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Ag-rewritability

Eric Wepsic*, Kevin O’Bryant*, and Lawren Smithline*

Let S be a subset of S,. A finite group G (in fact, every group we consider
here will be finite!) is said to be S-rewritable if, for each n-tuple (z1,22,...,2,) €
G", there exists o € S — {identity} such that

Z1T2 " Tn = To(1)To(2) " * To(n)-

If § = S,, G is termed n-rewritable. The class of all n-rewritable groups is
denoted by P,.

Much effort has gone into the classification of the P,. It is easy to see that
a group in P, is abelian. Curzio, Longobardi, and Maj [2] have shown that a
group G is in P; if and only if the order of the derived group, G, is at most
two. The class Py, however, is much more complicated. Longobardi, Maj, and
Stonehewer [1] have classified these groups.

Result 1 (Longobardi, Maj, and Stonehewer) IfG ¢ Py, then either |G']| <
5 or |G'| = 8, or G contains an abelian subgroup of indez 2. Moreover, if
G' 2 (Z,)?, then either G/Z(G) is generated by 3 elements, or G/Z(G) is gen-
erated by 4 elements and G is not the internal product of two abelian subgroups,
that is, G is not diabelian.

Extending these results to Ps seems hopeless, We consider a somewhat
simpler problem: the determination of PAy, the set of Ag-rewritable groups.
Rewritability with respect to subsets of S, was first considered in [3], where
this question was first posed. We consider this problem both for its own sake
and in the hope that it will shed some light on, and possibly simplify, the
classification of Py given in [1]. o

To fix notation, we represent the commutator w=1z 1wz by [w, 2], the iden-
tity of a group by e, and the centralizer of z in G by Ce(z).

Theorem 1 (Main Theorem) The group G is in PA, if, and only if, one of
the following holds: \

a. |G’ <2. : '

b. G' = (2,)?, and G' C Z(G).

c. |G'| =3, and either G' € Z(G), or G does not contain w,T,Y, z satisfying
[w,2]* = [w,z] = [w,y] =[z,y] =[z,2] = [v,2] # e.

*Work supported by NSF grant number DMS-910059




1 Sufﬁcient Conditions for Membership in PA,

The group G € PAy if one of the following holds:

a. |G’ < 2.

b. G' = (Z,)?, and G' C Z(G). :

¢. |G'| = 3, and either G' € Z(@), or G does not contain w,z,y, z satisfying
b, 2 = fw, 2] = [w,5] = [2,9] = [5,2] = [5,2] # e.

The next few propositions combine to prove this theorem.

Proposition 1 If G’ is isomorphic to a subgroup of (Z,)?, and G' C Z(G),
then G € PA,.

Proof. We will show that any 4-tuple (w,z,y,2) € G* can be rewritten by an
even permutation. When, for example, does wryz = zywz? Well,

wryz = zwlw,zlyz

= zwyz[w,z]

i

zyw(w, y)z[w, z]

= zywz{w,yl[w,z].

(We could slip the commutator out because G' C Z(G).) So wzyz = zywz
when [w, y][w,z] = e.

Set a = [w,z], B = [w,y], v = [w, 2], § = [z,9], e = [z,2], ¢ = [y, 2]. If we
use additive notation for G’ (it is, after all, abelian), wzyz can be rewritten by
an even permutation exactly when one of the following capital-lettered sums of
commutators is zero:

Commutator Equation From Rewriting
A=a4+f TYywz
B=a+( Twzy
C=3+6 ywrz
D=§+¢ wyzzT
E=¢e¢+( wzTyY
A=y+b+e+( 2wyzT
B =84+vy+6+e¢ yzwz
C'=z=a+y+e+( zzwy
D=a+f+~v+¢ Tryw
E=a+p8+v+6 YTz W
[ V=a+f+7+b6+e+( zyzw | \
We note first that A+ A'= B+ B ' =---=E+E =V. IfV =0, we

are done; therefore, assume without loss of generality that V = (1,0) € (2Z,)2.
Then 4, B,C, D, E € {(0,1),(1,1)}, because if, say, C were equal to (1,0) =V,
then C’ would equal V ~ C = (0,0). Hence A+ B+C+D+E € {(0,1), (1, 1)}



as well. ButA+B+C+D+E=a+ﬂ+a+c+ﬁ+6+6+e+e+(=
2{a+ B+ 6+ e+ ¢) =(0,0), a contradiction. Hence G € PA,. W

Corollary 1 If |G'| =1 or 2, then G € PA,.

Proof. If the derived group is of size 1 or 2, then it is certainly isomorphic to
a subgroup of (Z3)%. If [G'] = 1, then G’ is trivially in the center of G. If
[G'| = 2, then, as G’ is normal in G, G’ is the union of two conjugacy classes of
G of size one. It follows that G’ C Z(G). Thus the hypotheses of Proposition 1
are satisfied. W

Proposition 2 If |G'| = 3 and G' € Z(G), then G € PA,.
Proof. If |G| = 3, we first note that
ICc(9)] 2 ICq/n(Ng)|
for all normal subgroups N of G and all g € G, by (2.24) of [4). In particular,
[Ca(9)l = |Cs/a(Glg)| = |G/G,

where the last equality follows because G /G’ is abelian. Therefore, the index of
each centralizer in G is at most 3. Hence, all the conjugacy classes are of length
1, 2, or 3. Chillag and Herzog have classified all groups with conjugacy classes
of prime length [5]: their classification yields that either G’ € Z(G) (impossible
by hypothesis), or G/Z(G) is isomorphic to Sj.

If G/Z(G) = S3, then G € PA,. This can be seen directly, making use of the
fact that two elements a,b in G commute if their images @,b generate a cyclic
subgroup of G/Z. The procedure is tedious. We prefer to use the following
lemma.

Lemma 1 (Isoclinic Lemma [7]) If G/Z(G) = H/Z(H), G' = H', and G'N
Z(G)= H'NZ(H) = {e}, then G and H have the same rewritability structure;
in particular, G € PA4 if, and only if, H € PA,.

Proposition 2 follows easily from the lemma, since its hypotheses are satisfied
when H = S3, which can be shown A4-rewritable. m

Proposition 8 If |G'] = 3, and G' C Z(G), then G € PA, if and only if G
does not contain w,z,y,z satisfying [w,z]* = [w,2] = [w,y] = [2,94] = [z, z{ =

[Z/, Z] 7& e. ) '

Proof. Suppose that |G| = 3,G' C Z(G), and G ¢ PAy. Let (w,z,y, z)
be a non-rewritable 4-tuple of G. Using the labelling of Propesition 1, none of
V,A,A",B,B’,... E, E’ are zero. Since A+ A’ = V, we must have 4 = A’ = 2V,
Similarly, A = B = ... = D' = E' = 2V. Therefore, « = f = § = ¢ =



¢ =V, but y = 2V. In other words, [w,2]* = [w,z] = [w,3] = [z,y] =
[z,2] = [y,2] # e. Furthermore, since this is the only assignment satisfying
V,A,A',B,B',...,E,E' # 0, if G € PA,, then it does not contain W, T,Y, 2
satisfying [w, z]* = [w,z] = [w,y] = [z,9] = [z, 2] = [y, 2] £e. m

There are groups containing w,z,y, z satisfying [w, z]? = [w,z] = [w,y] =
[,y] = [z,2] = [y,z] # e. The smallest one is of order 3° = 243, and is
given by five order 3 generators (a, w, z, y, z) satisfying the following commutator
relations: [a,w] = [a,2] = [a,y] = [3,2] = ¢, [w,2] = [w,y] = [,9] = [z,2] =
[y, 2] = a, [w, 2] = o

2 Necessary Conditions for Membership in PA,

The group G € PA4 only if one of the following holds:

a |G| < 2.

b. G' = (22)?, and G' C Z(G).

c. |G'| =3, and either G' € Z(G), or G does not contain w,T,Y, 2 satisfying
[w,2]* = [w,2] = [w,y] = [z,y] = [z,2) = [y, 2] # e.

Proposition 4 If G € PA4 has an abelian subgroup A of indez 2, then |G’ < 3.

Proof. Take z € G — A. Any commutator [g, 2] in G’ can be written in the form
[z,a] for some a € A: to see this, note that [a,b] is trivial for a,b € A; that
[bz,a] = [az,bz] = [z,(ab)"); that [a,bz] = [z,a™!). Hence, G’ is generated
by the image of the map a + [z,a]. A straightforward computation also shows
that [z,ad] = [z,a][z,b]. This also proves that G’ is abelian, and is actually
equal to the set of commutators. (G’ can also be seen abelian because G C A)

Suppose that G’ contains a copy of Z, or Z, for n > 4. Then take a,b,c € A
sothat @ = [z,a] = 1, § = [2,b7!] = 1, v = [z,¢™}) = 1. We cannot rewrite
a-b-x-c, because no sum a,a+ f,a+v,a+p+7,8+vis.equal to zero.

Suppose that G’ contains a copy of Z,, X Z,,, m,n > 1. Then take a,byee A
so that [z,a] = (0,1), [z,b7'] = [z,¢™!] = (1,0); we again cannot rewrite
a-b-x ¢, since none of the above sums are zero.

Together, this implies that |G| < 3. m )

Therefore, we now know that G € PA, implies |G| < 5 or |G’ = 8. We
now make an observation suggested by [2]:

Lemma 2 If G € PA,, then for every z € G, either z° € Z(G) or 2% € Z(G).
3

Proof. If we rewrite z -z -y - 23 according to Ay, we will see that one of z, z2,
z® commutes with y. So G = Cg(2?) U Cg(x?), whence (since a group is never
equal to the union of two proper subgroups) either Cg(z?) = G or Cs(2®) =G,
which means that either 22 € Zorz’ € Z. m



Let H = G/Z. This lemma tells us that if G € PAy, every element of H
has order 1, 2, or 3. Deaconescu [8] has classified groups of this type. If G is
nilpotent, then H is either a 2-group of exponent 2, or a 3-group of exponent 3.
If G is not nilpotent, either |H| = 223 and |H’| =2, a > 2, or |H|=2-3% and
|H'| = 3%, with @ > 1. We handle the nilpotent case first.

Lemma 3 If G € PAy is nilpotent, then G’ < Z(@) and either
a. |G') = 3; or
b. G' =2 (Zy)™ withn < 2; or
c. G'=(Z3)* with G/Z = (Z2)® or G/Z = (Z,)*.

Proof. If G is nilpotent, then it is the direct product of its Sylow subgroups.
Then, H is also the direct product of its Sylow subgroups. Since we know from
above that H is either a 2-group or a 3-group, we can infer that all of the Sylow
subgroups of G are abelian except for possibly one of Syl, (G) or Syl3(G). Since
IG'l < 5 0r |G'| =8, we have |G| = 3, or |G'] = 2",n < 3. If |G'| = 3, then
only the Syl3(G) factor is nonabelian. Since, the derived group and the center
of a nonabelian p-group always intersect nontrivially, G/ C Z(@). If |G’ = 2m,
then H = G/Z = Syly(G/Z) = (Z2)*, since H must be of exponent 2. We can
see now, as G/Z is abelian, that G’ C Z(G). Proceeding further, we know that
if G/Z = (Z2)*, as it certainly is here, then G’ 2 (Z,)* for some ¢ by [6]. By [1]
» any such group has G/Z generated by 3 or 4 elements—that is, G/Z =2 (2,)°
or G/Z = (Z2)4. n

Lemma 4 If G/Z 2 G' = (Z3)*, and G' C Z(G), then G ¢ PA,.

Proof. Pick elements a, b, ¢ of G whose images generate G/Z. Since G' € Z(@),
the bracket [-,-] which maps (G/Z)? — G’ by taking (a,b) to the commutator
[a,b] is an alternating bilinear form whose image must be generated by [a, 3],
[a,c], [b,c]. Therefore these commutators generate G', and are linearly inde-
pendent over Z,. A calculation similar to those in Proposition 1 shows that we
cannot rewrite @ - c- b- ¢ in this case. Therefore, G dPA;,. m

Lemma 5 If G/Z = (Z5)*, G' = (Z)?, and G’ C Z(G), then G ¢ PA,.

Proof. By [1], in this case G cannot be diabelian. We show that, for this reason,
there must be ¢ € G/Z so that there exist b,¢,d € G/Z such that [a,0], [a, ],
[a,d] generate G’. Suppose. to the contrary that [a,-] is never surjective. For
every a, this linear function then has a kernel K, containing at least 4 elements
distinct in G/Z. Suppose K, = {e,a,b,ab}. Now take any ¢ € G — K,. The
same must be true of c: say the kernel of [¢,"] is K, = {e, ¢, d, ed}. \

If there is some c for which a,b,c¢,d are independent in G/Z, then take
preimages @, b, ¢, d. We know that G = (g, 5, &,d)Z because G’ C Z. So we
have G = (a,0)Z - (¢,d)Z, so G isn’t in PAq, by [1], because it is diabelian.

So we may assume that the set {a, b, c, d} is always linearly dependent in the
vector space G/Z = Z3. Hence d = ca+Bb+ e, so [c,a+Bb+yc] = 0, whence



[c, aa+ Bb] = 0, so c commutes with aa+ b € K. Therefore, ¢ commutes with
some nonzero element of X,. But this holds for every ¢ € G/Z — K,, and there
are 12 of them. This means that each nonidentity element of X, commutes with
at least 4+12/3 = 8 elements of G/Z. (None can commute with more, because
the centralizer of an element which did would be all of G.) In particular, a does.
Therefore, [G : Cg(a)] = 2 for all a # e. By [2], this implies that |G'] = 2,
contradicting our hypothesis.

Hence, we can pick a,b,¢,d € G such that [a,b] = a, [a,d] = 8, [a,d] = v
generate G'. We now need only concern ourselves with the possible values of
[b,¢l, [b,d], [c,d]. One helpful note: for no j,k,I can [7, k], [%,1], and [},1] be
linearly independent. This follows from Lemma 4. Therefore, [b, c] = mya+n g,
[b,d] = maa + ng, [c,d] = m3f + ngy and [e,d] = my[b, c] + nyb, d], for some
mi,n; € {0,1}. We now consider cases.

[b,c] [b,d] [c,d] | Can’t Rewrite This
e e e bacd
e e Jij acbd
e e B acbd
e " B abed
e « e a-d-c-db
o @ y a-d-c-db
af e v dach
af e yél dbac
af 0% vy a-b-c-bd
af ay By a-ac-cd-b
af oy e acdb
B Y By cabd
Jij oy 5 adch

We have exhausted all possibilites for G' up to symmetry. Therefore, G ¢
PA;. m

Combining Lemmas 3, 4, and 5, we arrive at the following proposition:

Proposition 5 If G € PA, is nilpotent, then it is of class 2 and one of the
following holds: g

a. |G' <2,

b G' = (Z,)?, A

¢: |G'| = 3 and G does not contain w,z,y,z satisfying [w,2)? = [w,z] =
fw,9] = [2,9] = [2,2] = [y,2] #e. )

We now examine the nonnilpotent case. Note that if H = G/Z is nonnilpo-
tent, then neither is G.

Proposition 6 If H = G/Z is nonnilpotent, and |H| = 293, where a > 2, then
G ¢ PA,.



Proof. (This can be shown by checking all groups of order 12 and 24.) Consider
H', which is elementary abelian, normal, and of index 3 in H, by [8]. We take
a subgroup of H of the form Zs: then H =~ H' ® Z3 = (Zy)" ® Za, where the
semidirect product action is nontrivial. What can Z3 do to H'?

Let k € Z3, and g € (Z2)". Let h = kgk~!. Now, what can khk~! = k?gk—2
equal? Clearly, not g; the possibilities are either khk~! = gh, or khk=! = i,
where i € (Z2)" and g, h,i are linearly independent. In the first case, our Zz
acts on a copy of (Z3)? as in A4~in short, H will contain a subgroup isomorphic
to A4. In the second case, our Zs cyclically permutes the basis elements of
the copy of (Z2)* generated by g, h,i. In this case H will contain a subgroup
isomorphic to (Z2)® ® Z3 with this action.

Since PA, is closed under factor groups and subgroups and, by direct cal-
culation using CAYLEY, neither A4 nor (Z3)® ® Z3 is in PAy, the statement
follows. m '

Proposition 7 If G € PAy, and H = G/Z is nonnilpotent of order 232, with
@ 21, then H = 53. Furthermore, |G'| =3 and G' € Z(G).

Proof. We know that |H’| < 8. In H, by [8], H' is a normal Sylow subgroup of
index 2; H' = 3% But |H'| < 8, so |H'| = 3, whence a = 1, and we are done.
n
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