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Abstract

A subset R of a finite group G is a square root of G if R? = G. If R is a square root of G
for which |R|? = G, then R is referred to as a perfect square root of G. It can be shown using
character theory that perfect square roots do not exist. The purpose of this paper is to work

toward an elementary proof of this result.

1 Introduction

A subset R of a finite group G is a square root of G if R? = G. If R is a square root of G for
which [R|? = |G/, then R is referred to as a perfect square root of G. Dimovski [2] has shown,
using character theory, that no finite (non-trivial) group can have a perfect m-th root for m > 2.
The purpose of this technical report is to continue the search, begun by Abhyankar and Grossman

(1], for an elementary proof that perfect square roots do not exist.

2 Facts About Groups With Perfect Square Roots

Throughout this section R denotes a perfect square root of the finite group G.

*All three authors supported by NSF Grant NSF-DMS 9322338
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Fact 1 Leta,b,c,d € R. Ifa # ¢ and b # d, then ab # cd.

Proor: If ab = cd, then |R?| < |R|? and R? # G; i.e., there can be no ‘repeated products’ in RZ.

Fact 2 Leta,be€ R. If a # b, then a is not in the centralizer of b.

Proor: If a is in the centralizer of b, then there is a repeated product in R? ab = ba.

The next three facts are immediate corollaries of Fact 2.

Fact 3 The intersection of R with the center of G is trivial. In particular, the identity is not in

R.
Fact 4 Ifa,a”' € R, thena =a" L.
Fact 5 R contains a unique involution.

Proor: Since 1 € R?, there exist z,y € R such that zy = 1; i.e., z = y~!. It follows from Fact
4 that = = y, so z is an involution. If R contains two involutions a and b, then R? contains the

repeated product aa = bb.

Fact 6 The order G is divisible by 36.

Proor: It suffices to show that 2’|G[ and 3||G’| because |G| is a perfect square and 2 and 3 are
distinct primes. That 2']G| follows from Fact 5.

To show that 3(|G|, first note that for all z,v,2 € G,
zyz=1yze=1& zzy = 1.

Now consider

P = {{a,b,c} C R|abc = 1}.
2
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o Let a € R be given. Since R is a square root, there exist b,¢ € R such that bc = a™!. Then

abe =1, {a,b,c} € P, and a € Uxcp X. Since a € R was arbitrary, R C Uxep X.

o Let X = {a,b,¢},Y = {a,d, f} € P be such that X Y # 0. We may assume without loss
of generality that abc = 1 = adf. But then bc = @™ ! = df. By Fact 1, we may conclude that

b=dandc=f. Thus X =Y.

These three points imply that P is a partition of R. Now, suppose that there exists {a,b} € P (so,
¢ =aorc=>b). We may assume that aba = 1. Then ab = a~! = ba, and by Fact 1, we conclude
that a = b. Therefore, each element of P has cardinality one or three. If all elements of P have 3

elements, then 3!|R| and therefore 3’|G|. If there exists {a} € P, then ¢® = 1; i.e. 3‘|G|.

As a corollary to this fact we have
Fact 7 No p-group has a perfect square root.
Fact 8 The number of elements of order four in R is odd.

Proor: Consider I = {a € G | a® = 1}. The cardinality of I is even because |G| is even and |G — |
is even (each element may be paired with its distinct inverse). Now, for all a,b € R, ab € I implies
ba € I, since ab and ba have the same order. There is exactly one element of order 2 in R and this
element squared will yield an element in I. All products of distinct a,b € R will yield either 0 or 2
elements of I. Therefore, there must be an odd number of elements ¢ € R such that ¢? € I. Fach

of these elements has order 4.

Fact 9 Ifae G~1, then RaNnR=0 oraRNR = 0.



ProoOF: Let a € G be given and assume that RaNR # § and aRN R # @. Then there exist b,c € R
such that ba € R and ac € R. Now put 2 = ba, y = ac and observe that bac = by = zc. By Fact
1 we conclude that b = x and that y = ¢. Thus b = z = ba, and we find that a = 1. Since ¢« € G

was arbitrary, we have the desired result.

In a similar way it can be shown that;

i) ifae G-1,RanR=0ora'RNR =0,

iil) ifaeG-—1,aRNR=0or Ra"'NR=40.
Fact 10 For g € G, gRg™! is a perfect square root of G.

Proor: (gRg™')(gRg™") = gR*¢™! = gGg™' =G.

Fact 11 Fora € R, aRa™' N R = {a}.

Proor: First, a € aRa™! N R since aaa™! = a. Second, if b € R and b € aRa~! then b = ara~! for
some 7 € R. This would imply that ba = ar for some a,b,7 € R which would contradict the fact
that R is a perfect square root (since ba = ar would be a repeated product). Thus @ is the only

element in aRa™ ! N R.

Fact 12 If G has a perfect square root R, then it has at least |R| perfect square roots.

Proor: For a,b € R, aRa™" = bRb™! implies that R = a~*0R(a"10)~". But RNa~'0R(a"1b)"! =

{a~'b}. Thus all conjugates of R by elements of R are different.

Fact 13 The set {aR: a € R} partitions G.

ProoF: For g € G, there is a unique {a,7} C R such that ¢ = ar; i.e.,, g € aR. If g € aRN bR,

then g = ary = bry and R is not a perfect square root.
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Fact 14 RR™'={a€ G |aRNR#0} and R"'R={a € G| Ran R # 0}

PRroOF: Let r € RR™! be given. Then there exist z,y € R such that zy~! = r, and ry = 2. Thus
rRNR #0. Now,let a € {a € G| aRNR # 0} be given. Then there exist z,y € R such that

ay =z and a = zy~!. Thus a € RR™!. The second result is analagous.

Fact 15 If G and H have perfect square roots, then G x H has a perfect square root.

Proor: Say that R and § are perfect square roots of G and H respectively. Then R x S is a

perfect square root of G X H because (R x §)? = R*x §? =G x H and |G x H| = |R x S|%

3 Small Square Roots

It is natural to ask for square roots which are as small as possible. For example, a square root of

5S4 must have cardinality at least five. Does such a square root exist?
Fact 16 There are 96 square roots of Sy of cardinality 5.

The fact which was established by computer (using Cayley, Magma, and C) raises the following

question:

Is it possible to find a sequence of square roots {7} such that 7? = S, and
|T%|/vVn! — 1 as n — co?

Related results for cyclic and dihedral groups follow.

Fact 17 There exists a sequence of cyclic groups {C;2} and a sequence of square roots

{T;2} of these cyclic groups such that |T;2|/i < 2 for each positive integer i.

Proor: Consider C;.j. One square root of Cy.jis {1,z,2%,... 2"~ 2t 2% 23 ... 27}

There are j + i elements in this root. To maximize the ratio, let j = 1.



Fact 18 There erists a sequence of dihedral groups {Dy;2} and a sequence of roots of

those groups {Ty2} such that |Ty;2|/2v/2i < /2.

Proor: Consider D;.;. One square root of D;.; is

t i-1 3 2t 31 It
yyzt yz®yet, Ly}

2 -1 2 3
{1,.’17,(E yeees T y Y, YT, YT, YT, ..., YT

This root has (27 + 1) elements. To maximize the ratio, let ¢ = 2j.

4 An upper bound on the cardinality of non-square roots

Fact 19 Let T be a subset of a group G. If |T| > |G|/2, then T? = G.

Proor: Our strategy is to find subsets whose squares do not contain an element z € G.
We will see that such a subset’s size must be less than half the size of the group. To do
this, we associate to each = € G a graph of G. Notice that for a € G, there is a unique

b € G such that ab = z, there is a unique ¢ such that bc = z, and so on:

ab = =z
be = 2z
fa = =z

The list of elements a,b,c,...,f,... must cycle since G is finite: if fb = z, then a = f since
we already have ab = z. Each element of G belongs to exactly one of these ‘cycles’ and

this set of cycles is the ‘graph of G associated with 2.’ If a subset R contains a pair of



adjacent elements in a cycle, then R? contains z (ab = z). If R contains any element in
a one-cycle, then R? contains z as well (¢° = z).

If |R| > |G]/2, then R contains more than half of the elements in some cycle of the
graph of G associated with z. Thus, it contains some pair of adjacent elements in a

cycle or some one-cycle element which implies x € R2. This is true for all z in G, so

R*=G.

Fact 20 G has a subset R of size |G|/2 such that R? # G if, and only if, the graph of

G associated with some x in G has only even length cycles.

Proor: Suppose the graph of G associated with z has only even-sized cycles. We
can choose alternating elements in each cycle. This will give R C G: |R| = |G|/2 and
x ¢ R%. Suppose the graph of G associated with every z in G has some odd length cycle.
It is impossible to choose exactly half of the elements of G without getting adjacent

elements in a cycle or an element in a one-cycle.
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