Rose-Hulman Institute of Technology Rose-Hulman Scholar

Mathematical Sciences Technical Reports (MSTR)

Mathematics

4-1992

Some Facts About Cycels and Tidy Groups

Kevin O'Bryant Rose-Hulman Institute of Technology

D. Patrick Carnegie Mellon University

Lawren Smithline Harvard University

Eric Wepsic Harvard University

Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr

Part of the Algebra Commons

Recommended Citation

O'Bryant, Kevin; Patrick, D.; Smithline, Lawren; and Wepsic, Eric, "Some Facts About Cycels and Tidy Groups" (1992). *Mathematical Sciences Technical Reports (MSTR)*. 131. https://scholar.rose-hulman.edu/math_mstr/131

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu.

SOME FACTS ABOUT CYCELS AND TIDY GROUPS

K. O'Bryant, D. Patrick, L. Smithline and E. Wepsic

MS TR 92-04

April 1992

Department of Mathematics Rose-Hulman Institute of Technology Terre Haute, IN 47803

FAX(812) 877-3198

ì

Phone: (812) 877-8391

Some Facts About Cycels and Tidy Groups

K. O'Bryant* D. Patrick* L. Smithline* E. Wepsic*

1 Definitions

Note: In this paper, all groups mentioned are finite. We denote the identity element of a group G by e, and $G \setminus \{e\}$ by G^{\times} . Also, $H \leq G$ denotes that H is a subgroup of G.

Recall that the centralizer of an element $x \in G$ can be defined by

$$C(x) = \{ y \in G \mid \langle x, y \rangle \text{ is abelian} \}.$$

If, in the above definition, we replace the word "abelian" with the word "cyclic", we get a subset of the centralizer, called the *cyclicizer*. To be explicit, define the cyclicizer of an element $x \in G$, denoted Cyc(x), by

$$Cyc(x) = \{ y \in G \mid \langle x, y \rangle \text{ is cyclic} \}.$$

Some properties of cyclicizers are discussed in [1].

Also, just as the center of the group can be defined by

$$Z(G) = \bigcap_{x \in G} C(x),$$

we may define a similar construct, called the $cycel^1$, denoted K(G), by

$$K(G) = \bigcap_{x \in G} \operatorname{Cyc}(x).$$

^{*}Supported by NSF grant number DMS-910059.

¹The notation for the cycel comes from the Hungarian word kerek, which means "round".

2 Properties of the cycel

2.1 Basic properties

It is clear from the definitions above that $Cyc(x) \subseteq C(x)$ for all $x \in G$, and thus $K(G) \subseteq Z(G)$. It is also clear that for all $g \in K(G)$ and all $x \in G$, we have $\langle x, g \rangle$ cyclic. This allows us to prove the following:

Theorem 1 For all groups $G, K(G) \triangleleft G$.

Proof: Let $g, h \in K(G)$ and $x \in G$ be given. Then $\langle g^{-1}, x \rangle = \langle g, x \rangle$, which is cyclic, so $g^{-1} \in K(G)$. Also, $\langle gh, x \rangle \leq \langle g, h, x \rangle$, which is cyclic, so $gh \in K(G)$. So $K(G) \leq G$. But $K(G) \leq Z(G)$ as well, so K(G) is normal.

Recall that Z(G) can also be defined as the intersection of the maximal abelian subgroups of G. We can characterize K(G) similarly.

Theorem 2 For all groups G, K(G) is the intersection of the maximal cyclic subgroups of G.

Proof: Let x be in the intersection of the maximal cyclic subgroups of G, and pick arbitrary $g \in G$. Then g is contained in some maximal cyclic subgroup $\langle h \rangle$ of G. But $x \in \langle h \rangle$ as well, so $\langle x, g \rangle \leq \langle h \rangle$. Hence g and x generate a cyclic subgroup. Since this is true for all $g \in G$, we have that $x \in K(G)$.

Conversely, Let $x \in K(G)$ and $g \in G$ be given such that $\langle g \rangle$ is a maximal cyclic subgroup of G. Then $\langle x, g \rangle$ is cyclic, but since $\langle g \rangle$ is maximal we must have $\langle x, g \rangle = \langle g \rangle$. Thus $x \in \langle g \rangle$. Since this is true for all maximal cyclic subgroups of G, we must have x in the intersection of the maximal cyclic subgroups of G.

An immediate corollary of Theorem 2 is

è

Corollary 3 For all groups G, K(G) is cyclic. \Box

Let us summarize some of the similarities of the center and the cycel:

Z(G)	<i>K</i> (<i>G</i>)
Intersection of centralizers	Intersection of cyclicizers
Intersection of maximal abelian subgroups	Intersection of maximal cyclic subgroups
$\langle x,g \rangle$ abelian for $x \in Z(G), g \in G$	$\langle x, g \rangle$ cyclic for $x \in K(G), g \in G$
Z(G) abelian	K(G) cyclic

We may also wish to consider the cyclic analog of nilpotency, which could be termed "cycelpotency", by constructing the "ascending cycel series":

$$\langle e \rangle, K(G), K(G/K(G)), \ldots$$

However, this concept proves to be trivial, as shown in the following theorem:

Theorem 4 For all groups G, $K(G/K(G)) = \langle e \rangle$.

Proof: Let $K = K(G) = \langle k \rangle$, by Corollary 3. Suppose $L \in K(G/K(G))$. For all $c \in G$, where C = cK, there is a $D \in G/K$ such that $\langle L, C \rangle = \langle D \rangle$. But L = lK, D = dK for some $l, d \in G$, and hence

$$\langle l, c, k \rangle = \langle l, c \rangle K = \langle d \rangle K = \langle d, k \rangle = \langle d' \rangle$$

for some $d' \in G$. In particular (l, c, k) is cyclic, thus $(l, c) \leq (l, c, k)$ is cyclic. But $c \in G$ is arbitrary, so $l \in K(G)$ and hence L = e.

2.2 Miscellaneous properties

The above theorem deals with the cycel of G/K(G). We can also prove a similar result about G/Z(G). First we need the following technical lemma.

Lemma 5 For all groups G, if $gZ \in (G/Z(G))^{\times}$, then $(\operatorname{Cyc}(gZ)) \neq G/Z(G)$.

Proof: Suppose $hZ \in \text{Cyc}(gZ)$. Then $\langle gZ, hZ \rangle$ is cyclic in G/Z(G), so $\langle g, h, Z \rangle$ is abelian in G. Thus $h \in C(g)$. Thus, since $C(g) \leq G$, we have that if h is in the preimage of $\langle \text{Cyc}(gZ) \rangle$, then $h \in C(g)$. Thus, since $gZ \neq e$, we have that $C(g) \neq G$, so $\langle \text{Cyc}(gZ) \rangle \neq G/Z$.

This immediately gives the following:

į

Theorem 6 For all groups G, $K(G/Z(G)) = \langle e \rangle$.

Proof: This follows immediately from Lemma 5, since if $\bar{g} \in K(G/Z(G))$, then $\operatorname{Cyc}(\bar{g}) = G/Z$, so by Lemma 5 we must have $\bar{g} = e$.

Lemma 5 also gives us the following interesting result on the structure of G/Z. Recall that a non-abelian group is said to be *Dedekind* if all of its proper subgroups are normal.

Theorem 7 For all groups G, G/Z is not a Dedekind group.

Proof: Suppose G/Z is a Dedekind group. Then $G/Z = Q \times A$, where Q is the quaternion group and A is an abelian group. Consider the element (-1,0) of G/Z. Then $Cyc((-1,0)) = (Q \times \{0\}) \cup (Q \setminus \{-1,1\} \times A)$, and thus (Cyc((-1,0))) = G/Z, a contradiction of Lemma 5. ■

We can also characterize the *p*-groups with non-trivial cycels.

Theorem 8 Suppose G is a p-group. Then $K(G) \neq \langle e \rangle$ if and only if G is cyclic or generalized quaternion. Moreover, if $K(G) \neq \langle e \rangle$, then K(G) = Z(G).

Proof: If G is cyclic, then K(G) = Z(G) = G. If G is generalized quaternion, then every maximal cyclic subgroup contains the center (see [2]), so by Theorem 2, K(G) = Z(G).

Conversely, suppose that G is a p-group with non-trivial cycel. Then by Corollary 3, K(G) is cyclic, so K(G) has exactly p-1 elements of order p. Suppose there is another element $x \in G$, with $x \notin K(G)$, such that |x| = p. Consider H, the maximal cyclic subgroups containing x. Then by the previous lemma, $K(G) \leq H$. But H is cyclic, and contains p elements of order p, a contradiction. Hence, G has exactly p-1 elements of order p, and by a well-known result (in [2], among other sources), G must be either cyclic or generalized quaternion.

Finally, we have the result which indicates when a non-cyclic group G is spanned by a minimal number of cyclic subgroups.

Theorem 9 G is the union of three proper cyclic subgroups if and only if G is isomorphic to either $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{C}$ or $\mathbb{Q} \times \mathbb{C}$, where C is a cyclic group of odd order, and Q is the quaternion group of order 8.

Proof: It is clear that both $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{C}$ and $\mathbb{Q} \times \mathbb{C}$ are the union of three proper cyclic subgroups. Bruckheimer, Bryan and Muir [3] have shown that a group is the union of three proper subgroups if and only if their intersection N is normal and $G/N \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. It follows from Theorem 1, Theorem 2, and [3] that the groups spanned by three cyclic subgroups are precisely those for which $G/K(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. We now classify such groups.

First, note that G is nilpotent. This can be seen by observing that

Ż

$$G/Z(G) \cong (G/K(G))/(Z(G)/K(G))$$

is a factor group of an abelian group, and so is abelian. Thus, we can write $G \cong Syl_2 \times Syl_3 \times Syl_5 \times \cdots$. Since $|G/K| = 2^2$, K(G) must contain $Syl_3 \times Syl_5 \times \cdots$. It follows from Corollary 3 that $C \cong Syl_3 \times Syl_5 \times \cdots$ is cyclic and of odd order. Note that we have also proven that $|K(G)| = 2^a |C|$, where a is a nonnegative integer.

Suppose $K(G) \cap Syl_2 = \langle e \rangle$. Then $|Syl_2| = |G/K(G)| = 4$. If Syl_2 were cyclic, then G would be as well. In that case, however, G would not be the union of three proper cyclic subgroups. Hence $Syl_2 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, and $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{C}$. Now, suppose that $K(G) \cap Syl_2 \neq \langle e \rangle$. It is clear that $K(G) \cap Syl_2 \leq K(Syl_2)$, from which we see that Syl_2 is a 2-group with a non-trivial cycel. It follows from Theorem 8 that Syl_2 is cyclic or generalized quaternion. If Syl_2 were cyclic, then G would also be cyclic and, consequently, not the union of three proper cyclic subgroups. If Syl_2 is generalized quaternion, then by Theorem 8, $|K(Syl_2)| = |Z(Syl_2)|$. But the center of a generalized quaternion is of order 2 (see [2]). We can now see that $|K(G) \cap Syl_2| \leq |K(Syl_2)| = 2$, and so $|K(G)| = 2^a |C| = 2|C|$. Thus, $|G| = |G/K(G)| \cdot |K(G)| = 4 \cdot 2|C|$. Hence, $|Syl_2| = 8$ and Syl_2 is the quaternion group of order 8.

3 Tidy groups

Note that unlike its analog the centralizer, a cyclicizer is not necessarily a subgroup. For example, in the group $\mathbb{Z}_4 \times \mathbb{Z}_2$, the cyclicizer of the element (2,0) is of order 6:

$$Cyc((2,0)) = \{(0,0), (1,0), (1,1), (2,0), (3,0), (3,1)\}.$$

A natural question to ask is: what can be said about those groups in which all of the cyclicizers are actually subgroups?

Let G be a group. G is said to be *tidy* if Cyc(x) is a subgroup for all $x \in G$. We begin with the following lemma on direct products of tidy groups.

Lemma 10 Let G and H be groups such that |G| and |H| are relatively prime. Then $G \times H$ is tidy if and only if G and H are tidy.

Proof: Suppose G and H are such that |G| and |H| are relatively prime, and that G and H are both tidy. Then for all $(g, h) \in G \times H$, $Cyc((g, h)) = Cyc(g) \times Cyc(h)$ (since for all $(g_1, h_1), (g_2, h_2) \in G \times H$, we have $\langle (g_1, h_1), (g_2, h_2) \rangle = \langle g_1, g_2 \rangle \times \langle h_1, h_2 \rangle$). Hence Cyc((g, h)) is a subgroup.

Conversely, suppose that $G \times H$ is tidy. Then for all $g \in G$, we have that $\operatorname{Cyc}(g) = \pi_G(\operatorname{Cyc}((g, e)))$ (where π_G is the projection homomorphism from $G \times H$ to G). So $\operatorname{Cyc}(g)$ is a subgroup.

We now classify all the abelian tidy groups.

Theorem 11 Let G be an abelian group. Then G is tidy if and only if every p-Sylow subgroup of G is cyclic or elementary abelian.

Proof: By the previous lemma, G is tidy if and only if each p-Sylow subgroup of G is tidy. Let P be a p-Sylow subgroup of G. If P is cyclic, then for all $x \in P$, we have Cyc(x) = P. If P is elementary abelian, then every $x \in P^{\times}$ is of order p, so $Cyc(x) = \langle x \rangle$. Otherwise, P contains a subgroup isomorphic to $\mathbb{Z}_p \oplus \mathbb{Z}_{p^2}$, which is not tidy (since the element (0, p) has a cyclicizer which is not a subgroup).

We also classify tidy *p*-groups. First we need the following lemma:

Lemma 12 Suppose G is a tidy p-group. Let $x \in G$ be such that $|x| \neq p$, and $\langle x \rangle$ is a maximal cyclic subgroup. Then $Z(G) \leq \langle x \rangle$.

Proof: Let $z \in Z(G)$ be given, and consider x as above. Then $\langle z, x \rangle$ is abelian. Furthermore $\langle z, x \rangle$ is not elementary abelian, since $|x| \neq p$. So by Theorem 11, $\langle z, x \rangle$ is cyclic. But $\langle x \rangle$ is maximal; hence $z \in \langle x \rangle$. Since $z \in Z(G)$ was arbitrary, we conclude that $Z(G) \leq \langle x \rangle$.

An immediate corollary is

è

Corollary 13 Suppose G is a tidy p-group. Then Z(G) is cyclic. \Box

This allows us to prove the following:

Theorem 14 Suppose G is a p-group. Then G is tidy if and only if there exists $H \triangleleft G$, where H is cyclic or generalized quaternion, and for all $x \in G \setminus H$, we have |x| = p.

Proof: Suppose G is a tidy p-group. Let $H = \operatorname{Cyc}(z)$, where z is a nonidentity element of Z(G). First, consider any element $x \in G \setminus H$, with $|x| \neq p$. Then x is contained in some maximal cyclic subgroup $\langle y \rangle$, with $|y| \neq p$, so by Lemma 12, $z \in \langle y \rangle$. But then $\langle x, z \rangle \in \langle y \rangle$, so $\langle x, z \rangle$ is cyclic, and hence $x \in \operatorname{Cyc}(z) = H$.

Next, we observe that $z \in K(H)$, since $\langle z, h \rangle$ is cyclic for any $h \in H$, so by Theorem 8, H is either cyclic or generalized quaternion. Finally, if $\langle h \rangle$ is

a maximal cyclic subgroup of H, with |h| > p, then any conjugate of $\langle h \rangle$ is a cyclic subgroup of order greater than p, and hence must be in H. So $H \triangleleft G$.

For the converse, suppose G is a p-group with a normal subgroup H as above. Then if $x \in H$, Cyc(x) is a subgroup (since cyclic and generalized quaternion groups are themselves tidy), and if $x \notin H$, then |x| = p, so $Cyc(x) = \langle x \rangle$. So Cyc(x) is a subgroup for all $x \in G$, and hence G is tidy.

4 References

[1] D. Patrick and E. Wepsic, "Cyclicizers, Centralizers, and Normalizers", Rose-Hulman Technical Report MS-TR 91-05.

[2] D. Gorenstein, Finite Groups, New York: Harper & Row, 1968.

[3] M. Bruckheimer, A.C. Bryan, and A. Muir, "Groups Which Are the Union of Three Subgroups", American Mathematical Monthly 77 (1970).

David Patrick	Eric Wepsic & Lawren Smithline	Kevin O'Bryant
Carnegie Mellon Univ.	Harvard University	Rose-Hulman Inst. of Tech.
Pittsburgh, PA 15213	Cambridge, MA 02138	Terre Haute, IN 47803