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CHARACTERIZATION OF MATRIX VARIATE NORMAL DISTRIBUTIONS

by

A. K Cupta and T. Varga*
Bowling Green State University

ABSTRACT

In this paper, it is shown that two random matrices have a joint matrix
variate distribution if conditioning each one on the other the resulting
distributions satisfy certain conditions. A general result involving more than
two matrices is also proved.

*Now at the Rose-Hulman Institute of Technology.
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1. INTRODUCTION

The characterization of multivariate normal distribution through
conditional distributions has been studied by many authors in recent years.
Results on bivariate normal distribution were obtained by Brucker (1979), and
Fraser and Streit (1980). Khatri (1979) gave characterizations of multivariate
normality through regression. In the present paper, their results are generalized
for the matrix variate normal distribution.

2. THE MAIN RESULT

In order to derive the results of this paper the following lemma will be
useful. It shows how the joint density of two random matrices can be obtained
from the conditional densities.

LEMMA 1.1. Let X & RP™ and Y € RY™ be random matrices with joint
probability density function £(X,Y). Let g1(X) and go(Y) denote the marginal densities,
and h1(X1Y) and ha(Y1X) be the conditional densities. Assume £(X,Y), g1(X), ga(Y),
h(XTY), and ho(Y1X) are defined for all X € RP®, Y € R¥™, Suppose there exists
Yo € R¥™ gsuch that ho(Yo!X)#0 forall X e RP™. Then

ho(Y 1 X) h1(X1Yp)
ha(Yo 1 X) ’

fX,Y) =k

where k is a constant.
Proof. Let k =g>(Yp). Then

- X)) £(X,Y0)
ha(Y 1X) hi(X1Yp) ) 2(Yo)
: hz(Yo}X) o gz(Yo)gl—fc(—’%)i)= fX,Y).
‘ g1(X)

Now we can derive the main results.



THEOREM 1.1. Let X: P xn, Y: qxn be random matrices and suppose that
YIX~ Ngn(C+DXZ ® @), XIY =Yy~ Np,n(M,Z1 ® @), where C: qxn,
D: qxp, 1 gqxq, ®: nxn, M: pxn, Iy: pPxXp, £1>0, Z2>0, >0, and Yy
- -1
is a fixed qxn matrix. Define B = ElD'Zzl, A=M-Z1D'Z, Yo. Then

X (Ip - BD)Y1(A + BO)y ( (p-BD)1%; (Ip- BD)1B,
z= (Y) ~Np+qn (((Iq - DBYI(C + DA))' ( DU, -BDY1S; (Ig-DBY1z; | o

21
/
Proof. Let f(X,Y) be the joint probability density function of X and Y,
g1(X) the marginal density of X, gx(Y) the marginal density of Y, and hi(X|Yp),
ha(Y1X) the conditional densities. Throughout the proof k will denote
constants which need not be equal. Using Lemma 1.1, we obtain,

etr { % (Y - (C + DX))'Sp(Y - (C + DX))<D} etr { ;1,_— (X - MY’z (X - M)CD'l}

f(X/Y) = 1 'l
tr { 5 (Yo- (C + DX)'Z; (Yo - (C + DX))CD'I}
~ke { 2 CETX - 2XETY + YIS Y - 2vEC - 2XDZ‘.2Y)<D}
1
=ke { 5 (ZQZ + ZR)@r1 }
5 Dz 2357 A
where Q = 1 and R = 1 |- Since f(XY) is a probability
D 5, -2%,C

density function, the symmetric matrix Q must be positive definite and hence is
non-singular. Thus B



@ =keir{-3(2-(-307%)) o(z-(3am))o}.

Now using the fact that D(I, - BD)1 = (I; - DB)1D and B(lg - DB)1 = (I, - BD)-1B
is is easy to see that ‘

(Ip - BD)1%; (Ip- BD)1BE,
Q1=
(D(IP—BD)'l).‘,l (Iq - DB)1%, }

Then &

1 {1, - BD)1(A + BC)
20 IR = ~
2 ((1q -DBYI(C + DA))

which completes the proof. M

Using Theorem 1.1 we can derive the following result.

COROLLARY 1.1.1. Let X: pxn, Y: qxn be random matrices and suppose
that

X1Y ~Npn(A + BY,Z; ® ), (2.2)
YIX ~Ngn(C +DX,Z ® ®), (2.3)

where A: pxn, B: pxq, Z3: pxp, ®: nxn, C: qxn, D: qxp, Zp: qxq,
21>0, Zp>0, ®>0. Then

2,B' = DX, (2.4)

and



| (I, - BD)-1(A + BC) (I, -BD)1x; (I,-BD)1BZ,
Z={_|~Nopegn|| ) P P ®
Y p+qn (Ig- DB)'I(C + DA) )’ D(q- BDY1Z%; (Iq- DB)1E,
@25)

Proof. Let Yp=0. Then XIY =Yg ~Np(A,Z; ® ®) Using Theorem 1.1
we conclude that Z has the distribution (2.1) if we replace B by B* = ZlD'Z;,_\l in

formula (2.1). It follows from (2.1) that
- E(XI1Y) =B*Y + A.
/

Comparing this with (2.2) we get B* =B which provés (2.5). ‘Hence (2.5) is
established. W

Another type of characterization is given in the following theorem.

THEOREM 1.2. Let X: pxn and Y: qxn be random matrices. Suppose that
YIX~ Ngn(C +DX,Z2 @ ®) and X ~ Np,n(F,Z1 ® ®), where C: qxn, D: qxp,
221 qxq, ®: nxn, F: pxn, Z1: pxp, £1>0, >0, ®>0. Then

(X F 21 21D’ 26)
Z = ~N , ® P 2.6
Y) pran (DF + C) DZ; £ + DE;D’

Proof. Let ¢ be the joint characteristic function of X and Y. For S: p xn,
T: gxn, wehave -

¢(5,T) = E(etr(iS'X + iT"Y)) = E(etr(iS'’X)Ey | x(etr(T'Y)))
= E(etr(i(S' + T'D)X)) etr (iCT' - %ZzTCDT')

= etr(i(S'F + T'(C + DF))



% ((T'(Z2 + DE1D)T + S'Z1S + 2S'Z1D'T)P))

which proves (2.6). &

The next theorem is an extension of a multivariate result of Khatri (1979)
to matrices.

THEOREM 1.3. Let Xj,...,Xx be random matrices of dimension p xn. Assume
that the random variables which are the elements of the matrix X = (Xi,...,.X) are not
linearly dependent. Suppose that the following conditions are satisfied:

a) EXi 1 X1, X1, X541, XK) = Aj1X1 + oo + Aji1Xi-1 + Aj i1 Xis1 + .o
+ AjXx + B, i=1,..k, where Ajj, i=1,..k j=1,.k% j=i, are pxp and B,
i=1,.k, are pxn constant matrices,

b) X11Xy,... Xx depends on X3,...Xx only through E(X11Xa,...,.XK),

c) Var(vec(X2) 1 X1,X3,..,.XK) = Z ® ®, where I: pxp, ®: nxn, >0,
D >0,

d) A12 and Ay are nonsingular,

- A2 A1z ... Ajgi

A1 -1 Ajz ... Ajj
e) . = A(i) is nonsingular for 1 =1,2,.. %,

Aij1 Aj2 Ajz ... I
Aqi

A2j
-1 . . .
f) (Ai1, A2, ALi-DA G | . is nonsingular for i=2,3,..k,

Ai-1i
g)  with the notation Aji=-Ip, i=1,.k,



(An A1z .. Aix \
A1 Az Ak

Ai+1,1 Ais1,3 Ais1k

\Ak,1 Ax,3 Agx /

h)  Ip+ (A1 Az Agg ... Agy)- AT

( A12Y\
A3z
Aq2

\Akz/

Aii11 Aias Ai1x |= AO is nonsingular, i=1,2,..k,

is nonsingular.

Then X=(X] X3 .. XW' has a matrix variate normal distribution.

Proof. Define
X; = vec(X), i= 1,..k,
U; = vec(B), i=1,..k,

A‘--—{ I, ®I, if i=j
A @I if i,

(2.7)

Then it is easy to see that X;, U;, Z;, Kij, )l satisfy the conditions of Theorem 2 of
Khatri (1979). From that theorem we conclude that Z =(Z] Z3 .. ZJ)' hasa

multivariate normal distribution.



Let X=(Xi %3 .. X Since X =-(Agy ®INE - 1), X is also
multivariate normal and -

X ~ Nipn(,=*) (2.8)
where L= (1 W .. pp'. The only remaining thing to prove is that
L*=5® ® where S: (kp) x (kp), ®: nx n because from this the theorem
follows immediately.

Let us partition X into
Z11 Z12 . Z1k
Zo1 Zp2 ... Zpk
T* =

Zk1 Zk2 ... Zkk

where Ziz: (pn) x (pn), i,j=1,... k. From condition (a) we get

EXi1 X1, X0, K41, X0) = By ® Iy + (Aitr A i1 A i+ 1A © Tn)

From (2.8) we get

EKi | X100 X512, Kir 10 X0) = 1 + Gt Zi,i1, 5 4 1eenr Zil)



( 2115 21,i-1,21, 41 21k \-1 ( 2\

X1
Zi-1,1-Zi-1,i- 1, Zi-1, i+ 1 Zi- 1k Xia1 | .
‘ N i=12,.k.
Zi+1,1Zi+1,i-1,Zi+1,i+ - Zit 1,k Xi+1
X
\Zk1-- ki1, Zk i1 Tk ) \ K/
(2.10)

J
Comparing the coefficient matrix of (Xj ... Xj'1 Xis+1.. Xp)' in (2.9) and (2.10) we
k

find Zij= Y (Ajg ® )T 2j, i=1.2,.k, j#i which can be rewritten using the
=1
R+
k
definition Aj =-Ip as 0= Y (Ajp ®I)Zyj i=12,..k j=i Hence
. 2=1

k

(A ®InNIj= Y (Ajg ®IEgj i=12,..k j=i (211)
L=1
Q#2

Let us fix j, then from (2.11) we get

21,'

. . 23
PV 5= 1

ij



[ A12 "\

A

where p% = Aj12 |, Thus
Ajr1,2

\A:k,z J

Zli
Zgj

Zkj
Let j=2, then we have

Z12

2a2 @1 @)

. =AY pld) ® I)X0.
Zk2

Let 221 = (221 223 223 ... Zox), £12 =523 and

(En 213 X14 ... Z1k \
231 X33 X34 .. X3k
S11=] X41 Z43 Z44 ... Zgx

\Zk1 Zk3 Zkd . Zkk /
With this notation (2.13) can be written as

~ -1
$12= (AP pP?) ® I)%p;.

If we take i=2 in (2.9) and (2.10) and equate the coefficient matrices of

10

. _1 .
=AY Py @ 1%y, =12,k

(2.12)

(2.13)

| (2.14)



(X1 X3 .. X in the two equations we get

U |
221Z11=Q2 ® I, (2.15)

where Q2 =(A21 A2z Az ... Ay).
Now using (2.14) and (2.15) we get

~ o~ o~ ~ ]~
Var(X21X1,X3,...Xk) = 222 - £21211Z12

/
= 55 - Q2 <'>z>'1n3(<-‘t\“°-"1 p@) ® I)%)
= ((Ip + Q@AY p@) @ I)Ep. (2.16)

Using condition (c) and (2.16), we get
@71 _on-1
I =((p + QA p@)13)® ®.
Therefore X7 can be written as
222 =522 @ D. 2.17)

From (2.13) and (2.17) we get

212
232 @yl @1
= (A" p@) @ In)(S22 ® P) = (-A™  p2S,)) ® @.
Zk2
Therefore
Zp=5p@®®, i=12,.k - (2.18)
Hence '

11



22i=5®®, i=12,..k. (2.19)

From (2.12) and (2.19) we obtain

21
23' a-1 . -1 .
T =AY pPHer)sHned) =AY pi s @ @, j=13,..k
Zki
/
Therefore

Eij = Sij ®P, i=12.% j=12,..k
Hence X*=5® ® which completes the proof. W

If in Theorem 1.3 we consider only two matrices, the conditions of the
theorem can be weakened as the following result shows.

THEOREM 1.4. Let Xand Y be random matrices of dimension p x n. Assume
X
that the random variables which are the elements of the matrix Z = (Y) are not linearly

dependent. Suppose that the following conditions are satisfied:
a) EX1Y) = A + BY, (2.20)
E(YIX) =C+ DX, (2.21)

where B,D are pxp and A,C are pxn matrices,
b) X1Y dependson Y only through E(X1Y),

c) Var(vec(Y)IX) =2 Q@ @ (2.22)
where Z: pxp, ®: nxn, £>0, ®>0

12



d) B and D are nonsingular

T By
e) ( D 'Ip] is nonsingular.

Let us define £1 = BED'"! and 2y =X. Then 1 >0 and

(Ip - BDY'I(A + BC)y ( (Ip-BD)1%; (I, - BD)}1BX,
2= G) ~Nopn (((Iq -DB)I(C + DA)) ! ( D(p - BD)-13%4 (Iq- DB)-13, )® (D}'
(2.23)

Prodf: - First we use Theorem 1.3 with k=2, X1 =X, X2 =Y, A2 =B,
A21=D, By =A, By =C. Itis easy to see that the conditions (a)-(h) of that
theorem are satisfied. Therefore

Z x No. M) (51 512 ® (2.24
—(Y)~ 2pn ((Mz)’(szl 522) ) 24

where Si1, 512, S21, S22 arep xp and My, M are p x n matrices. Then from
(2.24) we get

EXIY)=M;q- S]:)_S;_lez + 5125;212Y
and
E(YIX) =M3- 5218‘111M1 + 5215-111X.
Then using (2.20) and (2.21) we get B = 8125.217_ and D = 8218-111. Now

Var(vec(X') 1Y) = 51129 @

and
Var(vec(Y) 1X) = Sy.1 ® ®.

13



Then using (2.22) we get Sz2.1 = Z. But

-1 -1
511.2(511512) = (512527)S22.1,

therefore Sy1.2 =B-X - D-1. Hence

X1Y ~Npn(A + BY,Z1 ® ®)

/

Y1X ~Npn(C + DX,Z ® ®).

An application of Corollary 1.1.1 completes the proof. M
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