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ABSTRACT

In this paper the relationship between joint density and
conditional densities is studied. An explicit formula is given for
obtaining the joint density from the conditional ones. It is
illustrated for the case of bivariate normal distribution.

1. INTRODUCTION

The question of how a bivariate probability density function
can be determined if the conditional density functions are given has
been studied by various authors. Brucker (1979) examined the case
of normal conditional densities. The conditions of his theorem
were weakened by Fraser and Streit (1980). A general result about
the compatibility of conditional densities was given by Abrahams
and Thomas (1984). In the following paper we examine the more
general case, when the conditional densities are multivariate and
the dominating measure is arbitrary, not necessarily the Lebesgue
measure. We give necessary and sufficient conditions for two
functions to be the conditional densities of a probability density
function. We also give condition under which the conditional
densities determine the joint density uniquely.
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2. MAIN RESULTS

The first theorem gives a condition under which the
conditional densities determine the joint density uniquely and also
shows how the joint density can be obtained from the conditional
densities.

THEOREM 2.1. Let us assume that an n + m dimensional
distribution is dominated by a measure ¢ on Rn+m e,

P(B) = J- £(z) do(z) for every B Borel set in Rn+m,
B

Suppose that 6 = W x A where W is a measure on R™ and A isa
measure on R™. Assume that there exists an A c R0+™  sych that
P(A) =1 and if z=(x,y) € A then the conditional densities f1(x| y) and
f2(y Ix) exist. Define

X={xe Rnldye R™, (x,y) e A}
Y={ye Rm|3Ixe RN, (x,y) € A}.

(1) Assume that there exists an xpe RM such that for every
ye 9, fikxgly) > 0.

Then for z = (x,y) € A we have

fHilx ! y)aly I xg)
filxoly)

(2)  flxy) =Kixp)

1

where K(xg) =
f1(x 1 y)faly | xg)
J:A filxgly)

do(xy)



Rm
be the marginal densities of f. Then

Proof: Let p1)= [ f(x,y)dA(y) and pa(y) = [ f6x,y)dpeo
Rn

fx,y) f(xp,y)
3) fikIyfyIxg)  py) ~ pilxo) _ fixy)
fikoly) = fxpy) T pilxo)y
p2(y)

Integrating (2) on A with respect to ¢ we obtain

f f(x,y)do(x,y)
1
p1(xp) = p1(xo)

f1(x 1 y)r(y |
@ I 10 yfaly Ixg)

' fiboly) dolxy) =

From (3) and (4) we obtain K(xg).

REMARK 2.1. If there exists a yg e RM such that for every
xe X, f2(yolx) >0 then for z=(xy) e A

f2(y 1 )f1(x | yp)
f2(yo %)

f(x,y) = M(yo) -

where

1

M(yp) =

J faly I)f1(x | yo)

do(x,y)
A f2(yo,x)

This result can be obtained in the same way as Theorem 2.1.

REMARK 2.2. It follows from Theorem 2.1 that we can
obtain f(z) for every ze A if we know fi(xly) and fp(yIx) for



every (x,y) € A. Moreover, it is sufficient to know fi(xly) for every
(x;y) € A and fo(ylxq) forevery ye 9. Similarly we can determine
f(z) from the knowledge of f(y|x) for every (x,y)e A and f1(x 1 yp)
for every x e X.

REMARK 2.3. It follows from (4) that the marginal density at
xg is

1

p1(xp) =

J f1(x 1 y)aly I xp)

A filxoly) dolxy)

REMARK 2.4. If condition (1) is not satisfied, the conditional
densities may not determine the joint density uniquely as the
following example shows.

Let n=m =1, p=A = Lebesgue measure and fa(z) be
defined as follows

a if (xy)e [0, %] x [0, %]

f(z) = faxy) = b if (x,y)e (%,1] x(%,ll

0 elsewhere

where 0<a<4 and a+b=4. Then f2 is a probability density

function.
Let A =[0,1] x[0,1], hence X=1[0,1], 9={0,1]. Then

f?(xly):fza(ylx)

2 if (xy)e [0,51x[0,5] or Gey)e G111

0 if ey [0,31xG 11 or (xy)e G100



Therefore the conditional probability density functions are the same

for any 0 <a < 4; hence they do not determine the joint density of
x and y uniquely.

EXAMPLE 2.1. Let f(z) be the bivariate normal density

) = 1 exp{_ 1 [x-ux
’ 2nox0yY 1-p2 2(1-p2) ( Ox )2

-2p bx Xy, (y'”‘"ﬂ}.

Then

filxly) =

O 2
expl-— [X°L1x P (y-uy)]
V27 o\ 1-p2 20,(1-p2) Oy

fa(y 1) =

| 1 1 [ POy 2
exp)-——5———|y-iy - (x-pu )J
V2n oy 1-p2 p{ 20’3,(1-p2) yHy Ox * }

and an easy computation shows that

fkIy)h(y Ixp) 1
f](XO I y) = 1 ] l xo-ux } f(XJY).
\1/57?0)( exp{ 2 ( GX T

Therefore

K(xp) = ! exp{— % (1‘%91)2}
V21 o i f(x,y)dxdy
R



1 exp{-l X0-Hx }
VZK o'x 2 ( GX

f1(x 1 y)faly I xp)
fi(xg ly)

and f(x) = K(xp)

The second theorem gives necessary and sufficient conditions
for two functions to be the conditional densities of a bivariate
probability density function.

THEOREM 2.2. Let p be a measure on RM and A a measure on
Rm. Let g(z) and h(z) be nonnegative functions on A c Rn+m,
measurable with respect to the product measure & = p x A. Define

ay) ={xe Rrl(xy) e A}, x) =(y e R™I(x,y) e A},
x=U ay), and 7= y.
yeRmM xe RN

Assume that there exists an (xg,yo) € RMM sych that for every

y e Y(xoy) e A, gxo,y) >0 and for every x e X, (x,y0) € A,

h(x,y0) > 0. Then there exists a unique probability density function f on
R such that £(z) =0 for ze A and g(z) = g(x,y) is the conditional
probability density function f1(x|y) and h(z) = h(x,y) is the conditional
probability density function f2(y|x) at the points ze A if and only if the
following conditions hold:

a) J gxy)dux) =1 for ye %

ay)
b) | nxy)dry) =1 for x e x.
¥x)
c) 0 j Mdl( ) < oo
gxoy) “MY



h(xg,y)
d)  gky)- _g_(%}%— C(xo,yo)h(x,y)i—(;‘;% for (x,y)e A

where c(xp,yo) is a nonzero constant depending on xo and yg only.
Proof; First we prove the necessity of the conditions. Let

P10 = [ fxy)dMy) and paly) = [ fx;y)dn(x) be the marginal
Rm R

densities of f.

) [gydut = [fixly)dpeo=1.

y) ay)
b) [Reeydiy) = [y 10dMy) = 1.
Yx) Yx)
f(xo,y)
h(xo,y) _ 1 2y Ixo) EI(XO
y pz(y)
_[ p2(y)dA(y)
1
-7 pixo) -~ pitxg) 214 0<pixo) <.
f(xo,y)
hixoy) falylx0)  f(x,y) p1(x0) _ fxy)
D 8V gty =XV 6Ty = paly) fixey) = prto)”
p2(y)
f(x,y0)

h(xy) gx.yo) ~ by )f1(x|yo) f(x,y) p2lyo)  f(x,y)
Y hixyg) = 2 f2(yo 1) ~ p1(¥) fx,y0) = palye)’
p1(x)

. _ p2lyo)
from which c(xq,yo) = p1(x0) follows.

Next we prove the sufficiency of the conditions. Let us define
K as

h(xg.y) ... .
j g(ig ” d\(y)



Using condition (c) K is a positive number. Let us define f as

h(xq,y)
f2) = f(x,y) = {K 8Y) gy for xiy)e A
0

elsewhere.

Then f is nonnegative, measurable and we have to check the
following properties:

i) j f(z)do(z) = 1.

Rn+m
ii)  filxly) = glx,y) for (x,y) e A.
iii)  folyIx) =h(xy) for (x,y) e A.
Indeed from condition (a) we get

h(xo,y)
i) fz)do(z) = | Kg(xy) do(xy)
i Rn;[mz g(x,y glxo,y) 90y

= j[g(xo y)’ J'g(x,y)du(x)]dl(y)
A

y y)
K- ] oo 20~
h(xo,y)
- g(x,y)
) fixly) = — D 80x0,y)
h(xq,y)
[ fupduw [ Kgluy) 2o X ducu)
Rh ) gloy)
g(x,y) - glxy).

f gu,y)dp(u)
y)



iii)  Using condition (d) we have

h(xo,y) g(x,yo)
g(xo,y) h(x,yo) ’

for (xy) € A. Thus from condition (b) we get

f(x,y) = Kg(x,y) = K- e(xg,yo)h(x,y)

(xyo)
Ke(xo,yo)h(x,y) - E>Y0.
fay 1x) = fxy) - h(x,yo)
[ fx0dr® [ KeGxoyohhtx,t h&‘yg; dA®
Rm EKX) ’
= h(x,y) ~ hxy).

[ heendac)
¥x)
The uniqueness of f follows from Theorem 2.1 since if
g(xo,y) = filxoly) > 0 then f(xq,y) >0 is also true.

REMARK 2.5. As a special case of Theorem 2.2, when g =0,
h#0 on A condition (d) yields

g(x,y0)
gxy) _ h(x,yo)
hix,y) = €00 " hixgyy

g(xo,y)

If we also assume that n=m =1 and A = u = Lebesgue measure we
obtain the result of Abrahams and Thomas (1984).
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