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ABSTRACT 

Youn, Woonghee 

M.S.O.E 

Rose-Hulman Institute of Technology 

August 2015 

Increase a sensitivity of the Michelson interferometer through the multiple reflection 

Dr. Charles Joenathan 

 

Michelson interferometry has been one of the most famous and popular optical 

interference system for analyzing optical components and measuring optical metrology 

properties. Typical Michelson interferometer can measure object displacement with 

wavefront shapes to one half of the laser wavelength. As testing components and devices 

size reduce to micro and nano dimension, Michelson interferometer sensitivity is not 

suitable. The purpose of this study is to design and develop the Michelson interferometer 

using the concept of multiple reflections. This thesis proposes a new and novel design for 

a multiple reflection interferometer, where the number of reflections does not affect the 

quality of the interference. Theoretically we show that more than 1000 reflections can be 

achieved. Experimental results of greater than 100 reflections are presented in this thesis. 
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1. INTRODUCTION 

Interferometry is a measurement technique where two light waves generated from 

one source are superposed. The resultant intensity at any point depends on whether they 

reinforce or cancel each other. Optical interferometry has been used as a laboratory 

technique for almost a hundred years [1, 2]. This technique is applied to many fields of 

optical metrology, fiber optics, many types of topology measurements, seismology, 

particle and plasma physics, medical analysis systems, molecular biology and mechanical 

stress and strain measurements. Interferometer measurement systems are used extensively 

in industrial application and could be used as a powerful tool for measuring 

displacements by taking advantage of lights ability to interfere with itself.  

Among the interferometer systems used for practical applications, it has been 

suggested that the Michelson interferometer is the most common optical measuring 

system. This study proposes an advanced version of a Michelson interferometer which is 

named ‘Dual Arm Multi-Reflection Interferometer’. This proposed system increases the 

sensitivity of the interferometry. The sensitivity of a standard Michelson interferometer is 

λ/2, where λ is the wavelength of the laser being used. However, with multiple reflection 

it has been shown that the sensitivity can be improved to over λ/100. The sensitivity is 

not only based on the number of reflections but also in the mirror assembly. There are 

some studies to obtain high resolution in the two beam interferometer, such as a multiple 
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total internal reflection interferometer, which was used to measure the changes in the 

displacement in the order of micro to nano magnitude range [5-8]. Chandra et al. 

introduced multiple reflections in one arm of the Michelson interferometer and showed 

that the sensitivity can be increased to λ/72 [3]. Further, a prism assembly was used to 

apply multiple reflections for the measurement of small vibrations [4]. Also, this multiple 

reflection interferometer can be made into a more compact design. Recently multiple 

reflection interferometry has been used to study noise levels and the linearity between the 

number of reflections and the improvement in resolution. Because the multiple reflection 

interferometer is composed of only a one arm multiple reflection (see fig. 6), this system 

has two disadvantages. First, the multiple reflections increase the optical path length in 

one arm thereby the path length difference between the two arms can easily exceed the 

coherence length of the laser thereby the visibility of the fringes will decrease to zero. In 

this study, a method of generating identical multiple reflections in both the arms of the 

interferometer is proposed. This thesis discusses the theoretical aspect of the multiple 

reflections and a novel mechanical design to generate identical multiple reflections in 

both the arms. Both the experimental design and experimental results are presented. 
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2. THEORY AND DESIGN 

2.1 Background Theory and Design 

In this chapter the fundamentals of wave superposition and the sensitivity in a 

Michelson interferometer are discussed.  

2.1.1 Michelson interferometer 

An optical arrangement to have wave interference was introduced by Albert 

Abraham Michelson in 1887. This amplitude division interferometer has played a 

significant role in the optical interferometer field, and the schematic arrangement is 

shown in fig. 1. This method is simple and has been used in a Fourier transform 

spectrometer, modified to a Twyman-Green interferometer setup and to a laser unequal 

path interferometer. In addition, multiple reflections have also been introduced in the 

Michelson interferometer to increase its sensitivity [16]. 
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Figure 1 Schematic diagram of the Michelson interferometer 

 

The arrangement of a Michelson interferometer consists of two mirrors, a single 

light source (monochromatic or quasi monochromatic), and a beam splitter as shown in 

fig. 1. The interferometric arrangement generates two coherent waves from a single 

monochromatic or quasi monochromatic light source. The beam is passed through a 

50/50 beam splitter which divides the incident beam into two beams of equal amplitude. 

One beam goes to Mirror 1 and the other goes to Mirror 2. After reflection, the two split 

beams retrace their path and recombine at the beam splitter. 
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Figure 2 The beam travelling in the beam splitter and compensator plate 

If the optical path lengths between the two beams are the same, the beams would 

arrive with the same phase and interfere constructively. For the Michelson interferometer 

there is a slight complication. The beam traveling toward Mirror 2 is in effect reflected 

inside the beam splitter, so it requires a compensator plate to account for dispersion if a 

non-monochromatic or white light source is used. Fig. 2 shows the schematic 

arrangement of the beam splitter and the compensator assembly. Note that beam 1 goes 

through the beam splitter twice and beam 2 will traverse the compensator twice, this 

compensates for the dispersion effects on beam 1. Mirror 1 or 2 is mechanically 

connected to some external device that allows the mirror to move. According to the 

movement of the mirror, the interference between the two beams will change from being 

either bright to dark or vice versa. When both the arms of the optical path length in the 
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Michelson interferometer are matched, a fringe is detected as shown fig. 3 (a). This is the 

only time that one dark and one bright fringe appear in the entire field of the wavefront. If 

one of the mirrors is moved such that the optical path lengths are different this causes, the 

number of fringes to increase as shown fig. 3 (b). 

 

Figure 3 Fringe pattern when the optical path length of two arms are (a) equal 

and (b) different 

 

2.1.2 Superposition of waves 

Michelson interferometer is an application of wave superposition. When two waves 

of same frequency and wavelength travel through the same medium, their amplitude can 

be added or canceled [11-13]. Fig. 4 shows constructive and destructive interference of a 

transverse wave. 

(a)                    (b) 
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Figure 4 The result of (a) constructive interference and (b) destructive 

interference 

There are several methods to combine two waves. In this paper, the superposition of 

waves is described by the traditional algebraic method.  

The differential wave equation can be written in the form  

𝐸𝑞(x, t) = 𝐸01 sin[𝑤𝑡 − (𝑘𝑥 + 𝜀)]                     (1) 

where E01 is the amplitude of the harmonic disturbance propagation along the positive x-

axis, ‘ω’ is the angular frequency, ‘t’ is the time, ‘k’ is the propagation number, and ‘ε’ is 

the initial phase. To separate the space and time domain parts of the phase, the space 

component of the phase can be expressed as 

α1(x, ε) =  −(𝑘𝑥 +  𝜀) 

so that equation (1) becomes 

E1(x, t) = 𝐸01 sin[𝑤𝑡 +  𝛼1(𝑥, 𝜀)]                                          (2) 

The equation for the second wave is 

(a) 

 

 

(b) 
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E2 = E02 sin[(𝑤𝑡 +  𝛼2(𝑥, 𝜀)]                                                (3) 

When these two waves superpose, the resultant disturbance is expressed as the sum of the 

two waves and is 

E𝑇 =  𝐸1 + 𝐸2                                                                 (3) 

Subtracting for E1 and E2, ET becomes  

E𝑇 =   E01 sin(𝑤𝑡 +  𝛼1) +  E02 sin(𝑤𝑡 +  𝛼2)                               (4) 

Since the intensity is the square of the amplitude, equation (4) can be reduced to 

𝐸0
2 =  𝐸01

2 + 𝐸02
2  + 2E01E02 cos(𝛼2 −  𝛼1)                                 (5) 

and tan α can be expressed as 

tan 𝛼 =  
E01 sin 𝛼1 +  E02 sin 𝛼2

E01 cos 𝛼1 +  E02 cos 𝛼2
                                          (6) 

The total disturbance can now be expressed as 

E = E0 cos 𝛼 sin 𝑤𝑡 + E0 sin 𝛼 cos 𝑤𝑡                                   (7) 

or 

E = E0 sin(𝑤𝑡 + 𝛼)                                              (8) 

This demonstrates that superposed two waves E1 and E2 become a single disturbance.  
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2.1.3 Sensitivity of the Michelson interferometer 

When two waves are superposed, two types of interference are detected: 

constructive and destructive (see fig. 4). The working theory of the Michelson 

interferometer is that a single fringe pattern shows up on the screen or detector. If the 

peak and valley of the two superposing waves match exactly, then a maximum is 

obtained. Alternatively, if the peak (and valley) of two waves do not match and are off by 

180 degrees, then the resultant amplitude will be a minimum.  

The amplitude for two superposed waves in the Michelson interferometer is shown as 

equation (5). If two waves have the same phase, equation (5) can be changed to  

𝐸0
2 =  𝐸01

2 + 𝐸02
2  + 2E01E02        {𝛼2 =  𝛼1}                      (9) 

If two waves has 180 degrees different phase, equation (5) can be  

𝐸0
2 =  𝐸01

2 + 𝐸02
2 − 2E01E02        {𝛼2 =  𝛼1 + 𝜋}            (10) 

The result of equation (9) and (10) shows a maximum and minimum value respectively. 

The π shows the phase difference which is generated by the mirror movement. The 

intensity of the superposing beams fluctuates between bright and dark as the mirror is 

displaced in the line of the beam. In the Michelson interferometer, the displacement 

distance of the optical path, that causes the fringe pattern intensity to cycle from a 

maximum to a minimum, is called the sensitivity. In the equation (10), the phase cycle is 

π and in terms of distance it is λ/2, where λ is the laser wavelength. Thus, the sensitivity 

of the Michelson interferometer is 
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                        Sensitivity:                                   S =  
𝜆

2
                                                           (11) 

 

 

2.1.3.1 Optical path difference 

    In the Michelson interferometer, mirror 2 (fig. 5) moves back and forth to introduce 

a path difference. For every λ/2 optical path difference, the amplitude of the resulting 

superposed wave will change. Fig. 5 demonstrates how the optical path difference is 

introduced by mirror displacement ‘d’.  

 

 

Figure 5 Schematic diagram of the optical path difference of the Michelson 

interferometer. M1 and M2 are mirrors, S1 and S2 are virtual source 

positions, and d is a distance of M2 from M1. 

If the light source to detector movement is ‘d’, the total path difference is ‘2d’. The total 

optical path difference ‘δ’ caused by the beam diverging can be expressed as 
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δ = 2 d cos 𝜃                                                             (12) 

 where ‘θ’ is the angle, the beam makes with reflection to the normal. In the 

displacement sensitivity of the Michelson interferometer, d is 

𝜆

2
=  2 d cos 𝜃                                                            (13) 

d =  D =  
𝜆

4 cos 𝜃
                                                        (14) 

Here θ is zero if the beams are collimated and only one fringe is observed. 

D =  
𝜆

4
                                                                 (15) 

Therefore in a Michelson interferometer, the minimum displacement that can be 

measured is λ/4. 

 

2.2 Multiple reflection Michelson interferometer in one arm 

It was shown earlier that Michelson interferometer can be used to measure 

displacements greater than λ/4. However, the Michelson interferometer cannot measure 

below half the wavelength of light. So, a multiple reflection interferometer in one arm 

was developed to overcome this limitation [5, 9, 10]. In order to create multiple beam 

reflections, another mirror is added facing the existing mirror. As it is shown in fig. 6, 

another mirror (mirror 2) is added in front of mirror 1, creating a wedge angle. The beam 

in arm 1 goes through multiple reflections between mirror 1 and mirror 2. 
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Figure 6 Schematic diagram of the multiple reflection interferometer 

 

The beam undergoes a series of reflections between mirror 1 and mirror 2 until the beam 

hits one of the mirrors with a zero degree incidence angle. After the incidence angle 

reaches zero degree, the beam returns back to the beam splitter with the same path. Then, 

this multiple reflected beam combines with the beam from mirror 3 at the plane of the 

beam splitter as shown in fig. 6. The sensitivity is now determined by the number of 

reflections between mirror 1 and 2. If mirror 1 is displaced, the number of cycles of 
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maximum to minimum will be amplitude by the number of reflections when compared to 

the conventional Michelson interferometer.  
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3. DESIGN CONCEPT FOR DUAL ARM MULTI-REFLECTION 

INTERFEROMETER 

In chapter 2, the Michelson interferometer principle, superposition theory, 

sensitivity of the system and theory of the multiple reflection interferometer was 

discussed. In this chapter, we discuss a method to maintain high visibility independent of 

the number of reflections called the “Dual Arm Multi-Reflection Interferometer”. 

3.1 Disadvantage of the one arm multiple reflection interferometer 

    The conventional multiple reflection interferometer is an improved version of the 

Michelson interferometer, and its value for practical use is also increased because of the 

increase in sensitivity. However, this improvement has one disadvantage because the 

optical path difference between the two beams can be large for large numbers of 

reflection. The laser beam normally has a finite coherence length that can vary from a 

few nano-meters to several meters, and this depends on the type of the laser. A typical 

laser beam frequency spectrum consist of several narrow frequency ranges that contain 

most of the energy, and these are separated by much larger regions [14,15]. Thus the 

combined spectrum is broad consisting of a range of frequencies, thereby limiting the 

coherence length. The electron transitions generate light which has a duration on the 

order of 10-8 to 10-9 seconds. This emitted light can be affected by thermal motion and 
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collisions of atoms. So, the effect of all these mechanisms broadens the bandwidth of 

laser frequency rather than having one single frequency. The coherence length and time 

are components of this bandwidth. The coherence length in the frequency spectrum 

follows a sine curve form so that its phase can be predicted reliably [16]. 

 If the optical path length difference is longer than the coherence length of the laser in 

the interferometer, the visibility of the fringe becomes zero. The one arm multiple 

reflection interferometer system has this disadvantage where the path difference could 

easily exceed the coherence length. 

3.2 Relation between incident beam angle and wedge shape mirror angle 

The incident beam angle and the angle of two wedge shape mirrors need to be 

calculated so that the reflected beam retraces its initial incidence path. Fig. 7 shows a 

schematic diagram of beam reflection in the two-mirror wedge. 

 

Figure 7 Beam incidents diagram in the two-mirror wedge 
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The condition for the reflected beam to come back on itself after the reflection is that the 

incident beam angle has to become 90 degrees. Suppose that the total reflection number 

is ‘N’, the angle between two mirrors is ‘θ’, and the initial incidence angle is ‘α’, the final 

incident beam angle must be normal (zero degree) to the mirror in order to retrace its 

initial incident beam path. If the final reflection beam’s (N times reflections) angle is 90 

degrees, the incident angle of the one reflection before the final (N – 1 times reflections) 

has to be ‘θ’, which is angle of the two mirror wedge. N – 2 times reflection incident 

angle has to be ‘2θ’ (see fig. 7). Briefly, the incident (first) angle α is proportional to 

the wedge angle θ and the number of reflection N. The equation of that relation is 

                                                                α = (N − 1) 𝜃                                                    (16) 

where ‘α’ is smaller than 90 degrees, N is greater than one and ‘θ’ is larger than zero 

degrees. 

 

3.3 Sensitivity of the multiple reflection interferometer 

    The sensitivity of the multiple reflection interferometer when compared to the 

Michelson interferometer is related to the number of reflections. The following section of 

this thesis shows the displacement sensitivity of a multiple reflection interferometer. 
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3.3.1 Displacement sensitivity 

    The sensitivity of the standard Michelson interferometer is  

D =  
𝜆

2
                                                                (17) 

and the displacement sensitivity is  

𝐷𝑠 =  
𝜆

4
     (From equation 15)                   (18) 

In the multiple reflection interferometer, the displacement sensitivity is 

𝐷𝑚 =  
𝜆

4
 ∙  

sin 𝜃

sin 𝑁𝜃
                                                 (19) 

where N is the total number of reflections, λ is the wavelength of the laser in the system 

and θ is the angle of the two-mirror wedge. 

Fig. 8 shows the beam path details of the multiple reflection interferometer within the 

two-mirror wedge. Two mirrors, M1 and M2, meet at the point A, and θ is the angle of 

the two mirrors. The total path from b1 to b4 which satisfies an angle condition α = (N – 

1) θ is exactly equal to the imaginary path from b1 to b'4. 

𝑏1 𝑏4̅̅ ̅̅ ̅̅ ̅ =  𝑏1 𝑏′4̅̅ ̅̅ ̅̅ ̅̅                                               (20) 
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Figure 8 The motion of beam at the two-mirror wedge when the mirror is 

displaced by a distance ‘d’. [3] 

 

A normal displacement d of mirror M2 to mirror M2' causes the optical path change 

from b'4 to b''4. The distance of the beam path is from b1 to b''4 when the mirror M2 

moves to M2'. The displacement senstivity of the multiple reflection interferometer is 

𝐷𝑚 = 𝑏1 𝑏"4̅̅ ̅̅ ̅̅ ̅̅ ̅  − 𝑏1 𝑏′4̅̅ ̅̅ ̅̅ ̅̅ =  𝑏′4  𝑏"4̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑑′                                       (21) 

d′ =  𝐴𝐴′̅̅ ̅̅ ̅  ∙ sin 𝑁𝜃                                                        (22) 
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Also, distance A to A' can be expressed to 

𝐴𝐴′̅̅ ̅̅ ̅ =  
𝑑

sin 𝜃
                                                           (23) 

The eqaution (22) and (23) are 

d′ =  
𝑑

sin 𝜃
∙ sin 𝑁𝜃                                                         (24) 

To find the displacement sensitivity Dm, starting in the mulitple reflection 

interferometer, the ‘d’ is replaced to ‘d'’ such that 

𝜆

2
= 2 d′                                                                 (25) 

where ‘d’is the optical path difference. Then the result of two equation (24) and (25) can 

be written as 

𝜆

2
= 2 

𝑑

sin 𝜃
∙ sin 𝑁𝜃                                                    (26) 

 

The displacement sensitivity of the multiple reflection interferometer Dm is 

 

D𝑚 = d =  
𝜆

4
∙

sin 𝜃

sin 𝑁𝜃
                                                    (27) 
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3.3.2 Effect of incident angle 

 Fig. 9 shows two different initial incident beam angles; (a) beam travels between two 

mirrors with small incident beam angle, (b) beam travels with a large angle. For example, 

in the case of fig. 9 (a), the beam travel change is almost 8·d, but case (b) shows that the 

optical travel path is longer than 8·d (‘d’ is displacement of mirror). 

 

 

 

Figure 9 Optical path change when incidence angle is (a) small and (b) large 

between two mirrors. The solid line shows original beam moving path 

and dash-line shows a beam moving path after displacement of the 

mirror M2 [5] 

 

(a)                                       (b) 
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This result is very important because it demonstrates that when the initial incident angle 

is very small, equation (27) can be expressed as  

sin (𝜃)

sin (𝑁𝜃)
=  

1

𝑁
 (𝑤ℎ𝑒𝑛 𝜃 < 1 𝑑𝑒𝑔𝑟𝑒𝑒)                                       (28) 

Thus, equation (27) can be changed to  

d =
𝜆

4𝑁
                                                                    (29) 

 

3.4 Concept design for dual arm multi-reflection interferometer 

This dual arm multi-reflection interferometer is designed to realize identical 

angles between two tilted pairs of mirrors in both the arms by connecting them with a two 

gears assembly and rotation stages. Fig. 10 shows a general schematic diagram of this set 

up. In this arrangement, mirror 2 and mirror 4 are mounted at the center of the gear 

assembly and is at the center of the two rotation stages. Mirror 2 faces mirror 1 forming a 

wedged angle and the mirror 4 faces mirror 3 forming a wedged angle in the opposite 

direction. Furthermore, gear 1and gear 2 are meshed with their center fixed on two 

rotational stages. As a result, mirror 2 and 4 are able to rotate at the same time and by the 

same angle but in the opposite direction. 
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Figure 10 Schematic diagram of Dual Reflection Interferometer 

 

If either mirror 2 or 4 is rotated, the wedge angle is the same in both the 

assemblies. In our system, mirror 2 is mounted on a PZT stage for introducing 

displacement. Once the system is set and aligned, the two arm multiple reflection 

interferometer will have the identical number of reflections in both the arms.  
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4. EXPERIMENT 

The use of multiple reflections in a Michelson’s arrangement has already been 

reported as mentioned in the previous chapter. The theoretical analysis shows that it is 

possible to obtain multiple reflections in the order of 1000 or more. If we assume that the 

average distance between the two mirrors is a few millimeters, we can expect the path 

difference between the multiple reflection arm and the single reflection arm of the 

interferometer to be greater than one meter. To reduce the optical path difference, the arm 

with the single reflection must be made larger. Thus, it is not possible to create a compact 

multiple reflection interferometer suitable for industrial applications. To solve this 

problem, we propose an alternate design where it is possible to generate the same number 

of reflections in both the arms of the interferometer. It is normally possible to create an 

arbitrary number of multiple of reflections in both the arms by having a separate and 

independent mirror arrangement. However, this arrangement becomes much harder to 

manage and align if the number of reflection becomes larger. In order to make alignment 

easier and compact, the design in this proposal is to connect both the mirrors in one 

assembly by a system of gears to maintain the same number of reflections in both the 

arms. 

One such proposed assembly is shown in fig. 11. Two rotational stages are placed 

side by side with the center of rotation separated by a difference of ‘2a’ between them. 
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Figure 11 Location of gears, mirrors, and rotational stage in schematic view; 

Mirror 3 and 1 are fixed mirrors and these mirrors are connected by a 

magnet based stage. Mirror 2 and 4 are mounted on gears. The gears 

are meshed at a distance ‘a’ (a is 3 inches). The rotating tab is able to 

rotate the stage in 0.04 degree increments. 

 

Two large circular gears of radius ‘a’ are mounted at the center of the rotational stage so 

that the two mesh. Two mirrors are mounted at the center of rotation of the two stages as 



25 

 

shown in the fig. 11. When one of the stages is rotated, the two mirrors move in the 

opposite direction, thus creating the same angle of tilt in mirror 2 and mirror 4. The 

minimum angle of rotation that can be measured with this rotation stage is 0.04 degrees. 

However, smaller rotational angles are possible but not measurable.  

 

 

Figure 12 Schematic diagram of 4 mirrors in the dual arm multiple reflection 

interferometer after rotating the gear. 

 

Fig. 12 shows with schematic diagram of the location of the fixed mirrors after rotation. 

When one of the rotational stages is moved by an angle of ‘α’, the mirrors are both 
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rotated by the same magnitude of ‘α’ but in the opposite directions. This set of 

measurements maintains the same angle between the mirror 1 and 2 and mirror 3 and 4. 

The schematic of the experimental arrangement of the modified Michelson’s 

interferometer setup with the beam splitter and entire reflection paths are shown in fig. 

13. 

 

 

Figure 13 Modified multiple reflection Michelson interferometer 
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A He-Ne laser beam is incident such that it is at an arbitrary angle entering the setup. The 

beam splitter is located at the center where the two gears mesh. The reflected beam from 

the beam splitter forms arm 2 of the interferometer and the transmitted beam forms arm 

1. The beams go through multiple reflections in both the arms and the beam retraces its 

path back to the beam splitter and combine at the beam splitter. To be able to make 

quantitative measurements on the number of reflections, mirror 1 is mounted on a PZT 

stage that can be displaced along the x-y plane. The phase difference introduced by the 

PZT mirror movement is amplified by the number of reflections. 

4.1 Experimental set-up 

In the experiment, the light source is a helium-neon (He-Ne) laser. The laser beam 

is divergent in both the arms of the interferometer and therefore it does not affect the final 

fringe formation. However, a collimated beam is recommended for a large number of 

beam reflections because the beam diameter gets larger in the case of multiple reflection. 

A 50/50 beam splitter is used to split the beam into equal amplitudes. A total of four 

mirrors are used, mirror 1 and 3 are fixed, mirror 2 and 4 are mounted on a 3 inch 

diameter gear. These two mirrors are connected as shown in fig. 14. The gears are 

mounted on two rotational stages, which are able to rotate 360 degrees with a minimum 

measurable angle of rotation being 0.04 degrees. The error in the angle of measurement is  

0.004 degrees 
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(a) (b) 

Figure 14 (a) Two 3 inch gears on the magnet base and (b) PZT mirror and 

normal mirror set on the gears. 

 

Each mirror is mounted on a separate stage which can be tilted about the x and y axis.  

 

 

Figure 15 Picture of the beam reflection through the wedge shape mirror arms. 

Outside mirrors were fixed and inside mirrors were mounted on the 3 

inch gear and rotation stage.  
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Fig. 15 shows the photograph of the dual multiple reflection assembly. Two separate 

mirror systems with an angle between them are located at the same distance from the 

contact position of the gear. The number of beam reflections in each arm can be increased 

or decreased simultaneously. One of the mirrors is mounted on a PZT stage which can be 

displacement by a high voltage power supply. A ramp signal is input to the high voltage 

supply and this causes the mirror to move back and forth. The mirror movement causes 

the interference pattern to fluctuate between bright and dark spots on a laser power meter 

head.  

4.2 Experimental procedures 

Two different experiments are conducted to test this dual arm multiple reflection 

interferometer. The first experiment is to determine the importance of the incidence angle 

on the number of beam reflections. The second experiment is to measure the 

displacement sensitivity of the dual arm multi-reflection interferometer based on the 

numerical increment of beam reflection numbers, and comparing it to theoretical value of 

the displacement for a given incident angle. 

4.2.1 Displacement sensitivity difference by incidence angle 

The first experiment investigated the relation of the incidence angle of the beam 

and the displacement sensitivity, which is expressed by the equation (29). Equations (27) 
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and (29) show the relationship of the displacement sensitivity, and fig. 9 shows that if the 

incidence angle is large, the beam will not be able to retrace its path and will eventually 

exit the mirror assembly on the opposite side. The first investigation is used to identify 

some of the conditions of the angle of incident for the interferometer. Initially, the two 

pair of mirrors are aligned parallel to each other. Then the rotational stage is used to 

rotate mirrors such that the reflected beams inside the dual pairs of mirror assembly 

retraces its path. Mirror 1 and 3 are rotated by 20o, 15o, 10o, 5o, and 1o of wedge angles. 

Mirror 2 is mounted on PZT device, driven by a program (PIMikroMove ™). Finally, the 

displacement sensitivity is measured. The results of 1 and 20 degree are compared in 

section 5.2.  

A software is developed in MATLAB (APPENDIX A) which can calculate the 

number of reflections according to wedge shape mirror angle and beam incident angle. 

This program is used if the incidence angle, two mirror angle, and reflection numbers do 

not followed the equation (19) [17] because the geometry is other than a wedge shape 

such as curve or roof top mirror shape. This program allows the reflection number to be 

calculated and simulated. It draws the mirror assembly first, which includes the inclined 

top line and the straight bottom line in fig. 16, and then it traces the beam; the mirror 

assembly and beam movement are defined by the user. If the mirror assembly and beam 

data are set, a solid line is drawn which shows the beam undergoing multiple reflections 

in the mirror assembly. When the beam hits the top or the bottom line, it is reflected by 
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the incident angle. Fig. 16 shows the program interface with input data boxes and a 

simulation of the beam movement. 

 

Figure 16 A reflection number calculating program according to mirror and 

incident angel. The wedge shape angle and beam incident angle are 45 

degree 

 

In the right upper side of fig. 16 the actual values of the mirror angles and beam 

incident angle are entered. The top left side graph in fig. 16 shows the shape and angle of 

the two mirror set which is programed as straight lines. The inclined line depicts the top 

mirror and the bottom line is the second mirrors. The second graph shows the simulation 
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of beam motion with the two mirrors. This shows the beam reflection with a 5 degree 

wedge angle and a 45 degree incidence angle for a total of 10 reflections.  

4.2.2 Displacement sensitivity with multiple reflection 

The experiment was to measure the displacement sensitivity of the dual arm 

multi-reflection interferometer. The displacement sensitivity is measured as the number 

of reflections is increased gradually by rotating the gear assembly. At specific angles, the 

reflected beam will be observed to combine at the beam splitter. By adjusting the tilt 

about the y and x axis, the beams can be aligned such that they are collinear. The beams 

are adjusted such that only one interference maximum or minimum occurs. The next 

higher reflection order can be generated by gradually increasing the angle between the 

mirrors by rotating the gear assembly. In this experiment the incidence angle is set close 

to 0.5 degree by tilting mirror 1 and 3 and the number of reflections are gradually 

increased. Mirror 2 and 4 are also rotated similarly in order to increase by the same 

number of reflections. Mirror 2 is mounted on a PZT device and moves 500, 1000, and 

2000 nm. The reason for displacing the mirror by different distances is to test the validity 

of the displacement sensitivity measurement. For a given wedge and incident angles, the 

sensitivity should be consistent regardless of the PZT mirrors displacement. The detector 

detects an interference signal caused by the two beams from both the arms of the 

interferometer and the oscilloscope displays the fluctuating signal. The oscillating voltage 
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from the oscilloscope can be converted to excel files. From the excel data the total 

number of cycles can be determined. This number is then divided by the total mirror’s 

movement. 
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5. RESULT 

The sensitivity of the dual arm multi-reflection interferometer is evaluated by 

observing the total phase cycle the interferometer goes through for a given mirror 

displacement. From analyzing the signal the experimental value of the number of 

multiple reflections is determined. 

5.1 Relationship between incidence angle and wedge shape mirror angle 

Fig. 17 shows the plot of the number of beam reflections inside the wedge angle 

calculated by equation (16). A higher reflection number requires a smaller angle between 

the two mirrors. For example, if the angle of incidence and wedge mirror are set to 5 

degree and 0.5 degree respectively, the reflection number is 11. In another situation, if the 

wedged shape mirror is set at 0.1 degrees and the incidence angle is 10 degrees, the 

reflection number is 101.  
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Figure 17 Diagram of the beam reflection number with different incident angle 

and wedge shape mirror angle 

 

Theoretically, the number of beam reflections can be 1000 or more if it satisfies 

specific conditions. For example, if the incident angle is 50 degrees and the wedge angle 

is 0.05 degrees the number of reflections is 1000. However, the higher incidence angle 

restricts the mirror length and also requires that the distance between two mirrors be as 

small as possible. As the initial angle is increased, the beam path on the x-axis direction 

is expanded as shown in fig 9. This means that the larger initial angle needs a longer 

mirror even though the number of reflections is low. 
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5.2 Displacement sensitivity difference by incidence angle 

The first experiment demonstrates the relationship between incidence beam angle 

and optical path length difference. Fig. 18 and Fig. 19 show the profile of the signals 

from the detector and observed in the oscilloscope measured under the same conditions 

but with different incidence angles. The total number of reflections is two, and the piezo 

mirror moves in increments of 475 nm. The incident beam angle for fig. 18 is less than 1 

degree and for fig. 19 it is 20 degrees. This angle difference results in different optical 

path lengths and sensitivities. For a mirror translation of 475 nm backward and forward 

using a ramp signal, the fringe pattern cycle of 1 degree experiment is 6.330 nm and 20 

degree experiment is 7.006 nm. This means that a 75.039 nm mirror displacement is 

needed to change from a bright fringe to a dark fringe for 1 degree incident angle as 

shown fig. 18. A 67.799 nm movement is needed for one cycle for 20 degrees incident 

angle as shown fig. 19. These results show that equation (28) can not apply to all multiple 

reflection interferometers. When the initial angle is larger than one degree, it follows 

equation (27).  
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Figure 18 The detector signal for the fringe pattern changed when the incidence 

angle and wedge-mirror angle are one degree. The x-axis is the time 

during the mirror displacement and y-axis is the signal from the photo 

detector. 

 

Figure 19 The detector signal for the fringe pattern changed when the incidence 

angle and wedge-mirror angle are 20 degrees. 
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5.3 Displacement sensitivity of multiple reflection 

The second experiment is that the sensitivity is incrementally change in the 

Michelson interferometer through multiple reflection by changing the wedge angle and 

incident angle. It can be observed that as the number of reflection increases for a fixed 

PZT displacement the number of cycles increases appropriately. The figures below show 

the number of oscillations as a function of constant PZT mirror displacement and beam 

reflection number. 

 

 

 

Figure 20 Typical Michelson interferometer (1 reflection) 

 

Fig. 20 shows a result of the typical Michelson interferometer. The graph shows 

the optical power change depending on the mirror displacement. Approximately 157.6 
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nm mirror movement results an amplitude change from min to max. The next figure 

shows a result for two reflections. 

 

 

Figure 21 Multiple reflection interferometer (2 reflections) 

 

Fig. 21 shows a detector signal tracing for a mirror movement of 500 nm in a two 

reflection interferometer. Theoretically, a two reflection system has twice the sensitivity 

of a one reflection interferometer. The graph illustrates that the amplitude fluctuation 

number is 3.909 between 100 nm and 400 nm mirror translation and its value shows a 

76.740 nm displacement sensitivity. The result has twice the displacement sensitivity 

than in one reflection interferometer displacement sensitivity. This experiment are carried 

out for 12, 25, 50,70 and 110 reflections.. 

 



40 

 

 

Figure 22 Multiple reflection interferometer (12 reflections) 

 

 

Figure 23 Multiple reflection interferometer (25 reflections) 
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Figure 24 Multiple reflection interferometer (50 reflections) 

 

 

 

Figure 25 Multiple reflection interferometer (70 reflections) 
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Figure 26 Multiple reflection interferometer (110 reflections) 

 

It can be seen that 12, 25, 50, 70, and 110 reflections have 12.782, 6.461, 3.209, 2.228, 

and 1.451 nm displacement sensitivity respectively. Table 1 shows the displacement 

sensitivity based on the PZT mirror movement as the range of the PZT displacement is 

increased. The result shows the displacement sensitivity moves at an arithmetic 

progression as the number of reflections increase. 
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Table 1 Displacement sensitivity according to PZT mirror displacement of 

500, 1000 and 2000 nm and its average result 

Reflection 

Number 

Displacement Sensitivity (nm) 

according to mirror movement 
Average 

(nm) 

Standard 

Deviation 
500 nm 1000 nm 2000 nm 

1 157.604 157.540 159.464 158.203 0.892 

2 76.740 77.971 78.734 77.815 0.821 

3 51.888 52.423 52.166 52.159 0.218 

4 38.889 39.596 39.188 39.224 0.290 

5 31.223 31.797 31.267 31.429 0.261 

6 25.290 27.197 26.168 26.218 0.779 

7 22.693 22.341 22.433 22.489 0.149 

10 16.282 15.202 15.810 15.765 0.442 

12 12.782 13.515 13.136 13.144 0.299 

15 10.750 10.342 10.471 10.521 0.170 

20 8.113 7.665 7.908 7.895 0.183 

25 6.461 6.169 6.325 6.318 0.119 

30 5.386 5.153 5.260 5.266 0.095 
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50 3.209 3.134 3.142 3.161 0.034 

70 2.228 2.298 2.251 2.259 0.029 

100 1.561 1.595 1.588 1.581 0.014 

110 1.451 1.427 1.435 1.438 0.010 

 

Fig. 27 shows the graph of the average displacement sensitivity and fig. 28 and 

table 2 shows the errors between the values calculated from the equation and 

experimental results. The theoretical equation used for analysis is equation (27).  

 

Table 2 Displacement sensitivity of a multiple reflection interferometer and its 

error when compared with theory. 

Reflection 

Number 

Displacement Sensitivity (nm) 
Error (nm) 

Theoretical Experimental 

1 158.200 158.203 0.003254 

2 79.100 77.815 1.285013 

3 52.733 52.159 0.574240 

4 39.550 39.224 0.325764 

5 31.640 31.429 0.210733 

6 26.367 26.218 0.148375 
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7 22.600 22.489 0.110832 

10 15.820 15.765 0.055391 

12 13.183 13.144 0.039190 

15 10.547 10.521 0.025646 

20 7.910 7.895 0.014748 

25 6.328 6.318 0.009645 

30 5.273 5.2665 0.006841 

50 3.164 3.161 0.002515 

70 2.260 2.259 0.001310 

100 1.582 1.581 0.000655 

110 1.438 1.438 0.000551 
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Figure 27 Average Displacement Sensitivity of 632.8 nm He-Ne laser according 

to reflection number 

 

Figure 28 Displacement sensitivity error depending on reflection number in 

distance (nm) and percentage 
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Table 2 shows the equation (27) displacement sensitivity, the experimental 

sensitivity and the error of those two results according to the number of reflections in the 

wedge shape mirror. It is shown that the sensitivity decreases dramatically for the first 

seven reflections then the rate of decrease is much reduced after 50 reflections. After 100 

reflections, it starts to converge slowly. The error is computed as the difference of the 

theoretical and experimental values and it is stated as a percentage of the theoretical 

value. The highest error value percentage is 1.62 % when the number of reflections is 

two. The error continues to become smaller as the reflection number increases. 

In this experiment, the displacement sensitivity of 1.438 nm is achieved at 110 

reflections. Error exists only in the pico meter range. As shown in the table 1, the 

sensitivity has been determined for different displacement of the PZT and the sensitivity 

was found to be consistent for a given number of reflections regardless of the PZT mirror 

movement. 
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6. CONCLUSION 

Michelson interferometer has been researched and applied in many different fields 

and developed. The dual arm multiple reflection interferometer can be used to increase 

the sensitivity of measurements. However, having a separate mirror assembly has a 

limitation, for example, it is not convenient to control the number of reflections in both 

the arms to make them the same. Once the dual arm multiple interferometer is set up for a 

specific sensitivity, the whole mirror assembly must be realigned to convert it to a 

different sensitivity of system. A one arm reflection structure proposed in this thesis with 

a combined gear assembly requires modification of the other arm position or angle but 

the two arm reflection system requires only one rotation which automatically matches the 

optical path length between the two arms. Once this new system is stabilized, the concern 

is extraneous noise and erratic displacement of the mirror. Also beam absorption is 

another issue because the beam is reflected multiple times in the mirror assembly. This 

system used a total of four mirrors and each reflection cases a reduction in the laser 

power because of absorption. This mirror absorption problem in not a big issue in small 

number of reflections but for a large number of reflections the reflected light will be 

reduced considerably due to absorption at each reflection. 
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7. FUTURE WORK 

This dual arm multi-reflection is an improvement from the single arm multiple 

reflection Michelson interferometer. A different versions of the wedge-mirror shape such 

as roof top or curved shape mirror can be used to increase the number of beam 

reflections. Fig. 29 is an example which has not been implemented. 

 

Figure 29 The simulation of beam reflection in the roof top mirror design with 

the same scale of the wedge shape 

 

The number of beam reflections can be increased with the same incident angle. Also, the 

noise from external vibrations can be reduced using Fourier transform technique. 
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APPENDIX A 

 

 Appendix A shows a MATLAB program code of the beam reflection calculation 

and simulation developed by Chirstopher Hakoda. 

 

function varargout = MultipleReflectionsGUI(varargin) 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @MultipleReflectionsGUI_OpeningFcn, ... 

                   'gui_OutputFcn',  @MultipleReflectionsGUI_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 
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    gui_mainfcn(gui_State, varargin{:}); 

end 

function MultipleReflectionsGUI_OpeningFcn(hObject, eventdata, handles, varargin) 

handles.output = hObject; 

guidata(hObject, handles); 

function varargout = MultipleReflectionsGUI_OutputFcn(hObject, eventdata, handles)  

varargout{1} = handles.output; 

function edit1_Callback(hObject, eventdata, handles) 

lightAngle = get(hObject,'String'); 

lightAngle = str2num(lightAngle); 

save lightAngle 

function edit1_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function edit2_Callback(hObject, eventdata, handles) 

arcAngle = get(hObject,'String'); 

arcAngle = str2num(arcAngle); 

save arcAngle 
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function edit2_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function edit3_Callback(hObject, eventdata, handles) 

mirrorLength = get(hObject,'String'); 

mirrorLength = str2num(mirrorLength); 

save mirrorLength 

function edit3_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function edit4_Callback(hObject, eventdata, handles) 

gapHeight = get(hObject,'String'); 

gapHeight = str2num(gapHeight); 

save gapHeight 

function edit4_CreateFcn(hObject, eventdata, handles) 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function edit5_Callback(hObject, eventdata, handles) 

mirrorTilt = get(hObject,'String'); 

mirrorTilt = str2num(mirrorTilt); 

save mirrorTilt 

function edit5_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function pushbutton1_Callback(hObject, eventdata, handles) 

axes(handles.axes1); 

syms x 

cla; 

load('previewD') 

ezplot(x,fx, [0 10 0 2]); 

axis([0 10 0 2]);  
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set(handles.edit7, 'String', char(fx)); 

guidata(hObject,handles) 

function pushbutton2_Callback(hObject, eventdata, handles) 

tentMirror() 

function edit7_Callback(hObject, eventdata, handles) 

function edit7_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function pushbutton3_Callback(hObject, eventdata, handles)  

ComputeReflections() 

function pushbutton4_Callback(hObject, eventdata, handles) 

axes(handles.axes2); 

syms x 

cla; 

load('previewD') 

load('computeD','vecx','vecy','number') 

ezplot(x,fx,[0 10 0 2]); 

hold all 
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plot(vecx,vecy); 

axis([0 10 0 2]);  

set(handles.edit8, 'String', int2str(number)); 

function edit8_Callback(hObject, eventdata, handles) 

function edit8_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function slider1_Callback(hObject, eventdata, handles) 

slider = get(hObject,'Value'); 

slider = (slider*100)+2; 

axes(handles.axes2); 

cla; 

load('previewD') 

load('computeD','vecx','vecy','number') 

hold on 

syms x 

ezplot(x,fx, [0 10 0 2]); 

for i=2:slider 
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plot([vecx(i-1),vecx(i)],[vecy(i-1),vecy(i)]); 

set(handles.edit9, 'String', int2str(i)); 

if i >= (number+1) 

    set(handles.edit8, 'String', int2str(number)); 

    break 

end 

end 

axis([0 10 0 2]); 

hold off 

function slider1_CreateFcn(hObject, eventdata, handles) 

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 

function edit9_Callback(hObject, eventdata, handles) 

function edit9_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function edit11_Callback(hObject, eventdata, handles) 
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arcAngle = get(hObject,'String'); 

arcAngle = str2num(arcAngle); 

save mirrorAngle 

function edit11_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function edit12_Callback(hObject, eventdata, handles) 

gapHeight = get(hObject,'String'); 

gapHeight = str2num(gapHeight); 

save gapHeight 

function edit12_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

function pushbutton5_Callback(hObject, eventdata, handles) 

onemirror() 
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%%reflect 

function [point,vecr,cancel] = reflect(veci,a,fx,fx2,x) 

cancel=0; 

const=-(veci(2,1)/veci(1,1))*a(1,1)+a(2,1); 

if abs(const)==inf 

    F1=a(1,1); 

    F2=a(1,1); 

else 

    

    f=(veci(2,1)/veci(1,1))*x+const; 

     

    F1=double(solve(f)); 

     

    F2=double(solve(f-fx,x)); 

    if fx2 ~= 0 

        fxsol=(1:2); 

        fysol=(1:2); 

        fxsol(1) = double(solve(f-fx,x)); 

        fysol(1) = subs(fx,x,fxsol(1)); 

        fxsol(2) = double(solve(f-fx2,x)); 
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        fysol(2) = subs(fx2,x,fxsol(2)); 

         

        tipx = solve(fx2-fx,x); 

        tipy = subs(fx,x,tipx); 

        if fysol(2)>0 && fysol(2)< tipy 

            F2 = fxsol(2); 

            fx = fx2; 

        elseif fysol(1)>0 && fysol(1) < tipy 

            F2 = fxsol(1); 

             

        end 

         

    end 

     

end 

 

if a(1,1)<0 || a(1,1)>10  

    cancel=1; 

elseif isempty(F2)==1 

    cancel=1; 



63 

 

elseif a(2,1)==0 

    Y=subs(fx,x,F2); 

    n=Y>0; 

    F2=max(F2.*(n)); 

    if isempty(F2)==1 || F2==0 

        cancel=1; 

    else 

        X=F2; 

        Y=max(Y.*n); 

        orientation=1;  

    end 

else 

    k1=F2<(a(1,1)-0.01); 

    k2=F2>(a(1,1)+0.01); 

    X=F2.*(k1+k2); 

    if sum(X)<0 

        X=min(X); 

    elseif sum(X)>0 

        X=max(X); 

    else 
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        X=0; 

    end 

    if X==0 

        Y=0; 

    else 

        Y=subs(fx,x,X); 

    end 

    if Y > 0 && Y < tipy 

        orientation=1; 

    elseif isempty(F1)&& length(F2)==1 

        cancel=1;  

    else 

        X=F1; 

        Y=0; 

        orientation=0; 

    end 

end 

if cancel==1 

    point=a; 

    vecr=veci;  
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elseif orientation==0 

    vecr=[veci(1,1);-veci(2,1)]; 

    point=[X;Y]; 

else 

    df=dfunc(X,fx); 

    point=[X;Y]; 

    vecdf=[1;df]; 

    theta=-2*acos(dot(veci,vecdf)/(norm(veci)*norm(vecdf))); 

    Id=[cos(theta) -sin(theta);sin(theta) cos(theta)]; 

    vecr=Id*veci; 

end 

clear('X','Y','const','df','f','fx','orientation','theta','vecdf','veci','df','vecn','x','m','n','w','F1','F2

','Id','a','k'); 

end 

 

%%one mirror 

function [] = onemirror() 

load('arcAngle','arcAngle'); 

load('gapHeight','gapHeight'); 

b = gapHeight; 
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theta = arcAngle*pi/180; 

m = -tan(theta); 

syms x 

fx = m*x + b; 

fx2 = 0; 

save previewD 

fprintf('variables saved\n'); 

end 

 

%%function for the top mirror is fx 

function [fx] = gapfx(thetat,L,gap,tilt,frac,x,X,b,c) 

fx=-sqrt((1/c)*(x)^2); 

df5=abs(simplify(dfunc(L/3,fx)));  

C=max(double(solve(tan(thetat)-df5,c))); 

fx=subs(fx,x,X); 

fx=subs(fx,c,C); 

%%for tilt 

if tilt~=0 

    fx=sin(tilt)*X+cos(tilt)*fx; 

end 
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%%makes the upper mirror intersect with the lower mirror.x=0 y=gap 

fx=subs(fx,X,frac-x)+b; 

B=solve(subs(fx,x,0)-gap,b); 

fx=subs(fx,b,B);  

fx1=subs(fx,x,L); 

f1=fx1-gap; 

C3=-subs(f1,frac,0); 

C1=(C3/L); 

frac1=(-gap+L*C1)/(2*C1); 

fx=subs(fx,frac,frac1); 

end 

 

%%two line function 

function [] = twoLines() 

load('arcAngle1','arcAngle1') 

load('arcAngle2','arcAngle2') 

load('mirrorLength','mirrorLength') 

load('gapHeight','gapHeight') 

m1 = tan(arcAngle1*pi/180); 
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b = gapHeight; 

m2 = -tan(arcAngle2*pi/180); 

xintersect = mirrorLength; 

syms x 

fx = m1*x+b; 

yintersect = -m2*mirrorLength; 

fx2 = m2*x+yintersect; 

save previewD 

fprintf('variables saved\n') 

 

%%ComputeReflection 

function [] = ComputeReflections() 

load('lightAngle','lightAngle') 

load('previewD','fx','fx2') 

syms x 

thetai = lightAngle*pi/180; 

interval = 0; fvec = 0; xf = 0; thetat = 1; 

for n=1:length(thetat) 

        for i=1:length(thetai) 

        [number,vecx,vecy]=Reflection(fx(n),fx2,x,thetai(i)); 
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    if number==2 

       fprintf('WARNING: Ray starts at origin, if this is not covered by top mirror the 

number of reflections will be zero.');        

    end 

    end 

end 

save computeD  

fprintf('Calculations Complete\n'); 

if vecx(length(vecx)-1) >=10 

    fprintf('WARNING: Light has escaped the open mirror\n'); 

end 

end 

end 

 

%%tent mirror 

function [] = tentMirror() 

load('arcAngle','arcAngle') 

load('mirrorLength','mirrorLength') 

load('gapHeight','gapHeight') 

load('mirrorTilt','mirrorTilt') 
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thetat = arcAngle*pi/180; 

L = mirrorLength; 

gap = gapHeight; 

tilt = mirrorTilt*pi/180; 

syms x X y b c frac 

fx=gapfx(thetat,L,gap,tilt,frac,x,X,b,c);  

save previewD 

fprintf('variables saved\n'); 

end 

 

%%reflection 

function [number,vecx,vecy] = Reflection(fx,fx2,x,thetai) 

a=[0;0]; 

n=1; 

vecx(1)=0; 

vecy(1)=0; 

m=tan(pi/2-thetai); 

veci=[1;m]; 

cancel=0; 

while cancel==0 



71 

 

    n=n+1; 

    [b,veci,cancel]=reflect(veci,a,fx,fx2,x); 

    vecx(n)=b(1,1); 

    vecy(n)=b(2,1); 

    a=b; 

end 

number=sum(vecy==0); 

end 

%%dfunction 

function [df]=dfunc(X,fx) 

syms x 

df=diff(fx); 

df=subs(df,x,X); 

end 
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