚
{
𝑋
𝑌
𝑍
} − [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] {

𝑢
𝑣
𝑤

} (3.16) 

 

 

{
�̇�
�̇�
�̇�

} = [𝑰]−1 [{
𝐿
𝑀
𝑁

} − [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] [𝑰] {

𝑝
𝑞
𝑟
}] (3.17) 

 

As seen in (3.14) – (3.17), several intermediate variables must be calculated in order to compute 

the set of state derivatives at any point in time.  These intermediate variables are due to the 

aerodynamic forces and moments discussed earlier and due to the gravitational weight force of 

the projectile. 

 In order to obtain the total force acting on the projectile, contributions from weight (W) 

and body aerodynamics (A) must be calculated.  Thus, the total force is given by 

 

{
𝑋
𝑌
𝑍
} = {

𝑋𝑤

𝑌𝑤

𝑍𝑤

} + {
𝑋𝐴

𝑌𝐴
𝑍𝐴

} (3.18) 

  

Since the dynamic equations are being expressed in a body-fixed reference frame, the forces 

acting on the body are represented in a rocket reference frame.  The components of the 

projectile’s weight are 

 

{
𝑋𝑤

𝑌𝑤

𝑍𝑤

} = 𝑚𝑔 {

−𝑠𝜃

𝑠𝜙𝑐𝜃

𝑐𝜙𝑐𝜃

} (3.19) 

 

The total aerodynamic force on the rocket acts at the aerodynamic center of pressure and its 

components are 
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{
𝑋𝐴

𝑌𝐴
𝑍𝐴

} = −
𝜋

8
𝜌𝑉2𝐷2 {

𝐶𝑋0 + 𝐶𝑋2(𝑣
2 + 𝑤2)/𝑉2

𝐶𝑁𝐴𝑣/𝑉
𝐶𝑁𝐴𝑤/𝑉

} (3.20) 

 

 Obtaining the total moment acting on the projectile involves modeling contributions from 

both steady aerodynamics (SA) and unsteady aerodynamics (UA).  The total moment is given by 

 

{
𝐿
𝑀
𝑁

} = {

𝐿𝑆𝐴

𝑀𝑆𝐴

𝑁𝑆𝐴

} + {

𝐿𝑈𝐴

𝑀𝑈𝐴

𝑁𝑈𝐴

} (3.21) 

 

The moment contribution due to steady aerodynamics is a cross-product between a vector from 

the center of gravity to the projectile center of pressure and the aerodynamic force.  Using a 

skew-symmetric matrix approach, this cross product is written as 

 

{

𝐿𝑆𝐴

𝑀𝑆𝐴

𝑁𝑆𝐴

} = [

0 −𝑅𝐶𝐴𝑍 𝑅𝐶𝐴𝑌

𝑅𝐶𝐴𝑍 0 −𝑅𝐶𝐴𝑋

−𝑅𝐶𝐴𝑌 𝑅𝐶𝐴𝑋 0
] {

𝑋𝐴

𝑌𝐴
𝑍𝐴

} (3.22) 

 

It is worth noting that in simulations used in this thesis, 𝑅𝐶𝐴𝑍 and 𝑅𝐶𝐴𝑌 are both assumed to be 

zero due to symmetry.  The value of 𝑅𝐶𝐴𝑋 varies with Mach number due to the variation in the 

center of pressure.   The UA moment acting on the projectile is given by 

 

{

𝐿𝑈𝐴

𝑀𝑈𝐴

𝑁𝑈𝐴

} =
𝜋

8
𝜌𝑉2𝐷3

{
 
 

 
 𝐶𝐷𝐷 +

𝑝𝐷𝐶𝐿𝑃

2𝑉
𝑞𝐷𝐶𝑀𝑄

2𝑉
𝑟𝐷𝐶𝑀𝑄

2𝑉 }
 
 

 
 

 (3.23) 

 

In the previous dynamic equations, V is the magnitude of the total velocity of the 

projectile mass center and is calculated with a root-sum-square of each of the three translational 
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velocity components.  Each of the aerodynamic coefficients is local Mach number dependent, 

while air density 𝜌 (slug/ft3) and speed of sound 𝑐 (ft/s) are altitude dependent.  At each step in 

the simulation, the density and speed of sound must be calculated according to 

 

𝜌(𝑎) = {
0.00238(1 − 6.88(10−6)𝑎)4.258, 𝑎 < 35332 ft

0.000727𝑒−0.0000478(𝑎−35332), 𝑎 ≥ 35332 ft
 

𝑐(𝑎) = {49.0124√518.4 − 0.003566𝑎, 𝑎 < 35332 ft
970.90, 𝑎 ≥ 35332 ft

 

(3.24) 

 

where a represents the current altitude and is the negative of state variable z due to the 

assumption that z is positive down in the model.  With the proper values of the total speed and 

the speed of sound, the Mach number can correctly be computed as 

 

 
𝑀𝑎 =

𝑉

𝑐
 (3.25) 

Then, the values of the aerodynamic coefficients are linearly interpolated from the current Mach 

number.  The table values for projectile aerodynamic coefficients are displayed in Appendix B. 

 In order to simulate these dynamic equations, a numerical integration scheme is utilized.  

The scheme used in this thesis is a 4th order, variable-step Runge-Kutta algorithm implemented 

using the ode45 function in MATLAB.  The basic process of unguided dynamic simulation can 

be summarized in a six step process. 

1.) Compute the magnitude of the velocity of the projectile mass center at the current time 

2.) Compute the values of 𝜌, 𝑐,𝑀𝑎 based on current altitude and total velocity 

3.) Using linear interpolation, find the aerodynamic coefficients for the current step 

4.) Compute the total force and moment acting on the projectile 
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5.) Compute the state derivatives 

6.) Iterate in time, repeating steps 1-5 until final state or terminal condition is reached 

The previous set of equations will model unguided projectile dynamic flight.  In order to control 

the flight, nonlinear actuators shall be installed and modeled. 

 

3.4 Introducing Canards as Nonlinear Actuators 

 

The mechanism for control in this thesis consists of two pairs of forward-mounted 

controllable canards.  The canards are mounted toward the nose of the missile, as seen in Figure 

3.10.  They are then oriented by the control input throughout flight.  It is possible to use the 

techniques of optimal control presented in Chapter 2 such that control can orient the canards in a 

way that optimizes the flight path of the projectile.   

 

Figure 3.10:  Depiction of canard actuators 

 

Taking a closer look at the canards themselves, several angles and properties must be 

defined.  The angles include a sweep angle (γc), pitch angle (δc), and a roll angle (ϕc), and are 
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depicted in Figure 3.11.  The angles represent the standard Z-Y-X rotations and help describe the 

canard orientation in a canard frame with respect to the body frame.  The k-axis of the canard 

frame is aligned with the k-axis of the body frame, and therefore the values of γc are zero for 

each canard. 

 

Figure 3.11:  Canard angles and their orientations 

 

Additionally, the canards have reference areas represented by 𝑆𝑐 and vector centers of pressure 

represented by {𝑆𝐿𝑐 𝐵𝐿𝑐 𝑊𝐿𝑐}.  Canard angles and properties are presented in Appendix D. 

 From Chapter 2, it was shown that a control input 𝒖 would be computed in order to 

minimize the cost function and lead the projectile on its desired path.  That control input 

corresponds to the canard pitch angle, δC.  The canard pitch angles will be the output of the 

feedback control system.  The canards will then be oriented according to this output, causing a 

change in the aerodynamic forces and moments on the system and thus altering the flight.  

Therefore, the overall force and moment exerted on the projectile by the canards must be 

determined. 
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 There are two pairs of canards, giving a total of four canards.  The pitch angles of canards 

one and three are the output of the controller.  However, the angles will be output in the no-roll 

frame (NR).  In order to match with the plant dynamics, they must be converted into the roll 

frame (R).  This is accomplished by the transformation 

 

{
𝛿1

𝛿3
}
𝑅

= [
𝑐𝜙 𝑠𝜙

−𝑠𝜙 𝑐𝜙
] {

𝛿1

𝛿3
}
𝑁𝑅

 (3.26) 

 

Symmetric deflections are assumed such that 

 𝛿2 = −𝛿1 

𝛿4 = −𝛿3 
(3.27) 

 

The process begins by computing the position vector components from the mass center (CG) of 

the projectile to the center of pressure of the ith canard (C) according to 

 
𝑟𝑥,𝑖 = 𝑆𝐿𝑖 − 𝑆𝐿𝑐𝑔 

𝑟𝑦,𝑖 = 𝐵𝐿𝑖 − 𝐵𝐿𝑐𝑔 

𝑟𝑧,𝑖 = 𝑊𝐿𝑖 − 𝑊𝐿𝑐𝑔 

(3.28) 

 

The vector components are then used to compute the velocity of the canard itself: 

 

�⃗� 𝐶 = �⃗� 𝐶𝐺 + 𝜔 × 𝑟 𝐶/𝐶𝐺  (3.29) 

 

Using a skew-symmetric matrix operation and resolving the velocity vector into three 

translational components, this cross product can be written as 
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{
𝑢
𝑣
𝑤

}

�̃�,𝑖

= {
𝑢
𝑣
𝑤

}

𝐶𝐺

+ [

0 𝑟𝑧,𝑖 −𝑟𝑦,𝑖

−𝑟𝑧,𝑖 0 𝑟𝑥,𝑖

𝑟𝑦,𝑖 −𝑟𝑥,𝑖 0
] {

𝑝
𝑞
𝑟
} (3.30) 

 

The velocities then need to be rotated into the canard frame.  This is done through a 

𝜙𝑐 , 𝛾𝑐 rotation sequence.  In matrix form, this transformation is 

 

{
𝑢
𝑣
𝑤

}

𝐶,𝑖

= [

𝑐𝛾,𝑖 𝑐𝜙,𝑖𝑠𝛾,𝑖 𝑠𝜙,𝑖𝑠𝛾,𝑖

−𝑠𝛾,𝑖 𝑐𝜙,𝑖𝑐𝛾,𝑖 𝑠𝜙,𝑖𝑐𝛾,𝑖

0 −𝑠𝜙,𝑖 𝑐𝜙,𝑖

]

𝐶

{
𝑢
𝑣
𝑤

}

�̃�,𝑖

 (3.31) 

 

 The aim is to use the canard velocities to find the aerodynamic drag coefficients 

associated with the canard and thus the aerodynamic forces and moments associated with the 

canard.  To do this, another variable, canard angle of attack 𝛼𝐶, is needed.  This calculation is 

given by 

 

𝛼𝐶,𝑖 = 𝛿𝐶,𝑖 + tan−1 (
𝑤𝐶,𝑖

𝑢𝐶,𝑖
) (3.32) 

 

and the Mach number can be found using (3.33). 

 

𝑀𝑎𝐶,𝑖 =
√𝑢𝐶,𝑖

2 + 𝑤𝐶,𝑖
2

𝑠peed of sound
 (3.33) 

 

Using the Mach number of the canard, the lift and drag coefficients can be found through a linear 

interpolation method.  The total lift and drag coefficients are functions of several different 

intermediate coefficients and the variable 𝛼𝐶.  The total lift and drag coefficients of the canard 

are given by 
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𝐶𝐿 = 𝐶𝐿1,𝐶,𝑖𝛼𝐶,𝑖 + 𝐶𝐿3,𝐶,𝑖𝛼𝐶,𝑖

3 + 𝐶𝐿5,𝐶,𝑖𝛼𝐶,𝑖
5 (3.34) 

 

 

𝐶𝐷 = 𝐶𝐷0,𝐶,𝑖 + 𝐶𝐷2,𝐶,𝑖𝛼𝐶,𝑖
2 + 𝐶𝐼,𝐶,𝑖𝐶𝐿,𝐶,𝑖

2
 (3.35) 

 

where 𝐶𝐿 and 𝐶𝐷  represent the lift and drag coefficients for the ith
 canard and all other 

coefficients are table lookups based on canard Mach number and are displayed in Appendix C.  

Using the lift and drag coefficients, the lift and drag forces on the individual canard can be 

computed as 

 

𝐹𝐿𝐶,𝑖 =
1

2
𝜌(𝑢𝐶,𝑖

2 + 𝑤𝐶,𝑖
2)𝑆𝐶,𝑖𝐶𝐿,𝐶,𝑖  (3.36) 

 

 

𝐹𝐷𝐶,𝑖 =
1

2
𝜌(𝑢𝐶,𝑖

2 + 𝑤𝐶,𝑖
2)𝑆𝐶,𝑖𝐶𝐷,𝐶,𝑖  (3.37) 

 

These forces are then resolved into the canard frame using 

 

 𝑥𝐶,𝑖 = 𝐹𝐿𝐶,𝑖 sin(𝛼𝐶,𝑖 − 𝛿𝐶,𝑖) − 𝐹𝐷𝐶,𝑖 cos(𝛼𝐶,𝑖 − 𝛿𝐶,𝑖) 

𝑦𝐶,𝑖 = 0 

𝑧𝐶,𝑖 = −𝐹𝐿𝐶,𝑖 cos(𝛼𝐶,𝑖 − 𝛿𝐶,𝑖) − 𝐹𝐷𝐶,𝑖 sin(𝛼𝐶,𝑖 − 𝛿𝐶,𝑖) 

(3.38) 

 

Finally, the force components are transformed back into the body frame via 

 

 

{
𝑋
𝑌
𝑍
}

𝐶,𝑖

= [

𝑐𝛾,𝑖 0 𝑠𝛾,𝑖

𝑠𝜙,𝑖𝑠𝛾,𝑖 0 −𝑠𝜙,𝑖𝑐𝛾,𝑖

−𝑐𝜙,𝑖𝑠𝛾,𝑖 0 𝑐𝜙,𝑖𝑐𝛾,𝑖

] {
𝑥
𝑦
𝑧
}

𝐶,𝑖

 (3.39) 
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In order to calculate the moment of canard i, a vector cross product is utilized similar to that in 

(3.29).  Thus, the moment due to the canard can be computed by 

 

{
𝐿
𝑀
𝑁

}

𝐶,𝑖

= −[

0 𝑟𝑧,𝑖 −𝑟𝑦,𝑖

−𝑟𝑧,𝑖 0 𝑟𝑥,𝑖

𝑟𝑦,𝑖 −𝑟𝑥,𝑖 0
] {

𝑋
𝑌
𝑍
}

𝐶,𝑖

 (3.40) 

 

 This process computes the force and moment exerted on the projectile mass center by a 

single canard.  The process is repeated four times, once for each individual canard.  In the end, 

each of the contributions is summed, yielding a total force and a total moment given by the 

canards.  The respective results are then added to (3.18) and (3.21).   

 The process of computing the force and moment contributions of the canards can be 

summarized in a five step process. 

1.) Rotate 𝛿𝑐 from controller into the roll frame 

2.) Initialize the force and moment reactions to zero 

3.) Loop trough the four canards, computing the force/moment contribution of each 

a. Calculate vector distances from center of mass to canard center of pressure 

b. Compute total canard velocity 

c. Compute canard Mach number and determine lift/drag coefficient values 

d. Calculate lift and drag forces due to ith canard 

e. Calculate force and moment on projectile due to ith canard 

f. Resolve force and moment into the body frame 

4.) Sum contributions from each canard to get total forces/moments from canards 

5.) Add the total reactions to the force/moment equations in the plant dynamics 
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It should be mentioned that for all uncontrolled shots, each canard pitch angle 𝛿𝑐 is held constant 

at 0°.  By incorporating the reactions due to the canard actuators, their orientation can be 

commanded and modeled to guide the flight.  The commanded orientation given to the canards 

shall be discussed in Chapter 4.
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4.  Implementing Control 

 

 In this chapter, the process of calculating the correct control input will be developed.  As 

previously stated, the control inputs in this thesis are the canard deflections δc.  The controller 

will be given the current set of states and a desired target and will compute a set of angles that 

will correctly orient the fins to drive the projectile to its target location.  In order to do this, a 

linear, or quasi-linear, set of states is desired.  Projectile linear theory gives a basic linear set of 

states which work well in controlling direct fire launches.  However, the assumption of small 

Euler pitch angle prevents the set of equations from accurately modeling high launch or long 

range shots.  Thus, a modified linear set of equations shall be used to develop a controller which 

can accurately guide the projectile toward a downrange target at higher (20°-60°) launch angles.   

 In order to accomplish this task, the modified projectile linear theory (MPLT) equations 

must be set up such that the nonlinearities are essentially removed.  A point mass vacuum 

trajectory model will be used to help model a few states that must be removed from the full state 

model due to the nonlinearities they cause and to give the projectile a theoretical way of 

successfully getting from its current position to the target.  Furthermore, general linearization 

using a Taylor series expansion will be used to create an additional path between the control 

input and the altitude state derivative equation and to help track altitude error. 

 In the end, the Riccati equation and control law developed in Chapter 2 can be oriented 

and solved such that the optimum control input is developed for each step in a defined control 

sampling period. 
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4.1 Inherent Assumptions of Modified Projectile Linear Theory 

  

To control indirect fire shots, the standard set of assumptions involved in projectile linear 

theory is modified.  Most importantly, the assumption of small Euler pitch angle must be relaxed.  

To develop a better set of equations, Hainz and Costello have proposed an alternative set of 

assumptions [4].  The 6DOF equations used are in the no-roll frame as opposed to the roll frame 

6DOF equations developed in Chapter 3.  Using the information in section 3.2, it is possible to 

orient the 6DOF equations presented in (3.14) – (3.17) such that they are in the no-roll frame.  

Doing so, the equations become 

 
{
�̇�
�̇�
�̇�
} = [

𝑐𝜃𝑐𝜓 −𝑠𝜓 𝑠𝜃𝑐𝜓

𝑐𝜃𝑠𝜓 𝑐𝜓 𝑠𝜃𝑠𝜓

−𝑠𝜃 0 𝑐𝜃

] {
�̃�
�̃�
�̃�

} (4.1) 

 

 

{

�̇�

�̇�
�̇�

} = [
1 0 𝑡𝜃
0 1 0
0 0 1/𝑐𝜃

] {
𝑝
�̃�
�̃�
} (4.2) 

 

 

{
�̇̃�
�̇̃�
�̇̃�

} =
1

𝑚
{
�̃�
�̃�
�̃�

} + {
�̃��̃� − �̃��̃�

−𝑡𝜃�̃��̃� − �̃��̃�
𝑡𝜃�̃��̃� + �̃��̃�

} (4.3) 

 

 

{
�̇�

�̇̃�

�̇̃�

} = [𝐼]−1 [{
�̃�
�̃�
�̃�

} − [

0 −�̃� �̃�
�̃� 0 𝑡𝜃�̃�

−�̃� −𝑡𝜃�̃� 0
] [𝐼] {

𝑝
�̃�
�̃�
}] (4.4) 

 

Terms with a tilde represent a variable formulated in the no-roll frame.  In subsequent Chapter 4 

equations, the tilde will be dropped.  Due to the amount of equations needed to run a 6DOF 

simulation, the equations needed for the force and moment terms are not presented here.   
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Assumptions are made to make the no-roll frame 6DOF equations quasi-linear and thus much 

less computationally expensive.  As a basic summary, the assumptions involved in MPLT 

include, but are not limited to [4]: 

 

1.) The states �̃�, 𝑝, and ϕ are very large in relation to states �̃�, �̃�, ψ, �̃�, and �̃�.  Products of 

small values and derivatives of small values are treated as negligible. 

2.) The yaw angle is assumed to be small.  This permits the following simplifications: 

sin(𝜓) ≈ 𝜓 and cos(𝜓) ≈ 1. 

3.) The aerodynamic angles of attack have small magnitude. 

4.) The projectile is symmetric about the station line, allowing the inertia matrix to become a 

diagonal matrix with  𝐼𝑌𝑌 = 𝐼𝑍𝑍. 

5.) The projectile is aerodynamically symmetric, allowing simplification to the amount of 

aerodynamic drag coefficients necessary to model the dynamics. 

6.) The distances from the center of mass to the aerodynamic center of pressure are 

essentially zero in the y-direction and z-direction. 

7.) Because �̃� is large in comparison to �̃� and �̃�, the total speed is 𝑉 ≈ �̃� and �̇� ≈ �̇̃�. 

8.) A change of variables is used to convert the independent variable from time to 

dimensionless arc-length s.  The arc-length is used to represent downrange travel in 

calibers.  This is done through the relationship 

 

𝑠 =
1

𝐷
∫ 𝑉

𝑡

0

𝑑𝜏 (4.5) 

 

9.) The relationship between time derivatives and arc-length derivatives is then given by 
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�̇� =
𝑉

𝐷
σ′ (4.6) 

 

where a prime term represents an arc-length derivative and a superposed dot represents a time 

derivative. 

 Using the above assumptions, the nonlinear 6DOF set of equations in (4.1-4.4) can be 

reduced to a much simpler set of quasi-linear equations.  The quasi-linear equations, presented in 

the no-roll frame with arc length s as the independent variable, are seen as follows: 

 𝑥′ = 𝑐𝜃𝐷 (4.7) 

 

 
𝑦′ = 𝑐𝜃𝐷𝜓 +

𝐷

𝑉
𝑣 (4.8) 

 

 
𝑧′ = −𝐷𝑠𝜃 +

𝐷𝑐𝜃

𝑉
𝑤 (4.9) 

 

 
𝜓′ =

𝐷

𝑉𝑐𝜃
𝑟 (4.10) 

 

 
𝜃′ =

𝐷

𝑉
𝑞 (4.11) 

 

 
𝜙′ =

𝐷

𝑉
𝑝 (4.12) 

 

 
𝑉′ = −

𝜋𝜌𝐷3

8𝑚
𝐶𝑋0𝑉 −

𝐷𝑔

𝑉
𝑠𝜃 (4.13) 
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𝑣′ = −

𝜋𝜌𝐷3

8𝑚
𝐶𝑁𝐴𝑣 − 𝐷𝑟 (4.14) 

 

 
𝑤′ = −

𝜋𝜌𝐷3

8𝑚
𝐶𝑁𝐴𝑤 + 𝐷𝑞 +

𝐷𝑔

𝑉
𝑐𝜃 (4.15) 

 

 
𝑝′ =

𝜋𝜌𝑉𝐷4

8𝐼𝑥𝑥
𝐶𝐷𝐷 +

𝜋𝜌𝐷5

16𝐼𝑥𝑥
𝐶𝐿𝑃𝑝 (4.16) 

 

 
𝑞′ =

𝜋𝜌𝐷3𝑅𝑀𝐶𝑃

8𝐼𝑌𝑌
𝐶𝑁𝐴𝑤 +

𝜋𝜌𝐷5

16𝐼𝑌𝑌
𝐶𝑀𝑄𝑞 −

𝐼𝑥𝑥𝐷

𝐼𝑌𝑌𝑉
𝑝𝑟 (4.17) 

 

 
𝑟′ = −

𝜋𝜌𝐷3𝑅𝑀𝐶𝑃

8𝐼𝑌𝑌
𝐶𝑁𝐴𝑣 +

𝜋𝜌𝐷5

16𝐼𝑌𝑌
𝐶𝑀𝑄𝑟 +

𝐼𝑥𝑥𝐷

𝐼𝑌𝑌𝑉
𝑝𝑞 (4.18) 

 

The quasi-linear set of equations will be arranged in a state-space form, as in (2.1), and 

manipulated such that nonlinearities are removed from the state-space matrices.  Then, it is 

possible to implement optimal control techniques to predict and guide the projectile’s flight. 

 

4.2 Preliminary Manipulation to MPLT for Implementing Feedback Control 

  

Upon examination of the set of equations given by (4.7) – (4.18), it can be seen that 

nonlinearities are caused primarily by three of the variables’ presence:  pitch angle θ, spin rate p, 

and total velocity V.  The pitch angle causes nonlinearities in several terms due to the presence of 

the trigonometric functions.  The total velocity causes nonlinearities in several of the equations 

due to its necessity in the independent variable conversion formula.  Furthermore, nonlinearities 
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are present due to spin rate p in equations (4.17) – (4.18).  These terms will be omitted from the 

state vector in the state-space model in order to allow for the matrix-vector system formation.    

 Additionally, the roll angle ϕ has a minimal influence on the set of equations due to the 

no-roll frame used in the derivation.  The roll angle only shows up in its own dynamic equation 

and will also be omitted from the state-space representation.  

 In Chapter 3.4, it was shown how the control input 𝛿𝑐 will act to orient the canards and 

cause a force and moment pair to alter projectile flight.  This derivation covered nonlinear 

actuator modeling.  However, when working with the linear controller, the process is much 

simpler.  The variables 𝐶𝑌0 and 𝐶𝑍0 are aerodynamic trim force coefficients which are orthogonal 

to the projectile’s station line axis and are created due to the movement of the controllable 

canards.  Therefore, in the linear mapping, they will be treated directly as control inputs.  Once 

the controller outputs their optimum values, they will then be transformed by a roll rotation and 

an inverse table lookup into the dimensional roll-frame 𝛿𝑐 values needed for the nonlinear 

actuator modeling.   

 The aerodynamic trim forces will serve to provide swerve forces as well as yaw and pitch 

moments to the missile.  They will affect the dynamic modeling of the 𝑣,𝑤, 𝑞, 𝑟 equations.  

Accounting for the force and moment contributions due to the trim forces, equations (4.14) – 

(4.15) and (4.17) – (4.18) are re-written as 

 
𝑣′ = −

𝜋𝜌𝐷3

8𝑚
𝐶𝑁𝐴𝑣 − 𝐷𝑟 +

𝜌𝑆𝐶𝐷

2𝑚
𝑉𝐶𝑌0 (4.19) 

 

 
𝑤′ = −

𝜋𝜌𝐷3

8𝑚
𝐶𝑁𝐴𝑤 + 𝐷𝑞 +

𝐷𝑔

𝑉
𝑐𝜃 −

𝜌𝑆𝐶𝐷

2𝑚
𝑉𝐶𝑍0 (4.20) 
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𝑞′ =

𝜋𝜌𝐷3𝑅𝑀𝐶𝑃

8𝐼𝑌𝑌
𝐶𝑁𝐴𝑤 +

𝜋𝜌𝐷5

16𝐼𝑌𝑌
𝐶𝑀𝑄𝑞 −

𝐼𝑥𝑥𝐷

𝐼𝑌𝑌𝑉
𝑝𝑟 +

𝜌𝑆𝐶𝐷

2𝐼𝑌𝑌
𝑉(𝑆𝐿𝐶 − 𝑆𝐿𝐶𝐺)𝐶𝑍0 (4.21) 

 

 
𝑟′ = −

𝜋𝜌𝐷3𝑅𝑀𝐶𝑃

8𝐼𝑌𝑌
𝐶𝑁𝐴𝑣 +

𝜋𝜌𝐷5

16𝐼𝑌𝑌
𝐶𝑀𝑄𝑟 +

𝐼𝑥𝑥𝐷

𝐼𝑌𝑌𝑉
𝑝𝑞 +

𝜌𝑆𝐶𝐷

2𝐼𝑌𝑌
𝑉(𝑆𝐿𝐶 − 𝑆𝐿𝐶𝐺)𝐶𝑌0 (4.22) 

 

With the manipulations in (4.19) – (4.22), the system is now a function of control input 

𝒖.  However, a few modifications will need to be made in order to enable best controller 

performance.  Firstly, a method of incorporating the variation of p, V, and 𝜃 is sought.  Although 

they will be omitted from the state-space model, they do vary with time and should be treated as 

such. A way to incorporate these variations is crucial.  

 

4.3 Estimation of Time-Varying Parameters Using a Point Mass Vacuum Approach  

  

To incorporate the time-varying nature of the parameters p, V, and 𝜃 into the model, their 

approximate future values must be predicted from current position to target each time through 

the controller.  This can be done in part by considering the projectile as being a point mass in a 

vacuum.  Assuming that the only force acting on the projectile is gravity, basic conservation 

principles can then help predict approximate future values for each of the parameters.   

 Assuming the projectile to be operating as a point mass in a vacuum, a basic model of the 

mass and its flight trajectory can be drawn as in Figure 4.1.  The model depicts a projectile 

launching from a pre-defined origin and intersecting a desired target.  It is worth noting that in 

this section, the z-axis is defined as positive upward, indicating that vacuum model z is actually 

the negative of projectile state z. 
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Figure 4.1:  Projectile as a point mass in a vacuum 

 

Starting with conservation of linear momentum (CoLM) in the x-direction, it can be shown that 

the velocity of the particle is constant in the x-direction and will be called 𝑉𝑜𝑥. 

 
𝑚

𝑑𝑉𝑥
𝑑𝑡

= ∑𝐹𝑥 ⇒  
𝑑𝑉𝑥
𝑑𝑡

= 0 ⇒  𝑉𝑥 = constant = 𝑉𝑜𝑥 (4.23) 

 

Integrating the result of (4.23) yields time of flight as a function of downrange distance x. 

 𝑥 = 𝑉𝑜𝑥𝑡 ⇒  𝑡 =
𝑥

𝑉𝑜𝑥
 (4.24) 

 

In a similar process, CoLM in the z-direction results in an expression of the vertical velocity as a 

function of time. 

 
𝑚

𝑑𝑉𝑧
𝑑𝑡

= ∑𝐹𝑧 ⇒ 𝑚 
𝑑𝑉𝑧
𝑑𝑡

= −𝑚𝑔 ⇒  
𝑑𝑉𝑧
𝑑𝑡

= −𝑔 (4.25) 

 

Defining 𝑎 = −𝑔 and integrating twice yields the z-position of the particle as a function of time. 

 
𝑧 = 𝑧𝑜 + 𝑉𝑜𝑧𝑡 +

1

2
𝑎𝑡2 (4.26) 
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Substituting (4.24) into the result, the z-position of the particle can be written as a function of 

downrange distance. 

 
𝑧(𝑥) = 𝑧𝑜 + 𝑉𝑜𝑧 (

𝑥

𝑉𝑜𝑥
) +

1

2
𝑎 (

𝑥

𝑉𝑜𝑥
)
2

 (4.27) 

 

As previously stated, the vacuum model will be used to approximate the future p, V, and 

θ values of the projectile from current position to target position.  The idea is to give the 

controller a theoretical way of getting from its current location to the target location via a point 

mass trajectory and to attempt to back out the parameter values needed to cause the projectile to 

closely follow this trajectory.   

The projectile is launched from the (xo, zo) state and will theoretically intersect the target 

at (xt, zt).  Because it is desired to execute the launch from a (0,0) origin, the terms xo and zo 

vanish from the equations.  Thus, another point is needed to create the parabolic vacuum model.  

In order to begin the control sequence as early as possible, it is best to use a set of projectile 

downrange and altitude states very soon after launch to build the model.  In order to begin 

control swiftly, the other point will consist of the 𝑥 and −𝑧 states of the projectile at the first 

instance in the control sampling period.  A schematic of the situation can be viewed in Figure 

4.2. 
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Figure 4.2:  Modeling future states with the vacuum trajectory 

 

There are two free variables, or coefficients, which can be solved for:  the initial x-

velocity and initial z-velocity.  Two desired ordered pairs exist for the model to intersect:  (xs,zs) 

and (xt, zt).  It is possible to write a pair of equations and solve for the coefficients that would 

cause the point mass trajectory to be launched from the origin and intersect both the early 

projectile position and the target position.  

 Equation (4.27) can be re-written as 

 𝑧(𝑥) = 𝑀1𝑥 + 𝑀2𝑥
2 (4.28) 

 

where 
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𝑀1 =

𝑉𝑜𝑧

𝑉𝑜𝑥
    ;    𝑀2 =

𝑎

2𝑉𝑜𝑥
2 (4.29) 

 

Plugging in the desired coordinate pairs, the equations are written in matrix-vector form: 

 
[
𝑥𝑠 𝑥𝑠

2

𝑥𝑡 𝑥𝑡
2] {

𝑀1

𝑀2
} = {

−𝑧𝑠

0
} (4.30) 

 

Using the equations for 𝑀1 and 𝑀2, the vacuum model can then be created.  It is worth noting 

that when the x-position of the projectile is zero, this process is invalid because it creates a 

matrix singularity in (4.30).  Thus, the projectile is required to fly uncontrolled for the first 

caliber downrange regardless of the control sampling period.   

Each time into the controller, the same original values of 𝑀1 and 𝑀2 are used to predict a 

path from the projectile’s current downrange position to its target position.  In other words, the 

same vacuum trajectory model is used throughout the entire duration of flight. 

 With the vacuum model created, basic physics can be used to make the predictions about 

the sine and cosine of the pitch angle at future optimal states.  Inside the controller, the x-

distance from current projectile position to target is broken into a pre-determined number of 

equal length segments Ns.  For each segment, the corresponding values of sine and cosine of the 

pitch angle can be predicted via the vacuum model.  A basic schematic of the segmentation is 

seen in Figure 4.3. 
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Figure 4.3:  Segmentation of predicted trajectory 

 

It is worth noting that, at the current state at any time t through the controller, the actual 

position values and vacuum prediction values are not identical.  The hope, however, is that the 

vacuum predictions for altitude and pitch angle will provide a successful possible path to the 

target and will then cause the trajectory to mimic, or follow, that path.  As the projectile gets 

further downrange, its actual path should closely match the path of the vacuum model. 

In order to compute the angle values for each segment, a closer look is taken into a single 

segment, as seen in Figure 4.4. 
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Figure 4.4:  Prediction sine and cosine values 

 

The value of dx is easily computed by the formula 

 𝑑𝑥 =
𝑥𝑡 − 𝑥1

𝑁𝑠
 (4.31) 

 

where 𝑥1is the projectile’s current downrange position upon the call for control.  Because the 

future altitude z has been developed as a function of downrange distance x, it is possible to 

compute the theoretical next altitude value as 

 𝑧𝑘+1 = 𝑀1(𝑥𝑘+1) + 𝑀2(𝑥𝑘+1)
2 (4.32) 

 

from which dz is computed as 

 𝑑𝑧𝑘 = 𝑧𝑘+1 − 𝑧𝑘 (4.33) 
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Using the Pythagorean Theorem, the differential arc length from the current state to the next 

predicted state is 

 
𝑑𝑠𝑘 = √𝑑𝑥2 + 𝑑𝑧𝑘

2
 (4.34) 

 

It is then possible to predict the sine and cosine values based on the right triangle which has been 

formed: 

 
𝑐𝜃𝑘

=
𝑑𝑥

𝑑𝑠𝑘
 (4.35) 

 

 
𝑠𝜃𝑘

=
𝑑𝑧𝑘

𝑑𝑠𝑘
 (4.36) 

 

 Using the differential arc length calculated in (4.34), values for roll rate p and total speed 

V can also be predicted for each segment from current position to target.  To do this, closed form 

solutions for these equations are used [4].  First, the value of ds is currently in downrange feet, 

and the closed-form expressions for p and V deal in calibers.  In order to convert to calibers, the 

following conversion is performed. 

 
ℎ𝑘 =

𝑑𝑠𝑘

𝐷
 (4.37) 

 

Values of p and V are then recursively predicted using analytical closed-form expressions as 

given in (4.38 – (4.39) 

 

𝑉(𝑠 + ℎ) = √(𝑉2(𝑠) +
𝑏𝑣

𝑎𝑣
) 𝑒−2𝑎𝑣ℎ −

𝑏𝑣

𝑎𝑣
 (4.38) 
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 𝑝(𝑠 + ℎ) = 𝐶𝑝𝑒1𝑒
𝐶𝑝𝑒2ℎ − 𝐶𝑝0 (4.39) 

 

where the values of the various constants are defined by the following: 

 

 𝑏𝑣 = 𝑔𝐷 sin 𝜃(𝑠) (4.40) 

 

 
𝑎𝑣 =

𝜋𝜌𝐷3

8𝑚
𝐶𝑋0 (4.41) 

 

 
𝐶𝑝𝑒2 =

𝜋𝜌𝐷5

16𝐼𝑥𝑥
𝐶𝐿𝑃 (4.42) 

 

 
𝐶𝑝𝑒1 = 𝑝(𝑠) +

2𝐶𝐷𝐷𝑉(𝑠)

𝐷𝐶𝐿𝑃
 (4.43) 

 

 
𝐶𝑝0 =

2𝐶𝐷𝐷𝑉(𝑠)

𝐷𝐶𝐿𝑃
 (4.44) 

 

The values for 𝑝, 𝑉, sin(𝜃), and cos(𝜃) are thus able to be recursively predicted from current 

downrange position to target each time the controller is called.  Doing this will allow for the 

accounting of their time-varying nature into a controller and will also give the controller a set of 

these parameters which represent a successful path toward the target.   

 The predictions of the parameters p and V given by the point mass vacuum trajectory 

should be better the farther downrange the projectile has traveled.  When the projectile is in the 

early stages of its flight, the point mass model will not necessarily match the actual model at the 

current state.  However, as the projectile flies further downrange, it should begin to track the 

point mass model and the predictions given become extremely close to the actual values for p 
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and V.  Conversely, because the predictions for sin(𝜃) and cos(𝜃) are based solely on the 

physics of the vacuum model, they do not change much throughout flight. 

 

4.4 General Linearization via Taylor Series Expansion to Better Control Altitude 

 

 Another initial issue with the controller at high launch angles concerns how to best 

control the altitude state.  The current modified linear equation for modeling the changing 

altitude is given in (4.45) with an important term highlighted in red text: 

 
𝑧′ = −𝐷𝑠𝜃 +

𝐷𝑐𝜃

𝑉
𝑤 (4.45) 

 

The issue is that this term is essentially flying uncontrolled in the current form of the equation.  

The other term in the equation is influenced by 𝑤, which is being directly controlled by trim 

force 𝐶𝑍0.  Alteration to (4.45) is sought such that another direct path between the result and the 

control input is created, which would serve to improve altitude control.  To accomplish this task, 

a general linearization scheme is employed using a Taylor series expansion about a trim point 

defined in part by the vacuum trajectory model.   

 To begin the process, the altitude state derivative equation is written as a basic function f 

of the states 𝜃 and 𝑤: 

 𝑧′ = 𝑓(𝜃,𝑤) (4.46) 

 

Assuming a trim point defined by (�̅�, �̅�) it is possible to approximate (4.45) as a first-order 

Taylor series expansion about the trim point.  The resulting equation is then 
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𝑧′ = 𝑓(�̅�, �̅�) +

𝜕𝑓

𝜕𝜃
𝛿𝜃 + 

𝜕𝑓

𝜕𝑤
𝛿𝑤 (4.47) 

 

Evaluating the partial derivatives in (4.47) allows for an expansion.  The general linearization 

equation then becomes  

 
𝑧′ = −𝐷𝑠�̅� +

𝐷𝑐�̅�

𝑉
�̅� − (

𝐷𝑠�̅�

𝑉
�̅� + 𝐷𝑐�̅�) 𝛿𝜃 +

𝐷𝑐�̅�

𝑉
𝛿𝑤 (4.48) 

 

It is also known that 𝛿𝑤 = 𝑤 − �̅�, and so 

 
𝑧′ = −𝐷𝑠�̅� +

𝐷𝑐�̅�

𝑉
�̅� − (

𝐷𝑠�̅�

𝑉
�̅� + 𝐷𝑐�̅�) 𝛿𝜃 +

𝐷𝑐�̅�

𝑉
(𝑤 − �̅�) (4.49) 

 

Assuming that the trim point value �̅� is equal to zero, the expansion is greatly simplified.  The 

resulting equation is given by 

 
𝑧′ = −𝐷𝑠�̅� +

𝐷𝑐�̅�

𝑉
𝑤 − 𝐷𝑐�̅�𝛿𝜃 (4.50) 

 

The pitch angle can be represented by  

 𝜃 = �̅� + 𝛿𝜃 (4.51) 

 

Taking the derivative of each side of (4.51),  

 �̇� = �̇̅� + �̇�𝜃 (4.52) 

 

Assuming that the derivative of the trim point is essentially zero, 

 �̇� = �̇�𝜃 (4.53) 
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By developing an expression for the derivative of 𝛿𝜃, it is possible to add a 𝛳-perturbation state 

into the model.  Rearranging (4.51), this state is defined as 

 𝛿𝜃 = 𝜃 − �̅� (4.54) 

 

where 𝜃 is the current pitch angle state from the plant dynamics and �̅� is the corresponding initial 

pitch angle predicted by the point mass vacuum trajectory model for the first segment which will 

merge the actual trajectory with the model.  Because of the relationship given by (4.53), the 

derivative of the new state is defined as 

 
�̇�𝜃 =

𝐷

𝑉
𝑞 (4.55) 

 

Since the 𝛿𝜃 term can now become a state in the model, there is essentially a new path between a 

term in the altitude state equation and the trim force 𝐶𝑍0.  The process can be illustrated by 

viewing and examining the red term in (4.56): 

 
𝑧′ = −𝐷𝑠�̅� +

𝐷𝑐�̅�

𝑉
𝑤 − 𝐷𝑐�̅�𝛿𝜃 (4.56) 

 

Now, the state 𝛿𝜃 has been introduced into the model.  It is known that 𝛿𝜃 = 𝑓(𝑞).  When 

looking back at the equation for 𝑞 presented in (4.21), it is seen that 𝑞 is a direct function of the 

control trim force.  Thus, it can be said that 

 𝛿𝜃 = 𝑓(𝑞(𝐶𝑍0))   ⇒    𝛿𝜃 = 𝑓(𝐶𝑍0) (4.57) 

 

Therefore, another path between the altitude state derivative and the control input has 

been created.  This will help to better predict the optimal control altitude for the high launch 

shots.  Also with the addition of the 𝛿𝜃 state, a state for tracking the difference between the 
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vacuum model altitude and the actual altitude state has effectively been created.  By placing a 

high control penalty on this state, it is possible to force the projectile to track the vacuum model, 

which is known to intersect the target at zero altitude.  

Figure 4.5 illustrates the intent of using both the vacuum model and the 𝛳-perturbation 

state to help control altitude. 

 

𝜽𝒐 ≡ angle needed in the 1st segment such that trajectory merges with vacuum model 

𝜽 ≡ current projectile Euler pitch angle 

𝜹𝜽 ≡  𝜽 − 𝜽𝒐 

 

Figure 4.5:  Illustration for altitude control 
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Ideally, the term 𝛿𝜃will converge to a zero value, meaning that the trajectory is in fact tracking 

that of the vacuum model. 

Incorporating both the ability to predict time-varying parameters using a vacuum 

trajectory and the use of a Taylor series expansion for altitude control enables better controller 

performance.  Now, the system can be represented in state-space form and control can be 

imparted on the projectile. 

 

4.5 State-Space Representation of System for Feedback Control 

  

The projectile yaw-swerve and epicyclic pitch-yaw equations can now be collected into a 

nine-dimensional state-space description.  In order to conform to the antecedents of optimal 

control, an uncontrollable state �̇� is appended to the model with the initial condition �̇�(0) = 1.  

This term is used in the state-space model to treat gravity as an uncontrollable mode.  In state-

space form, the system has independent variable 𝑠 and is represented by (4.58). 

 

{
�̇�
�̇�
�̈�

} = [
𝚽 𝚪 𝚺
𝟎 𝚵 𝚲
𝟎 𝟎 0

] {
𝝃
𝜼
�̇�

} + [
𝟎
𝐛
𝟎
] {

𝐶𝑍0

𝐶𝑌0
} (4.58) 

 

which can be written more compactly as 

 �̇� = 𝑨𝒙 + 𝑩𝒖 (4.59) 

 

The terms in the state-matrix 𝑨 are described by the following: 
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𝚽 = 𝐷𝐶�̅�

[
 
 
 
 

0000

0000

0100

1000



]
 
 
 
 

 (4.60) 

 

 

 𝚪 =
𝐷

𝑉

[
 
 
 
 
 
 





c

c

1
000

0100

000

0001

]
 
 
 
 
 
 

 (4.61) 

 

 
 𝚺 = 𝐷𝑠�̅�[0  − 1   0   0]𝑇 (4.62) 

 

 
𝚲 =

𝐷𝑔

𝑉
𝑐�̅�[0   1   0   0]𝑇 (4.63) 

 

 

𝚵 =

[
 
 
 
 

453

543

1

1

0

0

00

00









D

D

]
 
 
 
 

 (4.64) 

 

The terms in 𝚵 represent the aerodynamic force terms in the equations and are given by 

 
Ξ1 =

𝜌𝑆𝐷

2𝑚
𝐶𝑁𝐴 (4.65) 

 

 
Ξ3 =

𝜌𝑆𝐷

2𝐼𝑦𝑦
𝐶𝑀𝐴 (4.66) 

 

 
Ξ4 =

𝜌𝑆𝐷3

4𝐼𝑦𝑦
𝐶𝑀𝑄 (4.67) 
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Ξ5 =

𝐼𝑥𝑥𝐷

𝐼𝑌𝑌𝑉
𝑝 (4.68) 

 

 
𝐶𝑀𝐴 = (𝑆𝐿𝐶𝑂𝑃 − 𝑆𝐿𝐶𝐺)𝐶𝑁𝐴 (4.69) 

 

Additionally, the state vector x is represented by 

 𝝃 = [𝑦   𝑧   𝛿𝜃   𝜓]𝑇 (4.70) 

 

  𝜼 = [𝑣   𝑤   𝑞   𝑟]𝑇 (4.71) 

 

The control matrix 𝑩 contains the term b, which is defined as 

 

𝐛 = [
21

21

00

00

bb

bb
]

𝑇

 (4.72) 

 

where 

 
𝑏1 =

𝜌𝑆𝐶𝐷

2𝑚
𝑉 (4.73) 

 

 
𝑏2 =

𝜌𝑆𝐶𝐷

2𝐼𝑦𝑦
𝑉(𝑆𝐿𝐶 − 𝑆𝐿𝐶𝐺) (4.74) 

 

Using techniques of optimal control as developed in Chapter 2, the optimum control input can 

then be found.  Control will be imparted onto the system at a defined sampling period.   
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4.6 Use of Optimal Control to Obtain Control Input  

 

The following is adapted from [12].  From Chapter 2, the control law for this system was 

found to be  

 𝒖(𝑠) = −𝑹−1𝑩𝑇(𝑠)𝑵(𝑠)𝒙(𝑠) (4.75) 

 

and it was discovered that N was the solution to the matrix Riccati differential equation (2.35).  

In part by treating gravity as an uncontrollable mode, the need for a reference trajectory has been 

eliminated.  Thus, the matrix term Q in (2.35) is set to a zero matrix, giving 

 

�̇�(𝑠) = −𝑵(𝑠)𝑨(𝑠) − 𝑨𝑇(𝑠)𝑵(𝑠) + 𝑵(𝑠)𝑩(𝑠)𝑹−1𝑩𝑻(𝑠)𝑵(𝑠) (4.76) 

 

Then, (4.76) can be decomposed into two matrix differential equations: 

 �̇�(𝑠) = 𝑨(𝑠)𝑾(𝑠) − 𝑩(𝑠)𝑹−𝟏𝑩𝑻(𝑠)𝒀(𝑠) (4.77) 

 

 �̇�(𝑠) = −𝑨𝑻(𝑠)𝒀(𝑠) (4.78) 

 

Adhering to the cost function in (2.20), target conditions are chosen as 

 𝑾(𝑠𝑡) = 𝑰    

𝒀(𝑠𝑡) = 𝑷 
(4.79) 

 

The matrix term P is a diagonal matrix of control penalty terms.  In this case, it is desired to 

control the altitude and crossrange states to zero values and thus high control penalties are placed 
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on these terms.  Additionally, a high penalty is placed on the 𝛳-perturbation state in hope that the 

trajectory is driven toward that of the vacuum model. 

The matrix Riccati solution can be found to be 

 𝑵(𝑠) = 𝒀(𝑠)𝑾−1(𝑠) (4.80) 

 

Equations (4.77) – (4.78) can be written in terms of a time-varying Hamiltonian as  

�̇�(𝑠) = 𝑭(𝑠)𝒁(𝑠).  This is represented by  

 
{
�̇�(𝑠)

�̇�(𝑠)
} = [

𝑨(𝑠) −𝑩(𝑠)𝑹−𝟏𝑩𝑻(𝑠)

𝟎 −𝑨𝑻(𝑠)
] {

𝑾(𝑠)
𝒀(𝑠)

} (4.81) 

 

In order to solve the time-varying Riccati equation, the trajectory of the projectile is discretized 

into Ns segments from current position to target.  At each segment, the time-varying parameters 

p, V, and θ are estimated using the vacuum trajectory model as previously discussed.  The 

solution is then back-propagated using equations (4.82) – (4.83). 

 
𝒁𝑁𝑠

= (𝑰 +
ℎ

2
𝑭𝑁𝑠

)
−1

𝒁(𝑠𝑡) (4.82) 

 

 
𝒁𝑘 = (𝑰 +

ℎ

2
𝑭𝑘)

−1

(𝑰 −
ℎ

2
𝑭𝑘+1)𝒁𝑘+1 (4.83) 

 

where ℎ is the differential arc-length of the respective segment given by the vacuum trajectory 

model which connects the points denoted by subscripts k and k+1.   

 The time-varying Hamiltonian F changes for each segment from current position to 

target.  Once the trajectory is discretized into its segments, the parameters p, V, and θ are 

predicted for each segment.  In doing this, F can then be recursively predicted for each segment.  
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The matrix term Z can then be back-propagated from the target to the current position.  Using Z1, 

the matrix Riccati solution is then found via (4.80) and thus the control can be computed using 

(4.75).  Essentially, a time-varying model is used in conjunction with the vacuum model to 

predict the projectile’s optimal path from current position to target.  Then, the proper control 

input for the current state of the projectile is backed out using the process described. 

 A final step in the process concerns a transformation of the resulting canard deflection.  

In the control equations, the 𝑩 matrix includes scaling due to dynamic pressure, canard area, and 

stationline moment arm.  The control input found contains the non-dimensional canard trim force 

coefficients in the no-roll frame.  In order to move these values into dimensional canard 

deflections and into the roll frame, they are converted by a table lookup into a dimensional form 

and then rotated into the body frame by a roll angle transformation matrix.   

 The canard deflections are first divided by the canard lift coefficient 𝐶𝐿𝛼 such that the 

units are then in radians.  For supersonic flight, the value of 𝐶𝐿𝛼 for this particular rocket is 

always 4.135 rad-1.  For subsonic flight, a Mach table lookup is used and the Mach number of the 

canard is assumed to be equal to that of the mass center for simplicity.  The result is limited from 

[-1,1] rad such that a saturation limit is applied to the system and then rotated into the roll frame. 

 

4.7 Summary of Control Implementation Algorithm 

  

The process of implementing control has been developed throughout the chapter.  The basic 

process of control can be summarized in an 8-step process.  Control is determined through the 

following progression: 
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1.) At the first time in the control sampling period, solve for and save the coefficients for 

creating the vacuum model. 

a. The model will launch from the origin, intersect a projectile state early in the 

trajectory, and hit the target. 

2.) Compute the pitch angle to get from current position to the first spot on the vacuum 

trajectory.  From the prediction of this angle, develop the current value of the 𝛿𝜃 state.   

3.) Recursively predict values for 𝑝, 𝑉, 𝑐𝜃, 𝑠𝜃, and ℎ  using the vacuum trajectory model 

while updating aerodynamic coefficients at each segment based on new predicted 

velocity and altitude. 

4.) Build the corresponding matrix Hamiltonian for each segment. 

5.) Integrate backwards in time using (4.82) – (4.83).   

6.) Using Z1, compute the Riccati solution at the current state from (4.80). 

7.) Compute the control needed at the current state using (4.75). 

8.) Convert to dimensional form, limit from [-1,1] rad and rotate into roll frame. 

The process is repeated each time in the control sampling period.  In the event of a matrix 

singularity causing controller breakdown at any point in the trajectory, the previous values of 

𝛿𝐶,𝑁𝑅 are kept until the next time in the control sampling period. 

 

4.8 Overall Flowchart of Projectile Flight and Control 

  

In order to capture the overall picture of flight simulation and control, it is helpful to 

organize the process into a computational flowchart.  The flowchart, seen in Figure 4.6, describes 

the process by which control is implemented and the resulting flight is simulated.   
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Figure 4.6:  Flowchart of simulation and control algorithm 

 

The initial condition and time are passed into a function which computes the total forces 

and moments on the projectile, after which the values of the state derivatives are computed using 

a variable time step.  If the next time value has reached a multiple in the control sampling period 

(e.g. 5 ms, 10 ms, 15 ms and so on for a 5 ms control sampling period), then a controller function 

is utilized to calculate the optimal canard deflections, which are then rotated into the roll frame 

and used to compute canard force and moment contributions.  A new total force and moment is 

then calculated, which leads to the next values of the state derivatives.  If the next instant in the 

sampling period has not been reached, the last calculated values of canard commands in the no-

roll frame are used to calculate new reactions and state derivatives.  The process is repeated until 

the projectile reaches the target.



67 

 

 

 

5.  Results and Discussion 

 

 In this chapter, the results of trajectory simulations will be presented and discussed.  In 

achieving optimal results, several parameters within the controller had to be varied and tuned.  

Additionally, faults were found in the controller which prohibited optimum performance.  

Remedies to these faults were discovered and incorporated.  Ultimately, peak performance was 

found and demonstrated with a Monte Carlo dispersion set of varying pitch and yaw angles.  

Dispersion sets were chosen such that uncontrolled shots impacted the ground on all four sides of 

the 𝑥,𝑦 target plane:  top, bottom, left and right.   

 The projectile simulated in this thesis is from the Hydra-70 family of rockets [14].  The 

Hydra-70 system is a series of 2.75-inch rockets created by the U.S. Navy in the 1940s.  The uses 

for this family of rockets include ground-to-ground firings and the rockets have been used by 

many branches of the U.S. military including the Marine Corps, Navy, Air Force, and Army 

Special Operations forces. 

 Several numerical properties of the projectile were first defined before the start of 

simulations could begin.  The properties include various parameters such as projectile mass and 

inertia properties, positional coordinates of the projectile and canard mass centers, and 

acceleration due to gravity.  The basic projectile properties needed to run simulations are seen in 

Table 5.1.  Each of the four canards has a separate set of dynamical properties which can be seen 

in Appendix D.   
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Table 5.1:  Projectile properties required for simulations 

Property Symbol Value 

Reference diameter 𝐷 0.223 ft 

Reference area 𝑆 0.0391 ft2 

Mass 𝑚 0.7143 slug 

Gravitational acceleration 𝑔 32.2 ft/s2 

x-axis inertia 𝐼𝑥𝑥  0.005 slug-ft2 

y-axis inertia 𝐼𝑦𝑦  1.4 slug-ft2 

z-axis inertia 𝐼𝑧𝑧
 1.4 slug-ft2 

Stationline of c.g. 𝑆𝐿𝑐𝑔 2.5 ft 

Buttline of c.g. 𝐵𝐿𝑐𝑔  0 ft 

Waterline of c.g. 𝑊𝐿𝑐𝑔  0 ft 

 

The values in Table 5.1 were used throughout the duration of the simulations presented in this 

thesis.  All shots were launched from the origin in inertial space.  Initial pitch and yaw angles 

were variable.  Other initial conditions were:  𝜙 = 0 rad, 𝑢 = 2177.7 ft/s, 𝑣 = 0 ft/s, 𝑤 =

0 ft/s, 𝑝 = −58.928 rad/s, 𝑞 = 0 rad/s, 𝑟 = −0.058 rad/s. 

 There were several properties which needed to be optimized inside the controller.  An 

optimal control sampling period must be determined.  Obviously, tighter control sampling 

periods would serve for better performance.  However, this comes at the expense of computing 

efficiency.  It is necessary to balance improved control with computational expense.  Likewise, 
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the number of segments used in the implicit trajectory predictions provides a similar dilemma.  If 

too few segments are used, the predictions given are poor, and the control breaks down.  

 

 

5.1 Examining a Trajectory:  Uncontrolled vs. Controlled States 

  

When implementing control on the projectile, the trajectory is altered in a desired way.  

This causes some of the controlled states to become drastically altered when compared to their 

uncontrolled paths.  In this thesis, control is performed such that swerve forces and yaw and 

pitch moments are altered.  Thus, it would be expected that the states v, w, q, and r would have 

vastly different trends in controlled instances.  Figures 5.1-5.11 show comparisons of the paths 

of the projectile states in controlled manners versus their uncontrolled manners.  For the 

following figures, the projectile was shot with a 39.02° pitch angle and 0.23° yaw angle. 

 

Figure 5.1:  Crossrange comparison 
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Figure 5.2:  Altitude comparisons 

 

 

Figure 5.3:  Yaw angle comparisons 
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Figure 5.4:  Pitch angle comparisons 

 

 

Figure 5.5:  Roll angle comparisons 
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Figure 5.6:  IB velocity comparisons 

 

 

 

Figure 5.7:  JB velocity comparisons 
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Figure 5.8:  KB velocity comparisons 

 

 

 

Figure 5.9:  Roll rate comparisons 
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Figure 5.10:  Pitch rate comparisons 

 

 

 

Figure 5.11:  Yaw rate comparisons 
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 When looking at Figures 5.1-5.11, it can be seen that most of the states do not differ 

drastically from their uncontrolled versions to their controlled versions. This is to be expected 

since the aim of the controller is manipulate a few of the states (v, w, q, r) to guide two of the 

states, y and z, to desired locations at the target.   

 The altitude and crossrange state histories serve to show the purpose and effectiveness of 

the controller.  In the uncontrolled version, the projectile flies off course in the crossrange 

channel.  Additionally, it drastically overshoots the target with respect to altitude.  Ideally, the 

projectile would hit zero crossrange and zero altitude at the exact downrange distance of the 

target.  In the controlled path history, the projectile immediately begins to steer back toward the 

target in both altitude and crossrange, impacting the target plane very close to the desired target 

point.   

 The yaw angle history differs in the controlled instance because the crossrange is directly 

tied to the yaw angle.  Once the projectile begins to steer back toward the target, the yaw angle 

begins to vary.  Similarly, the pitch angle is affected in the controlled instance.  This is to be 

expected; the pitch angle in the controlled version is closely tied to the predicted pitch angles of 

the vacuum trajectory, which will be discussed later.  Some of the oscillations in pitch and yaw 

are likely due to the coupling of control for crossrange and altitude.  Conversely, the roll angle is 

largely unaffected by the implementation of control as the crossrange and altitude impacts are 

not affected by the projectile roll. 

 The IB component of the projectile velocity is not affected much at all by control.  

However, the JB and KB components are affected.  This is due to the desired method of 

implementing control.  In the linear controller, the design works such that the aerodynamic trim 
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forces exhibit control on the states v and w.  Thus, once control begins, oscillations in these states 

become much larger in magnitude.  Similarly, the pitch rate and yaw rate are affected by control.  

Again, their magnitudes increase drastically once control begins, whereas the roll rate remains 

fairly similar to its uncontrolled history. 

 

5.2 Controller Robustness:  Impact Point Dispersion Results 

  

In order to demonstrate both the effectiveness and the robustness of the controller, a 

Monte Carlo dispersion set was created.  The desire was to create a large set of launch conditions 

comprising varying yaw and pitch angles.  The set of angles was designed such that the 

uncontrolled trajectories intersected a target plane on four sides of the target:  top, bottom, left, 

and right.  A depiction of this can be seen in Figure 5.12. 

 

Figure 5.12:  Target plane and desired Monte Carlo characteristics 
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The target plane is located in the x-y plane with zero altitude.  The goal is that when each 

trajectory crosses zero altitude, it will have zero crossrange and will be exactly 29,000 feet 

downrange (i.e. right at the target location).  The set of launch angles was created such that 

unguided impacts would occur all around the target plane.  In other words, there would be 

unguided shots that both undershoot and overshoot the target and impact the target plane both to 

the left and the right of the x-axis.   

A set of yaw angles was created via a random set of 125 numbers with zero mean and 

standard deviation of 0.0087 radians.  The set of pitch angles was created in several chunks.  

First, it was determined to demonstrate controller performance on a range of pitch angles from 

20°-60° to sufficiently show performance on a wide range of indirect fire launch angles.  Thus, a 

downrange target location needed to be determined.  Uncontrolled simulations were run to 

approximate the downrange distance at which various initial pitch angle shots impacted the 

target plane.  Since these simulations were being run simply to get a rough estimate of where to 

place the target, the MPLT equations were used as a linear plant model for quickness.  Figure 

5.13 shows the results graphically.   
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Figure 5.13:  Construction of Monte Carlo pitch angles 

  

 From Figure 5.13 a target was chosen to be located at 29,000 feet downrange.  This 

would mean that the target would be roughly equidistant from both extreme overshoots and 
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plane at around 29,000 feet downrange.  Thus, many of the points came from the ranges 20°-26° 

and 54°-60°.  The others came from the range of 26°-54°.  This ensured that many of the 

launches would undershoot the target and many of the launches would overshoot the target.   
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1.8° standard deviation.  Additionally, 25 random launches from within the range 54°-60° were 
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chosen from within the range 26°-54° with a mean of 40° and a standard deviation of 4.6°. 
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 A final grouping of 25 pitch angles was chosen from two subgroups of 12 and 13 points 

respectively, with means of near 30° and 50° and small standard deviations of about 1.5°.  These 

angles would provide uncontrolled shots which landed closer to the target and were not extreme 

undershoots or overshoots.  This was done for completeness, such that there were not gaps in the 

input pitch angle distribution.  The input angle pairs consisting of random yaw and pitch angles 

can be seen in Appendix E. 

 Using the set of launch angles, 125 controlled and uncontrolled shots were made with the 

full nonlinear plant model.  The controlled trials were run with a control sampling period of 25-

ms and with 50 segment predictions.  A plot depicting the impact points is seen in Figure 5.14. 

 

Figure 5.14:  Ballistic and controlled impact points 
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 As seen, the controlled impact point dispersion is virtually undetectable when compared 

to the uncontrolled impact point dispersion.  In order to investigate the effectiveness of the 

controller, a closer look is taken into each set of impact points.  To measure the performance, a 

CEP circle is drawn for each set.  The CEP is a circle with a prescribed radius such that half of 

the points of a given set lie within the circle.  Figure 5.15 shows the results. 

 

Figure 5.15:  Ballistic and controlled impact points with CEP 
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5.3 Controller Trade Studies:  Investigating Optimal Performance 

  

 There were several variable parameters within the controller which could have an impact 

on the overall performance and miss distances.  These parameters were typically associated with 

a computational trade-off.  The parameters could be set such that optimum accuracy was attained 

or they could be set such that computational time was kept to a desired value at the cost of 

performance.  In this section, the variable parameters and their effects on controller performance 

will be discussed. 

 

5.3.1 Impact of Segmentation on Performance 

  

 One of the traits of the controller in this thesis is the use of the vacuum model to make 

implicit trajectory predictions for a few of the parameters which cause nonlinearities in the 

MPLT projectile dynamics.  The controller breaks the remaining distance into manageable 

segments and predicts an optimal trajectory for the projectile to follow.  The success of the 

impact depends largely upon the amount of segments used in these implicit trajectory 

predictions.  Generally, the more segments used, the more accurate the predictions are and the 

better control can be.  However, adding more segments also means increased computing time 

and the introduction of more round-off error.  Thus, the battle concerns a trade-off between 

accuracy and computational efficiency.   

 A simulation was run in order to investigate at what point diminishing returns are evident 

with respect to an increased number of segments in the trajectory predictions.  Each of the 
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simulations was run with a 25-ms control sampling period.  The entire set of 125 yaw and pitch 

angles was used in the segmentation study.  The values of segmentation used ranged from 30 to 

50 segments.  The results can be seen in Figure 5.16. 

 

 

Figure 5.16:  Impact of added segments on CEP 
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that using segmentation levels below 30 caused poor predictions to be made and the controller 

would break down in many cases. 

 

5.3.2 Impact of Sampling Period on Performance 

  

 Another aspect of the controller which has an impact on overall accuracy of the 

controlled shots is the control sampling period.  Each time control is used, it adds computation 

time and space into the process.  However, finer control sampling periods will generally mean 

improved results, or smaller miss distances at target plane impact.   

 In order to study the impact of varying the sampling period, the dispersion set of 125 

values was used with 50 segments and with several different control sampling periods, ranging 

from as little as 10-ms to as large as 250-ms.  In each case, a resulting CEP was calculated.  The 

results are displayed in Figure 5.17. 
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Figure 5.17:  Impact of sampling period on CEP 
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dynamics.  As discussed in Chapter 4, the vacuum model is used to generate a theoretical 

trajectory from launch to target which the actual trajectory can attempt to duplicate.  The intent is 

that, as the projectile moves downrange, its path becomes very similar to the path of the vacuum 

model.  Figures 5.18-5.21 show the actual path histories of a successfully controlled trajectory 

for altitude and for the parameters which cause the nonlinearities.  The figures also show 

overlays of the paths predicted by the vacuum model at the instant control begins and again once 

the projectile is halfway downrange.  The black lines represent the successfully controlled full 

state history, while the red lines represent the predicted path given by the vacuum model 

immediately after launch, and the blue lines represent the predicted vacuum model path given 

when the projectile was halfway downrange.  Fifty segments were used in each predicted path.   

 

Figure 5.18:  Prediction comparison for projectile altitude 

 

0 0.5 1 1.5 2 2.5 3

x 10
4

-1000

0

1000

2000

3000

4000

5000

6000

7000

Downrange (ft)

A
lt
it
u
d
e
 (

ft
)

 

 

0 0.5 1 1.5 2 2.5 3

x 10
4

-1000

0

1000

2000

3000

4000

5000

6000

7000

Downrange (ft)

A
lt
it
u
d
e
 (

ft
)

Actual Traj.

Immed. Pred.

Half Pred.



86 

 

 

Figure 5.19:  Prediction comparison for projectile velocity 

 

 

Figure 5.20:  Prediction comparison for projectile roll rate 
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Figure 5.21:  Prediction comparison for projectile pitch angle 
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vacuum model for that downrange location.  The next predicted state lies on the vacuum model, 

thus the altitude and pitch angle predictions jump slightly initially in order to get the projectile 

back to the model trajectory.   

 Another view of the accuracy of the predictions can be seen when viewing Figure 5.22.  

The figure represents the actual trajectory tracking the vacuum model as it moves downrange.  

The left-hand vertical axis features the difference between the vacuum model and the actual 

trajectory in altitude at each step downrange.  The right-hand vertical axis represents the state 

history of the added perturbation state.  The figure shows that improving altitude control is 

directly correlated to the minimization of the perturbation state.  This signals that the 

perturbation state is in fact acting to control the altitude to its desired value. 

 

Figure 5.22:  Improved altitude control via theta perturbation state 
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 As seen in the figure, the projectile deviates from the vacuum model initially, but as it 

uses its control authority, the trajectory moves back to that of the model quite well, eventually 

leading to the desired target. 

 

5.5 Vacuum Model Robustness 

   

 The model seems to work well for all launch angles tested.  While 20° pitch angle 

launches will take a much more shallow path, steeper launch angles will have a higher trajectory.  

As shown in Figure 5.23, the vacuum model is capable of being used to guide the entire range of 

pitch angles to successful target impacts. 

 

Figure 5.23:  Robustness of using vacuum model for control 
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5.6 Tracking Miss Distances as a Function of Launch Angles 

  

 Most works in the area of missile guidance concern direct fire launches, or launches in 

which a direct line of sight exists between the missile nose and the target.  In this thesis, 

however, higher launch angles were tested such that no direct line of sight exists.  It was desired 

to investigate whether the controller worked best for a certain range of initial pitch angles.  Thus, 

the miss distances were plotted as a function of the input pitch angles.  The results are seen in 

Figure 5.24. 

 

Figure 5.24:  Miss Distances resulting from input pitch angle dispersion 
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 The figure shows that the miss distances seem to be somewhat correlated with initial 

pitch angle.  For higher launch angles, the misses are smaller at the target plane.  While the 

largest misses are still only around 6 ft in magnitude, it is clear that most of the larger misses 

occur for the smaller values of input pitch angle, while most of the input pitch angles which are 

higher than 50° result in misses of around one foot or less. 

 

5.7 Observing the Canard Actuator Deflections 

  

 A final aspect of control implementation involves the canard actuators and their 

deflections which result in the application of desired aerodynamic reactions on the projectile.  

Recall that the canards are to have pitch angle deflections limited to [-1, 1] radians in the no-roll 

frame.  A sample plot of a time history of the canard deflections is seen in Figure 5.25. 
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Figure 5.25:  Commanded canard deflections 
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5.8 Summarizing the Results 

  

 Throughout the chapter, results have been presented on the findings of the work in this 

thesis.  Dispersion plots were generated and parameters were optimized within the controller to 

enable optimal performance.  It was found that using 50 segments in the implicit trajectory 

predictions seemed to work best, and a control sampling period of about 25-ms was ample for 

proper control.   

 Using the optimum parameters and conditions, the dispersions were run and the CEP was 

reduced from over 1,450 ft in the uncontrolled tests to just over one ft in the controlled trials.  

Additionally, it was demonstrated that the use of the vacuum model predictions gave the 

controlled trajectory a successful way of getting to the target.  It was also shown that the use of 

the theta perturbation state effectively controlled the altitude state to its desired value at the 

target. 

 In the following chapter, the work in this thesis will be briefly summarized.  Conclusions 

will be drawn from the work performed.  Additionally, future work will be proposed. 
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6.  Conclusions 

 

 Throughout the duration of this thesis, many aspects of modeling and controlling indirect 

fire projectile flight have been discussed and presented.  Before the beginning of this work, 

controllers and models were created to simulate control of direct fire launches in [7].  That work 

was extended to incorporate control to indirect fire launches, or high launches, which has been 

documented in this thesis. 

 

6.1 Summarizing Work Performed in this Thesis 

 

 In this thesis, a six-degree-of freedom plant model was developed and used to simulate 

the dynamics of a Hydra-70 rocket in flight.  Two pairs of forward-mounted controllable canards 

were used as actuators in attempting to control the flight to a desired location.  It was desired to 

control both the crossrange and altitude of the projectile to zero values at a downrange target 

located 29,000 ft from the launch spot.  A target plane was created which evaluated both the 

downrange and crossrange positions at the time at which the projectile hit zero altitude. 

 A nine-dimensional state-space model was used with MPLT equations in order to create a 

linear controller to control the projectile to its desired target.  By using basic physics and closed-

form analytical expressions, a vacuum trajectory was created and predictions were made to force 

the projectile to follow the vacuum model.  Additionally, a perturbation state was used to create a 
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path between altitude and the control input.  This added state was shown to directly improve 

altitude control.   

 A dispersion plot was generated which showed the effectiveness and robustness of the 

controller.  Unguided shots were run for a wide range of initial launch angles and a CEP was 

found to have a radius of over 1,450 ft.  The same shots were made with the controller in place 

and the CEP was reduced to just over one ft. 

  

6.2 Future Work  

 

 The work in this thesis and its preceding work was done with a fin-stabilized projectile.  

Fin-stabilized projectiles are commonly used for direct fire launches and are characterized by the 

presence of canted fins located near the base of the rocket [15].  Stability is obtained by giving 

the leading edge of the fins a cant angle and imparting small spin rates on the projectile initially.   

In the realm of indirect fire launches, it is customary to use spin-stabilized munitions.  

Spin-stabilized projectiles are used to promote flight stability in long-range shots.  The spinning 

is created by the firing of the projectile through a rifled tube.  A series of rotating bands on the 

projectile engages the barrel rifling, which in turns causes high spin rates to be imparted onto the 

munition [15].   

Because the work preceding this thesis concerned direct fire launches, a fin-stabilized 

rocket was being used.  Therefore, the model which was already in place was used.  Future work 

would concern employing the controller used in this thesis on a spin-stabilized rocket. 

Another area of future work would be to tighten the control authority and use a smaller 

range of input pitch angles.  Control authority is usually low for typical smart projectiles.  It is 
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common for actuators on an indirect fire smart projectile to modify the flight by 200 m for a 

range of 20,000 m [16].  This ensures acceptable values of angle of attack and promotes flight 

stability. 

In this thesis, the actuators were allowed to saturate at one radian, or around 60°.  It was 

desired to use a large range of input pitch angles to demonstrate the ability of the MPLT 

controller to successfully alter a wide range of shots.  Future work would be to limit this 

saturation and tune the control weighting matrices to optimize flight for a smaller range of initial 

pitch angles which could use much less control authority, yielding small angles of attack 

throughout flight. 
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Appendix A:  MATLAB Code Used in Thesis 

 

aero_props_find.m:  used to get aero coeffs for nonlinear plant 

function coeffs = aero_props_find(Mach) 

% output:  aero coeffs for nonlinear plant model 

% input:  Mach number 

  

% load the data which has been defined as a global variable 

  

global aerodata_nl 

  

% coeff order in vector:  CX0,CX2,CYB1,CZA1,CDD,CLP,CMQ,CNR,RCAX 

% use interp1 to get correct coeffs 

  

coeffs(1) = interp1(aerodata_nl(:,1),aerodata_nl(:,3),Mach); 

coeffs(2) = interp1(aerodata_nl(:,1),aerodata_nl(:,9),Mach); 

coeffs(3) = interp1(aerodata_nl(:,1),aerodata_nl(:,15),Mach); 

coeffs(4) = interp1(aerodata_nl(:,1),aerodata_nl(:,16),Mach); 

coeffs(5) =interp1(aerodata_nl(:,1),aerodata_nl(:,6),Mach); 

coeffs(6) = interp1(aerodata_nl(:,1),aerodata_nl(:,5),Mach); 

coeffs(7) = interp1(aerodata_nl(:,1),aerodata_nl(:,7),Mach); 

coeffs(8) = interp1(aerodata_nl(:,1),aerodata_nl(:,11),Mach); 

coeffs(9) = (2.5 - 

interp1(aerodata_nl(:,1),aerodata_nl(:,2),Mach))*-1; 

  

end 

 

aero_props_lin.m:  used to get aero coeffs for linear controller 

function coeffs = aero_props_lin(Mach) 

% output:  aero coeffs for linear controller 

% input:  Mach number 

  

  

% load the data which has been stored as a global variable 

  

global aerodata_l 

  

% find the appropriate coeffs using interp1 

  

coeffs(1) = (2.5 - 

interp1(aerodata_l(:,1),aerodata_l(:,2),Mach))*-1; 

coeffs(2) = interp1(aerodata_l(:,1),aerodata_l(:,3),Mach); 

coeffs(3) = interp1(aerodata_l(:,1),aerodata_l(:,4),Mach); 

coeffs(4) = interp1(aerodata_l(:,1),aerodata_l(:,6),Mach); 
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coeffs(5) = interp1(aerodata_l(:,1),aerodata_l(:,5),Mach); 

coeffs(6) =interp1(aerodata_l(:,1),aerodata_l(:,8),Mach); 

coeffs(7) = interp1(aerodata_l(:,1),aerodata_l(:,7),Mach); 

  

end 

 

canard_aero_find.m:  used to get aero props for canards 

function coeffs = canard_aero_find(Mach) 

  

% load the data 

  

%aerodata_c = csvread('canard_aero_props.csv'); 

global aerodata_c 

  

% coeff order in vector:  CL,CL3,CL5,CD0,CD2,Ci 

% use interp1 to get correct coeffs 

if Mach > .4 & Mach < 1 

coeffs(1) = interp1(aerodata_c(:,1),aerodata_c(:,2),Mach); 

coeffs(2) = interp1(aerodata_c(:,1),aerodata_c(:,3),Mach); 

coeffs(3) = interp1(aerodata_c(:,1),aerodata_c(:,4),Mach); 

coeffs(4) = interp1(aerodata_c(:,1),aerodata_c(:,5),Mach); 

coeffs(5) = interp1(aerodata_c(:,1),aerodata_c(:,6),Mach); 

coeffs(6) = interp1(aerodata_c(:,1),aerodata_c(:,7),Mach); 

  

else 

coeffs(1) = 

interp1(aerodata_c(:,1),aerodata_c(:,2),Mach,'nearest','extrap')

; 

coeffs(2) = 

interp1(aerodata_c(:,1),aerodata_c(:,3),Mach,'nearest','extrap')

; 

coeffs(3) = 

interp1(aerodata_c(:,1),aerodata_c(:,4),Mach,'nearest','extrap')

; 

coeffs(4) = 

interp1(aerodata_c(:,1),aerodata_c(:,5),Mach,'nearest','extrap')

; 

coeffs(5) = 

interp1(aerodata_c(:,1),aerodata_c(:,6),Mach,'nearest','extrap')

; 

coeffs(6) = 

interp1(aerodata_c(:,1),aerodata_c(:,7),Mach,'nearest','extrap')

; 

  

end 
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canard props.m:  stores properties for canards  

function [SL,BL,WL,GAMCAN,PHICAN,DELTACAN,SCAN] = canard_props() 

  

% this function has no inputs: it is just storing the properties 

for  

% each canard:  load them when needed 

  

  SL(1) = 3.8;   

  BL(1) = 0.14167;  

  WL(1) = 0;    

  GAMCAN(1) = 0;   

  PHICAN(1) = 0;   

  DELTACAN(1) = 0;   

  SCAN(1)  = 0.00433516492; 

   

  SL(2) = 3.8;   

  BL(2) = -0.14167;  

  WL(2) = 0;    

  GAMCAN(2) = 0;   

  PHICAN(2) = pi;   

  DELTACAN(2) = 0;   

  SCAN(2)  = 0.00433516492; 

   

  SL(3) = 3.8;   

  BL(3) = 0;  

  WL(3) = 0.14167;    

  GAMCAN(3) = 0;   

  PHICAN(3) = pi/2;   

  DELTACAN(3) = 0;   

  SCAN(3)  = 0.00433516492; 

   

  SL(4) = 3.8;   

  BL(4) = 0;  

  WL(4) = -0.14167;    

  GAMCAN(4) = 0;   

  PHICAN(4) = -pi/2;   

  DELTACAN(4) = 0;   

  SCAN(4)  = 0.00433516492; 

   

end 

   

canard_reactions.m:  used to compute force/moments contributions of canards 

 
function [Xc,Yc,Zc,Lc,Mc,Nc] = 

canard_reactions(states,rho,c,t,coeffs,xt,dt,flag) 
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% output:  total force and moment contributions of canards 

% inputs:  current states, air density, speed of sound, current 

time, aero  

%          coeffs, target location, sampling period for ctrl, 

flag to 

%          signal for control 

  

% grab constants and parameters needed; redefine some inputs 

  

[D,m,g,Ixx,Iyy,Izz,S,Scan,a] = params(); RHO = rho; 

x = states(1); y = states(2); z = states(3); psi = states(4);  

theta = states(5); phi = states(6); q_til = states(11);  

r_til = states(12); 

u_til = states(7); v_til = states(8); w_til = states(9);  

p_til = states(10);  

[SL,BL,WL,GAMCAN,PHICAN,DELTACAN,SCAN] = canard_props(); 

  

% define canard defl. in no-roll frame as a global variable 

  

global zetanr 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

% hold off on control initially; singularity issue 

if x < 1 

  

zetanr(1,1) = 0; 

zetanr(2,1) = 0; 

  

else 

    % if time for ctrl call has arrived, go to controller 

function; 

    % if not, hold on to previous no-roll canard commands 

     

    if flag == 1 

        controls = control_func(states,50,t,xt); 

        if controls(1) <=1 & controls(2) <=1  

        zetanr(1,1) = controls(1); 

        zetanr(2,1) = controls(2); 

        end 

    else 

        dummy = 1; 

    end 

     

end 

  

  

% transform canards commands to proper frame 
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transmat = [cos(phi),sin(phi);-sin(phi),cos(phi)]; 

zetar = transmat*zetanr; 

DELTACAN(1) = zetar(1); DELTACAN(3) = zetar(2); 

DELTACAN(2) = -DELTACAN(1); 

DELTACAN(4) = -DELTACAN(3); 

  

% initialize reactions to zero 

  

XCANFORCE = 0; 

YCANFORCE = 0; 

ZCANFORCE = 0; 

LCANMOMENT = 0; 

MCANMOMENT = 0; 

NCANMOMENT = 0; 

  

% start process for canard reaction contributions:  4 canards, 

sum the 

% total 

  

SLCG = 2.5; BLCG = 0; WLCG = 0; 

  

    for i = 1:4 

         

        a = 1; 

        rxcan = (SL(i) - SLCG)*a; 

        rycan = (BL(i) - BLCG)*a; 

        rzcan = (WL(i) - WLCG)*a; 

         

        A1 = [0,rzcan,-rycan;-rzcan,0,rxcan;rycan,-rxcan,0]; 

        A2 = [cos(GAMCAN(i)),cos(PHICAN(i))*sin(GAMCAN(i)),... 

            sin(PHICAN(i))*sin(GAMCAN(i));-sin(GAMCAN(i)),... 

            

cos(PHICAN(i))*cos(GAMCAN(i)),sin(PHICAN(i))*cos(GAMCAN(i));... 

            0,-sin(PHICAN(i)),cos(PHICAN(i))]; 

         

        uvw_pt =  [u_til,v_til,w_til]' + A1*[p_til;q_til;r_til]; 

        uvw_can = A2*uvw_pt; 

  

  

        alfacan = DELTACAN(i) + atan2(uvw_can(3),uvw_can(1)); 

        machcan = sqrt(uvw_can(1)^2 + uvw_can(3)^2)/c; 

         

        coeffs1 = canard_aero_find(machcan); 

        cl1can = coeffs1(1); cl3can = coeffs1(2); cl5can = 

coeffs1(3); 
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        cd0can = coeffs1(4); cd2can = coeffs1(5); cican = 

coeffs1(6); 

         

        clcan = cl1can*alfacan + cl3can*alfacan^3 + 

cl5can*alfacan^5; 

        cdcan = cd0can + cd2can*alfacan^2 + cican*clcan^2; 

         

        liftcan = RHO*(uvw_can(1)^2 + 

uvw_can(3)^2)*SCAN(i)*clcan/2; 

        dragcan = RHO*(uvw_can(1)^2 + 

uvw_can(3)^2)*SCAN(i)*cdcan/2; 

         

        sangle = sin(alfacan - DELTACAN(i)); 

        cangle = cos(alfacan - DELTACAN(i)); 

        xlcan = liftcan*sangle - dragcan*cangle; 

        ylcan = 0; 

        zlcan = -liftcan*cangle - dragcan*sangle; 

         

        xforcec = cos(GAMCAN(i))*xlcan + sin(GAMCAN(i))*zlcan; 

        yforcec = sin(PHICAN(i))*sin(GAMCAN(i))*xlcan... 

            -sin(PHICAN(i))*cos(GAMCAN(i))*zlcan; 

        zforcec = -cos(PHICAN(i))*sin(GAMCAN(i))*xlcan... 

            + cos(PHICAN(i))*cos(GAMCAN(i))*zlcan; 

         

        lmomentc = rycan*zforcec - rzcan*yforcec; 

        mmomentc = rzcan*xforcec - rxcan*zforcec; 

        nmomentc = rxcan*yforcec - rycan*xforcec; 

         

        XCANFORCE = XCANFORCE + xforcec; 

        YCANFORCE = YCANFORCE + yforcec; 

        ZCANFORCE = ZCANFORCE + zforcec; 

        LCANMOMENT = LCANMOMENT + lmomentc; 

        MCANMOMENT = MCANMOMENT + mmomentc; 

        NCANMOMENT = NCANMOMENT + nmomentc; 

                

    end 

     

    Xc = XCANFORCE; Yc = YCANFORCE; Zc = ZCANFORCE; 

    Lc = LCANMOMENT; Mc = MCANMOMENT; Nc = NCANMOMENT; 

     

end 

 

control_func.m:  used to compute no-roll control input 

 
function u = control_func(states,Ns,t,xt) 

  

% define necessary global variables 
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global count2 

global M 

global N2 

  

% preallocate for segments calculations 

x = zeros(1,Ns+1); yp = x; p = x; V = x; h = zeros(1,Ns); cth = 

h; sth = h; 

  

% load parameters; define states 

[D,m,g,Ixx,Iyy,Izz,S,Scan,a] = params(); 

X = states; x(1) = X(1); y = X(2); z = X(3); psi = X(4); theta = 

X(5); phi = X(6); 

% rotate velocities into proper frame 

A1 = [cos(phi),-sin(phi);sin(phi),cos(phi)]; 

qr = A1*[X(11);X(12)]; 

vw = A1*[X(8);X(9)]; 

v = vw(1); w = vw(2); %u = X(7); 

q = qr(1); r = qr(2); p(1) = X(10); 

  

% compute total V initial 

V(1) = sqrt(X(7)^2 + X(8)^2 + X(9)^2); 

  

% control weighting matrices 

R = eye(2)*10^2; 

P = diag([1000,10000,1000,1,1,1,1,1,0]); 

  

% uncontrollable mode 

w_prime = 1; 

  

% if first time calling for ctrl, compute vacuum model coeffs 

if count2 == 0 

    [M,N2] = vac_pseudo(x(1),z,xt); 

    count2 = 1; 

else 

    dummy2 = 1; 

end 

  

% compute dx; set up dz (called yp) for first segment to get 

onto vac model 

dx = (xt-x(1))/(Ns); 

yp(1) = -z; 

yp2 = M*(x(1)+dx) + N2*((x(1)+dx))^2; 

  

% compute theta perturbation state and set up state vector 

th_0 = atan((yp2 - yp(1))/dx); 

dth = (theta - th_0); 



107 

 

xs = [y,z,dth,psi,v,w,q,r,w_prime]'; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

  

% loop through and calculate prediction parameters and 

Hamiltonians 

for k = 1:Ns 

     

    % grab segment properties and coeffs based on V and altitude 

    [Mach,rho,c] = mach_find(V(k),-yp(k)); 

    coeffs = aero_props_lin(Mach); 

    RMCP = coeffs(1); CX0 = coeffs(2); CNA = coeffs(3); CDD = 

coeffs(4); 

    CLP = coeffs(5); CYPA = coeffs(6); CMQ = coeffs(7); CMA = 

coeffs(1)*CNA; 

     

    % compute angle prediction 

    x(k+1) = x(k) + dx; 

    yp(k+1) = M*x(k+1) + N2*x(k+1)^2; 

    dy = yp(k+1) - yp(k); 

    ds = sqrt(dx^2 + dy^2); 

     

    cth(k) = dx/ds; 

    sth(k) = dy/ds; 

     

    % set up state matrices 

    cap_phi = [0,0,0,D*cth(k);0,0,-D*cth(k),0;0,0,0,0;0,0,0,0]; 

    cap_lam = [0,D*g/V(k)*cth(k),0,0]'; 

    cap_gam = 

D/V(k)*[1,0,0,0;0,cth(k),0,0;0,0,1,0;0,0,0,1/cth(k)]; 

    cap_sig = [0,-D*sth(k),0,0]'; 

    casi1 = rho*S*D/(2*m)*CNA; 

    casi3 = rho*S*D/(2*Iyy)*CMA; 

    casi4 = rho*S*D^3/(4*Iyy)*CMQ; 

    casi5 = D/V(k)*Ixx*p(k)/Iyy; 

  

    casi = [-casi1,0,0,-D;0,-casi1,D,0;0,casi3,casi4,-casi5;... 

        -casi3,0,casi5,casi4]; 

  

    b1 = rho*Scan*D/(2*m)*V(k); 

    b2 = rho*Scan*D/(2*Iyy)*V(k)*(3.8-2.5); 

    b = [0,-b1,b2,0;b1,0,0,b2]'; 

  

    A = [cap_phi,cap_gam,cap_sig;zeros(4,4),casi,cap_lam;... 

        zeros(1,4),zeros(1,4),0]; 

    B = [zeros(4,2);b;zeros(1,2)]; 
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    % compute current Hamiltonian 

     

    F{k} = [A,-B*inv(R)*B';zeros(9,9),-A']; 

     

    % compute arc-length to next state; find next values of p,V 

    h(k) = ds/D; 

     

    av = (pi*rho*D^3/(8*m))*CX0; bv = g*D*sth(k); 

    Cp0 = 2*CDD*V(k)/(D*CLP); Cpe1 = p(k) + 2*CDD*V(k)/(D*CLP); 

    Cpe2 = pi*rho*D^5/(16*Ixx)*CLP; 

    p(k+1) = Cpe1*exp(Cpe2*h(k))-Cp0; 

    V(k+1) = sqrt((V(k)^2+bv/av)*exp(-2*av*h(k))-bv/av); 

  

end 

  

% back propagate to get Z(1) 

Z{Ns} = (eye(18) + h(Ns)/2*F{Ns})\[eye(9);P]; 

  

for k = Ns-1:-1:1 

    Z{k} = ((eye(18)+h(k)/2*F{k}))\((eye(18)-

h(k)/2*F{k+1})*Z{k+1}) ;   

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

  

% values at current state 

[Mach,rho,c] = mach_find(V(1),z); 

b1 = rho*Scan*D/(2*m)*V(1); 

b2 = rho*Scan*D/(2*Iyy)*V(1)*(3.8-2.5); 

b = [0,-b1,b2,0;b1,0,0,b2]'; 

  

B = [zeros(4,2);b;zeros(1,2)]; 

  

% solve for Riccati at current state 

W = Z{1}; Y = Z{1}; 

W1 = W(1:9,:); Y1 = Y(10:end,:); 

N = Y1*inv(W1); 

  

% compute control command: convert to dimensional form 

u = -inv(R)*B'*N*xs; 

CLalpha = inv_table_lookup(Mach); 

u = u/CLalpha; 

  

% limit the angles from [-1,1] radians in local frame 

sat = 1; 
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ind = find(u>sat); 

ind2 = find(u<-sat); 

u(ind) = sat; 

u(ind2) = -sat; 

  

end 

     

 

dispersion_vals.m:  used to generate uniform dispersion yaw/pitch angles 

 
function dispersion = dispersion_vals(); 

  

  

% create desired dispersion of pitch/yaw angles (NOTE: the 

actual std dev. (a) and mean (b) may not be exactly a and b for 

each chunk, but they will be close) For actual dispersion used 

in this thesis, see Appendix E. 

  

rng(0,'twister') % make repeatable 

a = .0075; 

b = 0; 

yaws = a.*randn(100,1) + b; 

a = 1.5; 

b = 23; 

pitches1 = (a.*randn(25,1) + b)*pi/180; 

pitches1*180/pi; 

clear a b 

a = 1.5; 

b = 57; 

pitches2 = (a.*randn(25,1) + b)*pi/180; 

pitches2*180/pi; 

clear a b 

a = 5; 

b = 40; 

pitches3 = (a.*randn(50,1) + b)*pi/180; 

pitches3*180/pi; 

clear a b 

  

pitches = [pitches1;pitches2;pitches3]; 

  

rvals = 100*rand(100,1); 

[vals inds] = sort(rvals); 

  

dispersion = [yaws,pitches(inds)]; 

  

 

hitgrnd.m:  terminal stop condition for ode45 at zero altitude 
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function [value,isterminal,direction] = hitgrnd(t,X,xt,dt) 

  

% option add-on for ode45:  tells program to quit once zero 

altitude is 

% reached 

  

value = X(3); 

isterminal = 1; 

direction = 1; 

  

end 

 

intermediates.m:  used to calculate total projectile force and moment 

 
function [XYZ,LMN,I] = 

intermediates(coeffs,states,rho,c,t,xt,dt,flag) 

% output:  force and moment vectors, inertia matrix 

% inputs:  aero coeffs, current states, air density, speed of 

sound, 

%          current time, target, sampling period, flag for 

control 

  

% load necessary values 

[D,m,g,Ixx,Iyy,Izz,S,Scan,a] = params(); 

  

% define the states 

  

x = states(1); y = states(2); z = states(3); psi = states(4);  

theta = states(5); phi = states(6); q = states(11);  

r = states(12); 

u = states(7); v = states(8); w = states(9);  

p = states(10);  

  

% inertia matrix 

I = [Ixx,0,0;0,Iyy,0;0,0,Izz]; 

  

% total velocity 

V = sqrt(u^2 + v^2 + w^2); 

  

% assign coeffs to their proper names (note: CZA1 = CYB1 = CNA) 

CNPA = 0;  CY0 = 0; CZ0 = 0; 

CX0 = coeffs(1); CX2 = coeffs(2); CYB1 = coeffs(3); CZA1 = 

coeffs(4); 

CDD = coeffs(5); CLP = coeffs(6); CMQ  = coeffs(7); CNR = 

coeffs(8); % CNR = CMQ always 

RCAX = coeffs(9); 
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% calculate force and moment variables needed for states 

derivatives 

% first get canard contributions from canard function 

  

[Xc,Yc,Zc,Lc,Mc,Nc] = 

canard_reactions(states,rho,c,t,coeffs,xt,dt,flag); 

  

XYZ_a = -pi/8*rho*V^2*D^2*[CX0+CX2*(v^2+w^2)/(V^2);CYB1*v/V;... 

    CZA1*w/V]; 

  

XYZ_w = m*g*[-

sin(theta);sin(phi)*cos(theta);cos(phi)*cos(theta)]; 

  

XYZ = XYZ_a + XYZ_w + [Xc;Yc;Zc]; 

  

LMN_a = [0,0,0;0,0,-RCAX;0,RCAX,0]*XYZ_a; 

LMN_u = pi/8*rho*V^2*D^3*[CDD+p*D*CLP/(2*V);q*D*CMQ/(2*V);... 

    r*D*CMQ/(2*V)]; 

  

LMN = LMN_a + LMN_u + [Lc;Mc;Nc]; 

  

end 

  

 

inv_table_lookpup.m:  used to convert canard commands to dimensional form before rotation 

 
function [CLalpha] = inv_table_lookup(Mach) 

  

% load the data 

  

%aerodata_c = csvread('canard_aero_props.csv'); 

global aerodata_c 

  

% coeff order in vector:  CL,CL3,CL5,CD0,CD2,Ci 

% use interp1 to get correct coeffs 

  

if Mach >= max(aerodata_c(:,1)) 

    CLalpha = 4.135; 

elseif Mach <= min(aerodata_c(:,1)) 

    CLalpha = aerodata_c(1,2); 

else 

   CLalpha = interp1(aerodata_c(:,1),aerodata_c(:,2),Mach); 

end 

  

  

end 
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mach_find.m:  used to compute mach number 

 
function [Mach,rho,c] = mach_find(V,z) 

% output:  mach, density, speed of sound for current state 

% input:  total velocity, altitude state (downward value) 

  

% loop to get correct values for rho, speed of sound 

zn = -z; 

if zn < 35332.00 

   rho = 0.0023784722*(1-0.0000068789*zn)^4.258; 

   c = 49.0124*sqrt(518.4-0.003566*zn); 

else 

   rho = 0.00072674385*exp(-0.0000478*(zn-35332.00)); 

   c = 970.8985166; 

end 

  

% assign output 

  

Mach = V/c; 

  

end 

 

params.m:  used to store parameters needed for simulations 

 
function [D,m,g,Ixx,Iyy,Izz,S,Scan,a] = params(); 

  

% no inputs:  just stores constants needed for simulation 

     

D = .223; 

m = 23/32.2; 

g = 32.2; 

Ixx = .005; 

Iyy = 1.4; 

Izz = Iyy; 

S = pi/4*D^2; 

Scan = 0.00433516492; 

a = -g; 

  

end 

 

state_grab.m:  computes state derivatives at next time step 

 
function dx = state_grab(t,X,xt,dt) 

  

[D,m,g,Ixx,Iyy,Izz,S,Scan,a] = params(); dx = zeros(1,12); 
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global tlast 

diff = t-tlast; 

if diff >= dt 

    tlast = t; 

    flag = 1; 

else 

    flag = 0; 

end 

  

% define each state variable from input vector 

  

x = X(1); y = X(2); z = X(3); psi = X(4); theta = X(5); phi = 

X(6); 

u_til = X(7); v_til = X(8); w_til = X(9); p_til = X(10); q_til = 

X(11); 

r_til = X(12); 

  

states = X; 

  

% calculate total velocity 

  

V = sqrt(u_til^2 + v_til^2 + w_til^2); 

      

% call function to calculate mach number and air density 

  

[Mach,rho,c] = mach_find(V,z); 

  

% call function to determine aero coeffs; assign the coeffs 

% coeff order in vector:  CX0,CX2,CYB1,CZA1,CDD,CLP,CMQ,CNR,RCAX 

  

coeffs = aero_props_find(Mach); 

  

CNPA = 0;  CY0 = 0; CZ0 = 0; 

CX0 = coeffs(1); CX2 = coeffs(2); CDD = coeffs(5); CLP = 

coeffs(6); CMQ  = coeffs(7); RCAX = coeffs(9); 

 

% call intermediate function to calculate necessary quantities 

  

[XYZ,LMN,I] = intermediates(coeffs,states,rho,c,t,xt,dt,flag); 

  

% matrices needed to calculate state derivatives 

  

cth = cos(theta); cps = cos(psi); cph = cos(phi); 

sth = sin(theta); sps = sin(psi); sph = sin(phi); tth = 

tan(theta); 

  

A1 = [cth*cps,sth*sph*cps-cph*sps,cph*sth*cps+sph*sps;... 
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    cth*sps,sph*sth*sps+cph*cps,cph*sth*sps-sph*cps;... 

    -sth,sph*cth,cph*cth]; 

A2 = [0,sph/cth,cph/cth;0,cph,-sph;1,sph*tth,cph*tth]; 

A3 = [0,-r_til,q_til;r_til,0,-p_til;-q_til,p_til,0]; 

  

dx(1:3) = A1*[u_til;v_til;w_til]; 

dx(4:6) = A2*[p_til;q_til;r_til]; 

dx(7:9) = 1/m*XYZ - A3*[u_til;v_til;w_til]; 

dx(10:12) = inv(I)*(LMN - A3*I*[p_til;q_til;r_til]); 

  

% assign the output 

  

dx = dx'; 

  

end 

 

 

top_level.m:  runs ode45 integration 

 
clear 

clc 

close all 

  

warning('off','all'); 

dispersion = dispersion_vals(); 

  

fprintf('Pitch     Yaw     Downrange    Crossrange    Altitude    

DR Miss\n') 

fprintf('-----     ---     ---------    ----------    --------    

-------\n') 

  

% define IC vector 

  

y = 1; 

x0 = [0 0 0 dispersion(y,1) dispersion(y,2) 0 2177.7 0 0 -58.928 

0 -0.58031E-01]'; 

xt = 29000; 

tf = 100; 

dt = 0.025; 

t = [0:0.003:tf]; 

  

global aerodata_l 

global aerodata_nl 

global aerodata_c 

global count2 

count2 = 0; 

global M 
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global N2 

  

aerodata_l = load('aeroprops.csv'); 

aerodata_nl = load('aeroprops_nonlin.csv'); 

aerodata_c = load('canard_aero_props.csv'); 

  

global tlast 

global zetanr 

tlast = 0; 

tlast = 0; 

  

% run the integration: call state_grab via ode45 

  

options = odeset('events',@hitgrnd); 

[time,x] = ode45(@state_grab,t,x0,options,xt,dt); 

  

Downrange = x(:,1); 

Crossrange = x(:,2); 

Altitude = x(:,3); 

YawAngle = x(:,4); 

PitchAngle = x(:,5); 

RollAngle = x(:,6); 

u = x(:,7); 

v = x(:,8); 

w = x(:,9); 

p = x(:,10); 

q = x(:,11); 

r = x(:,12); 

  

d = Downrange(end); 

c = Crossrange(end); 

a = Altitude(end); 

  

mval = M; 

nval = N2; 

  

fprintf(' %5.2f  %5.2f      %5.1f      %5.5f     %5.5f     

%5.5f\n',x0(5)*180/pi,x0(4)*180/pi,d,c,a,xt-d) 

  

clearvars -except d c a dispersion x0 xt mval nval 

clearvars -GLOBAL 

  

 

vac_pseudo.m:  computes vacuum model 

 

function [M,N] = vac_pseudo(x,z,xt) 
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% input:  current downrange and altitude, desired target 

% output:  coeffs needed for vac. model 

  

abc = [x,x^2;xt,xt^2]\[-z;0]; 

  

M = abc(1); N = abc(2); 

end 

 

NOTE:   

The codes in Appendix A provide all of the information necessary to run a single trajectory, save 

for the presence of the .csv files for the aerodynamic coefficient interpolation.  The top level 

code can be manipulated to run several trajectories in a loop, saving the needed information each 

time.  There were many other MATLAB files used in the data mining process needed to create 

the plots in Chapter 5.  These codes are not presented here.  
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Appendix B:  Hydra-70 Mach-Dependent Properties 

 

 

mach slcop cx0 cna clp cdd cmq cx2 

0.01 1.46 0.7 8.19 -11.2 -0.12 -2120 6.16 

0.6 1.46 0.7 8.19 -12.2 -0.12 -2120 6.16 

0.8 1.4 0.72 8.48 -12.6 -0.12 -2920 6.64 

0.9 1.35 0.81 8.94 -12.8 -0.12 -2920 6.96 

0.95 1.32 0.89 9.02 -13.3 -0.11 -2876 7.36 

1 1.29 0.96 9.1 -13.8 -0.1 -2830 8.64 

1.05 1.27 0.98 9.18 -14.7 -0.09 -2816 9.84 

1.1 1.24 1 9.26 -15.6 -0.08 -2800 11.21 

1.2 1.2 1.01 9.19 -16.16 -0.05 -2642 13.42 

1.35 1.23 1 8.71 -16.26 -0.02 -2368 12.87 

1.5 1.31 0.99 8.29 -16.1 -0.03 -2222 12.29 

1.75 1.38 0.93 8.01 -15.6 -0.04 -2040 11.68 

2 1.42 0.86 7.79 -14.8 -0.05 -1898 11.17 

2.25 1.44 0.8 7.64 -14.1 -0.06 -1805 10.93 

2.5 1.46 0.75 7.51 -13.4 -0.06 -1712 10.67 

2.75 1.46 0.71 7.36 -12.7 -0.06 -1656 10 

3 1.47 0.68 7.22 -12 -0.05 -1600 9.3 

5 1.47 0.62 6 -11 -0.05 -1300 6.2 
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Appendix C:  Canard Mach-Dependent Properties and Dynamic Properties 

 

 

Mach 
CL alpha 

(rad-1) 

CL 

alpha3 

CL 

alpha5 
CDO CD2 Ci 

0.4 2.576701 0 0 0.05726 0 0 

0.6 2.863001 0 0 0.054079 0 0 

0.7 3.212923 0 0 0.063622 0 0 

0.75 3.40379 0 0 0.066803 0 0 

0.8 3.531034 0 0 0.069984 0 0 

0.85 3.69009 0 0 0.076347 0 0 

0.875 3.753712 0 0 0.076347 0 0 

0.9 3.849145 0 0 0.082709 0 0 

0.925 3.912767 0 0 0.08589 0 0 

0.95 3.97639 0 0 0.08589 0 0 

0.975 4.071823 0 0 0.089071 0 0 

1 4.135445 0 0 0.089071 0 0 
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Appendix D:  Canard Angle Properties 

 

Canard # SL (ft) BL(ft) WL (ft) γ (rad) ϕ (rad) δ (rad) S (ft2) 

1 3.8 0.14167 0 0 0 variable 0.004335 

2 3.8 -0.14167 0 0 Π variable 0.004335 

3 3.8 0 0.14167 0 π/2 variable 0.004335 

4 3.8 0 -0.14167 0 -π/2 variable 0.004335 
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Appendix E:  Initial Yaw and Pitch Angle Random Sets 

 

Trial 
Yaw Angle 

(°) 

Pitch angle 

(°) 
Trial 

Yaw Angle 

(°) 

Pitch angle 

(°) 

1 0.23105 39.024 26 0.44463 43.301 

2 0.78805 57.034 27 0.31236 56.591 

3 -0.97067 40.918 28 -0.13039 34.399 

4 0.37049 46.757 29 0.12628 58.052 

5 0.13698 43.126 30 -0.33831 57.525 

6 -0.56194 42.335 31 0.38176 57.762 

7 -0.18632 58.691 32 -0.49292 25.568 

8 0.14723 35.76 33 -0.45931 20.059 

9 1.5377 35.673 34 -0.34786 57.423 

10 1.1901 22.297 35 -1.2652 41.957 

11 -0.58007 54.634 36 0.6181 52.63 

12 1.3042 41.538 37 0.13974 21.668 

13 0.31172 38.484 38 -0.32441 39.334 

14 -0.027096 24.441 39 0.58884 45.093 

15 0.30714 46.303 40 -0.73547 58.648 

16 -0.088078 27.362 41 -0.043935 57.05 

17 -0.053347 25.032 42 -0.10375 21.188 

18 0.64015 39.349 43 0.13717 25.155 

19 0.60549 24.109 44 0.13444 21.413 

20 0.60899 55.765 45 -0.37165 55.265 

21 0.28855 21.392 46 -0.012914 22.709 

22 -0.51888 23.186 47 -0.070852 47.635 

23 0.30821 19.792 48 0.26974 33.192 

24 0.70054 42.6 49 0.4698 56.572 

25 0.21009 55.531 50 0.47668 39.9 

 

  



121 

 

Trial 
Yaw Angle 

(°) 

Pitch angle 

(°) 
Trial 

Yaw Angle 

(°) 

Pitch angle 

(°) 

51 -0.37113 38.912 76 -0.60258 28.351 

52 0.033243 43.957 77 -0.61122 33.714 

53 -0.52173 44.31 78 0.20979 54.375 

54 -0.47849 44.13 79 -0.076221 37.619 

55 -0.0029433 54.999 80 -0.084248 33.34 

56 0.6586 58.446 81 0.6099 38.531 

57 -0.33074 24.261 82 0.1253 56.551 

58 0.15959 53.996 83 0.085003 45.195 

59 -0.096938 23.455 84 0.68226 21.741 

60 0.48015 34.412 85 -0.34569 42.764 

61 -0.46799 55.753 86 0.29935 22.183 

62 0.013991 23.735 87 0.35885 38.876 

63 0.23743 56.583 88 -0.10473 39.661 

64 0.47295 53.922 89 0.092677 41.668 

65 0.66358 35.756 90 -0.50098 32.755 

66 0.036926 38.326 91 -0.4933 42.275 

67 -0.64096 22.1 92 0.045067 24.238 

68 -0.31898 39.826 93 0.31037 37.055 

69 -0.45618 39.117 94 1.111 22.703 

70 1.01 36.009 95 -0.28658 56.607 

71 -0.26454 48.277 96 0.0805 23.15 

72 0.32146 38.951 97 -0.035449 56.2 

73 -0.082686 42.258 98 -0.83066 40.115 

74 0.38185 56.469 99 -0.18863 25.068 

75 -0.32867 40.256 100 -0.77121 36.427 

 

  



122 

 

Trial 
Yaw Angle 

(°) 

Pitch angle 

(°) 

101 0.31172 30.478 

102 -0.027096 50.479 

103 0.30714 50.469 

104 -0.088078 31.293 

105 -0.053347 34.154 

106 0.64015 51.64 

107 0.60549 49.753 

108 0.60899 34.552 

109 0.28855 48.703 

110 -0.51888 30.807 

111 0.30821 30.514 

112 0.70054 28.038 

113 0.21009 48.868 

114 0.44463 49.638 

115 0.31236 35.368 

116 -0.13039 26.612 

117 0.12628 32.751 

118 -0.33831 52.055 

119 0.38176 27.975 

120 -0.49292 50.942 

121 -0.45931 49.955 

122 -0.34786 47.433 

123 -1.2652 51.664 

124 0.6181 49.847 

125 0.13974 29.35 
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