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Some Facts About Cycels and Tidy Groups

K. O’Bryant* D. Patrick* L. Smithline* E. Wepsic*

1 Definitions

Note: In this paper, all groups mentioned are finite. We denote the identity
element of a group G by ¢, and G\ {e} by G*. Also, H < G denotes that H is
a subgroup of G.

Recall that the centralizer of an element z € G can be defined by
C(z) = {y € G| (z,y) is abelian}.

If, in the above definition, we replace the word “abelian” with the word “cyclic”,
we get a subset of the centralizer, called the cyclicizer. To be explicit, define
the cyclicizer of an element z € G, denoted Cyc(z), by

Cyc(z) = {y € G | (z,y) is cyclic}.
Some properties of cyclicizers are discussed in [1].

Also, just as the center of the group can be defined by

2(G)= ) C(=),

z€EG

we may define a similar construct, called the cycel!, denoted K(G), by

K(G)= ﬂ Cyc(z).

z€G

*Supported by NSF grant number DMS-910059.
1The notation for the cycel comes from the Hungarian word kerek, which means “round”.



2 Properties of the cycel

2.1 Basic properties

It is clear from the definitions above that Cyc(z) C C(z) for all z € G, and
thus K(G) C Z(G). It is also clear that for all ¢ € K(G) and all = E G, we
have (z, g) cyclic. This allows us to prove the following:

Theorem 1 For all groups G, K(G)«G.

Proof: Let g,h € K(G) and = € G be given. Then (g™, z) = (g, z), which
is cyclic, so g~ € K(G). Also, (gh,z) < (g, h, ), which is cyclic, so gh € K(G).
So K(G) £ G. But K(G) £ Z(G) as well, so K(G) is normal. W

Recall that Z(G) can also be defined as the intersection of the maximal
abelian subgroups of G. We can characterize K(G) similarly.

Theorem 2 For all groups G, K(G) is the intersection of the mazimal cyclic
subgroups of G.

Proof: Let z be in the intersection of the maximal cyclic subgroups of G,
and pick arbitrary g € G. Then g is contained in some maximal cyclic subgroup
(h) of G. But = € (h) as well, so (z,g) < (h). Hence g and z generate a cyclic
subgroup. Since this is true for all g € G, we have that z € K(G).

Conversely, Let £ € K(G) and g € G be given such that (g) is a maximal
cyclic subgroup of G. Then (z, g} is cyclic, but since (g) is maximal we must have
(z,9) = (g). Thus z € (g). Since this is true for all maximal cyclic subgroups
of G, we must have z in the intersection of the maximal cyclic subgroups of G.
|

An immediate corollary of Theorem 2 is

Corollary 3 For all groups G, K(G) is cyclic. O

Let us summarize some of the similarities of the center and the cycel:

Z(G) K(G)

Intersection of centralizers Intersection of cyclicizers
Intersection of maximal abelian subgroups | Intersection of maximal cyclic subgroups
{z, g) abelianfor z € Z(G), g € G (z,g) cyclicforz € K(G),g €G
Z(G) abelian K(G) cyclic




We may also wish to consider the cyclic analog of nilpotency, which could
be termed “cycelpotency”, by constructing the “ascending cycel series”:

(e), K(G), K(G/K(G)),....

However, this concept proves to be trivial, as shown in the following theorem:
Theorem 4 For all groups G, K(G/K(G)) = (e). -

Proof: Let K = K(G) = (k), by Corollary 3. Suppose L € K(G/K(G)).
For all ¢ € G, where C = cK, thereis a D € G/K such that (L,C) = (D). But
L =1K,D = dK for some l,d € G, and hence

<I’ ¢, k) = <I9C>K = (d>K = (d, k) = <d’)

for some d’ € G. In particular (I,¢, k) is cyclic, thus (I,c) < (I,¢, k) is cyclic.
But ¢ € G is arbitrary, so I € K(G) and hence L=e. B

2.2 Miscellaneous properties

The above theorem deals with the cycel of G/K(G). We can also prove a similar
result about G/Z(G). First we need the following technical lemma.

Lemma 5 For all groups G, if gZ € (G/Z(G))*, then (Cyc(gZ)) # G/Z(G).

Proof: Suppose hZ € Cyc(gZ). Then (9Z,hZ) is cyclic in G/Z(G), so
(g9,h,Z) is abelian in G. Thus h € C(g). Thus, since C(g) < G, we have that if
h is in the preimage of (Cyc(gZ)), then h € C(g). Thus, since gZ # e, we have
that C(g) # G, so (Cyc(92))# G/Z. m

This immediately gives the following:

Theorem 6 For all groups G, K(G/Z(G)) = (e). .

vProof: This follows immediately from Lemma 5, since if § € K(G/Z(G)),
then Cyc(g) = G/Z, so by Lemma 5 we must have §=e¢. B

Lemma § also gives us the following interesting result on the structure of
G/Z. Recall that a non-abelian group is said to be Dedekind if all of its proper
subgroups are normal.



Theorem 7 For all groups G, G/Z is not a Dedekind group.

Proof: Suppose G/Z is a Dedekind group. Then G/Z = Q x A, where
Q is the quaternion group and A is an abelian group. Consider the element
(=1,0) of G/Z. Then Cyc((-1,0)) = (@ x {0}) U (Q\ {-1,1} x A), and thus
(Cyc((-1,0))) = G/Z, a contradiction of Lemma 5. W

We can also characterize the p-groups with non-trivial cycels.

Theorem 8 Suppose G is a p-group. Then K(G) # (e) if and only if G is
cyclic or generalized quaternion. Moreover, if K(G) # (e), then K(G) = Z(G).

Proof: If G is cyclic, then K(G) = Z(G) = G. If G is generalized quaternion,
then every maximal cyclic subgroup contains the center (see [2]), so by Theorem
2, K(G) = Z(@Q).

Conversely, suppose that G is a p-group with non-trivial cycel. Then by
Corollary 3, K(QG) is cyclic, so K(G) has exactly p — 1 elements of order p.
Suppose there is another element z € G, with ¢ ¢ K(G), such that |z| = p.
Consider H, the maximal cyclic subgroups containing z. Then by the previous
lemma, K(G) < H. But H is cyclic, and contains p elements of order p,
a contradiction. Hence, G has exactly p — 1 elements of order p, and by a
well-known result (in [2], among other sources), G must be either cyclic or
generalized quaternion. M

Finally, we have the result which indicates when a non-cyclic group G is
spanned by a minimal number of cyclic subgroups.

Theorem 9 G is the union of three proper cyclic subgroups if and only if G is
isomorphic to either Zg x Ze x C or Q x C, where C i3 a cyclic group of odd
order, and Q s the quaternion group of order 8.

Proof: 1t is clear that both Zs x Zy x C and Q x C are the union of three
proper cyclic subgroups. Bruckheimer, Bryan and Muir [3] have shown that a
group is the union of three proper subgroups if and only if their intersection N
is normal and G/N = Z; x Z,. It follows from Theorem 1, Theorem 2, and [3]
that the groups spanned by three cyclic subgroups are precisely those for which
G/K(G) = Zy x Z,. We now classify such groups.

First, note that G is nilpotent. This can be seen by observing that

G/Z2(G) = (G/K(G))/(2(G)/K(G))



is a factor group of an abelian group, and so is abelian. Thus, we can write G &
Syly x Syl x Syls x---. Since | G/ K |= 2%, K(G) must contain Sylz x Syls x---.
It follows from Corollary 3 that C = Syls x Syls x -+ is cyclic and of odd order.
Note that we have also proven that |K(G)| = 2¢|C|, where a is a nonnegative
integer.

Suppose K(G) N Sylz = (e). Then |Syly| = |G/K(G)| = 4. If Syly were
cyclic, then G would be as well. In that case, however, G would not be the union
of three proper cyclic subgroups. Hence Syls 2 Zy x Z,, and G £ Z, x Z3 x C.
Now, suppose that K(G)N Syls # (e). It is clear that K(G) N Syl < K(Syls),
from which we see that Syls is a 2-group with a non-trivial cycel. It follows
from Theorem 8 that Syl; is cyclic or generalized quaternion. If Syly were
cyclic, then G would also be cyclic and, consequently, not the union of three
proper cyclic subgroups. If Syl is generalized quaternion, then by Theorem 8,
|K(Syl2)| = |Z(Sylz)|. But the center of a generalized quaternion is of order
2 (see [2]). We can now see that |K(G) N Syl2] < |K(Sylz)] = 2, and so
|K(G)] = 2°|C] = 2|C|. Thus, |G| = |G/K(G)|-|K(G)] = 4-2|C|. Hence,
|Sylz| = 8 and Syl, is the quaternion group of order 8. M

3 Tidy groups

Note that unlike its analog the centralizer, a cyclicizer is not necessarily a sub-
group. For example, in the group Z4 X Z2, the cyclicizer of the element (2,0) is
of order 6:

Cye((2,0)) = {(0,0),(1,0),(1,1),(2,0),(3,0), (3,1)}-

A natural question to ask is: what can be said about those groups in which all
of the cyclicizers are actually subgroups?

Let G be a group. G is said to be tidy if Cyc(z) is a subgroup for all z € G.
We begin with the following lemma on direct products of tidy groups.

Lemma 10 Let G and H be groups such that |G| and |H| are relatively prime.
Then G x H is tidy if and only if G and H are tidy.

Proof: Suppose G and H are such that |G| and |H| are relatively prime, and
that G and H are both tidy. Then for all (¢,h) € G x H, Cyc((g,h)) = Cyc(g) x
Cyc(h) (since for all (g1, h1),(g2,h2) € G x H, we have {(g1,h1), (g2, h2)) =
{g1,92) % (h1,h2)). Hence Cyc((g,h)) is a subgroup.

“Conversely, suppose that G x H is tidy. Then for all g € G, we have that
Cyc(g) = ng(Cyc((g,e))) (where mg is the projection homomorphism from
G x H to G). So Cyc(g) is a subgroup. ®



We now classify all the abelian tidy groups.

Theorem 11 Let G be an abelian group. Then G is tidy if and only if every
p-Sylow subgroup of G is cyclic or elementary abelian.

Proof: By the previous lemma, G is tidy if and only if each p-Sylow subgroup
of G is tidy. Let P be a p-Sylow subgroup of G. If P is cyclic, then for all
z € P, we have Cyc(z) = P. If P is elementary abelian, then every z € P* is
of order p, so Cyc(z) = (z). Otherwise, P contains a subgroup isomorphic to
Zy, ® Zp», which is not tidy (since the element (0,p) has a cyclicizer which is
not a subgroup). W

We also classify tidy p-groups. First we need the following lemma:

Lemma 12 Suppose G is a tidy p-group. Let x € G be such that |z| # p, and
(z) s a mazimal cyclic subgroup. Then Z(G) < (z).

Proof: Let z € Z(G) be given, and consider = as above. Then (z,z) is
abelian. Furthermore (z,z) is not elementary abelian, since |z| # p. So by
Theorem 11, (z,z) is cyclic. But (z) is maximal; hence z € (z). Since z € Z(G)
was arbitrary, we conclude that Z(G) < (z). m

An immediate corollary is
Corollary 13 Suppose G is a tidy p-group. Then Z(G) is cyclic. O
This allows us to prove the following:

Theorem 14 Suppose G is a p-group. Then G i3 tidy if and only if there exists
H 4G, where H is cyclic or generalized quaternion, and for allz € G\ H, we
have |z| = p.

Proof: Suppose G is a tidy p-group. Let H = Cyc(z), where z is a non-
identity element of Z(G). First, consider any element z € G \ H, with |z| # p.
Then z is contained in some maximal cyclic subgroup < y >, with |y| # p, so
by Lemma 12, z € (y). But then (z,z) € (y), so (z,2) is cyclic, and hence
z € Cyc(z) = H.

Next, we observe that z € K(H), since (z,h) is cyclic for any h € H, so
by Theorem 8, H is either cyclic or generalized quaternion. Finally, if (k) is



a maximal cyclic subgroup of H, with || > p, then any conjugate of (k) is a
cyclic subgroup of order greater than p, and hence must be in H. So H 4 G.

For the converse, suppose G is a p-group with a normal subgroup H as above.
Then if z € H, Cyc(z) is a subgroup (since cyclic and generalized quaternion
groups are themselves tidy), and if z ¢ H, then |z| = p, so Cyc(z) = (z). So
Cyc(z) is a subgroup for all z € G, and hence G is tidy. ®
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