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Abstract

An inverse problem for a parabolic initial-boundary value problem
is considered. The goal is to determine an unknown portion of the
boundary of a region in IR" from measurements of Dirichlet data on
a known portion of the boundary. It is shown that under reasonable
hypotheses uniqueness results hold.
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1 Introduction

The goal of nondestructive evaluation is to gather information about the
interior or other inaccessible portion of some material object from exterior
measurements. Thermal imaging is one approach to this problem; a pre-
scribed heat flux is applied to a portion of the surface of the object and the
resulting surface temperature response is measured. From this information
one attempts to determine the internal thermal properties of the object, or
the shape of some unknown, inaccessible portion of the boundary. Ther-
mal imaging holds promise as a tool for corrosion detection in aircraft, and
has found utility in industrial applications. The interested reader is referred
to [2], and the references therein, for a discussion of other applications of
thermal imaging.

We are interested in the use of thermal imaging for the detection of so-
called “back surface” corrosion and damage. The most elementary model of
such a process is simple material loss which leads to a change in the surface
profile of the object’s boundary. This is the model we have chosen for this
paper. Our focus in this work is on the issue of uniqueness—under what
conditions do the proposed data measurements provide sufficient information
from which to determine the shape of the “back surface?” This problem may
be formulated mathematically as an inverse problem for the heat equation.
More precisely, let @ C IR" represent the object to be imaged. We assume
that the surface 92 of Q is piecewise C2. We use I to denote the “known” ,
accessible portion of 9, and we assume that both I' and 8Q\T" have nonzero

surface measure as subsets of 9Q. Let S, denote some open portion of T'



with positive measure and let the applied heat flux g(t,z) be defined for
each (t,z) € R* x 9Q with support in Sy. With some rescaling we model
the propagation of heat through Q with an initial-boundary value problem

for the heat equation,

u(t,z) — Azult,r) = 0, forte RY, ze, (1.1)
g%(t, r) = g(t,z), forte R*, redN, (1.2)
u(0,z) = wuy(z), forzxeq. (1.3)

Here u(t, x) denotes the temperature in the domain  at the point z at time ¢,
u, is the derivative of u with respect to ¢, and 7 an outward unit normal vector
field on 9€2. Throughout this paper, we will refer to (1.1)-(1.3) collectively
as (IBVP). Let S; C T denote the portion of the boundary on which we
take temperature measurements. We consider the following inverse problem:
Does knowledge of u(t,z) on S; for some time period t, < t < ¢; uniquely
determine 92 \ I'? Specifically, suppose ; C IR" and 0, C R” with I
contained in 99 N 8. For j = 1, 2, let u;(x,t) be the solution of (1.1)-
(1.3) with Q replaced by Q;. If, u; = up on (tg,,) x S;, must it be true that
I =T9?

Remark. Implicit in the formulation of (IBVP) is the assumption that on
the unknown part of the boundary the condition g—; = 0 holds, so that the
back surface acts as a perfect insulator. This is only a first approximation in
most situations. In Section 5 we discuss other boundary conditions in which

the back surface loses heat to the ambient environment.

"The answer to the uniqueness problem posed in the present paper will be
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seen to depend on certain properties of the domain (2, the initial condition wuy,
and the flux g. We will show that uniqueness holds for constant uy and any
non-zero flux g. For nonconstant uy one can impose reasonable conditions on
the flux g to ensure uniqueness, provided ? is bounded. The case in which
the flux g is time-periodic was analyzed in [2].

This paper is organized as follows. The case of constant initial condition
and nonconstant flux is analyzed in §2, where uniqueness is proved. In §3
we derive a useful eigenfunction representation and associated estimates for
solutions of (IBVP), which are used in §4 to prove a uniqueness result for
bounded domains. In §5, we extend our results to include other possibilities
for the boundary conditions on I.

The fact that uniqueness for the inverse problem fails without additional
hypotheses on the ingredients in (1.1)-(1.3) may be illustrated by a simple
example in IR?. Let € be the rectangle defined by 0 < z < 27, 0 < y < 7.
Let €25 be Q) minus the rectangle %ﬂ' <r< §7r, I<y< §7r, so that ; and
Q22 share the “known” top boundary I' = {(z,y) : 0 < z < 2m,y = 7}. Let
u(t, r,y) be the function

u(t,z,) = ¢ cos(52) cos(3y),

set u; = ula,’ and uy = “ln,- One may verify directly that, for j = 1, 2,
ou; 3 -
ainj =7t cos(éz) on I' while %u_] = 0 everywhere else on 91;. Both u;

and uy satisfy (1.1) with the same initial condition, with the same Cauchy
data on I', and so in this case uniqueness fails. Analogous counter-examples

can be constructed in other dimensions.



2 Constant Initial Condition

In this section we will develop a uniqueness result for the case in which the
initial condition ug(z) is constant. The only condition on the applied flux
g(t,x) is that it be regular enough for IBVP to possess a unique solution,
e.g., g € C(IR; L?(0Q)).

In what follows, we will require the following lemma.

Lemma 2.1 Let (u1,Q) and (ug, ) each satisfy (1.1)-(1.3). If u; = uy
on (0,T) x Sy for some time T > 0, then u; = uy on (0,T) x (£, N Q).

In proving this lemma, we will make use of the following unique contin-
uation result for parabolic equations. Its proof is based on the derivation of
inequalities of Carleman type, and is omitted here. The interested reader is

referred to the work of Saut and Scheurer [6].

Lemma 2.2 Let Q be a connected open set in R" and Q = (—=T,T) x Q.
Let u € L* ((——T, T); HE, (Q)) be a solution of uy — Au = 0 which vanishes
n some open subset O of Q. Then u vanishes in the horizontal component

of O.

Note: Following Nirenberg [5], we define the horizontal component O, of O
to be the union of all open hyperplanes of the form ¢ = constant in Q which
have nonempty intersection with O.

Proof of Lemma 2.1. Set ' = Q; NN, and set w = u; — us. The function

w satisfies the parabolic equation



w—Aw = 0, on(0,T)x ¢,
_Ow
~ o
w(z,0) = 0, onQ.

w = 0, on(0,T) xS,

We can choose some open connected subset I with I C S; and open ball
B C R" such that BNOY = I. Let Qp = B\ ' set {1 = & U Qp. Define

the function

0, (0,T)x Qp;
0, (-T,0]xQ.

For a smooth test function ¢,

w, (0,T7)x;
W=

/OT/(~2"~)[¢t+A¢]da:dt—_—(),

so that o satisfies (1.1) on Q. Using standard parabolic regularity arguments
(see, e.g., [4]), one can show that & € H' ((—T, T); H? (fl))

Make the identifications Q = (—7,T) x Q and O = (-T,T) X int(£2,)
(in this case, the horizontal component of O is Q) to see that @ satisfies the
hypotheses of Lemma 2.2. We conclude that @ vanishes on Q and so u; = u,
on (0,7)x . 0O

We now present the main result of this section.

Theorem 2.1 Let (u1, Q) and (uy, Q) be solutions of (1.1)-(1.3), with (SyU
S1) C (04 N Oy). Suppose ug(x) = uy, a constant, and suppose that there
15 some time T > 0 for which the applied fluz g(t, ) is not identically zero



on (0,T) x Sp. If uy = up on (0,T) x Sy then Q; = Qy and u; = uy on
2 = Q5.

Proof. By replacing u; with u; — ug, for j = 1,2, if necessary, it suffices to
consider the case uy = 0. Suppose that Q; # Q5. Then there exists some
nonempty connected component D of either €\ or 25\ Q;. Let us suppose
the latter, so that u, is defined and satisfies (1.1) on D. The boundary 8D of
D is comprised of a portion I'y] of 3 and I'y of 9Q,. On I'y we know that the
normal derivative of u, is identically zero; on I'y, we know that the normal
derivative (from inside ;) of u is zero, and since uy = u; on ' = Q; N QY
(by Lemma 2.1) and us is smooth across I';, we conclude that the normal
derivative of uy vanishes on the boundary of D. Since u, satisfies equation
(1.1) with zero initial data on D, this forces us = 0 on (0,7) x D. Finally,
by extending us to be zero on (—T',0] x (' U D), we may appeal to Lemma
2.2 to conclude that us = 0 on (0,7") x (' U D). This in turn implies that
the flux g is identically zero on (0,T) x Sy, a contradiction, and we must

conclude that 2, = 5, as asserted. 0O

3 Eigenfunction Expansion

In this section we derive a useful eigenfunction expansion for the function
u(t, z) which satisfies the parabolic initial-boundary value problem (IBVP)
(1.1)-(1.3). Although the technique is very well known (see, for example, [7],
or virtually any text on classical PDE), we will give a brief derivation and
some estimates tailored to our needs.

We assume that the function u belongs to L2(2) and that for all t > 0
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the function ¢(t,z) belongs to C*((0,T); L?(09)), the space of continuously
differentiable functions from (0,7 to L?(9). We seek a solution u(t, z) to
(IBVP) in the space C((0,T); L%(2)); for such a solution the derivatives of u
with respect to ¢t and z are not well-defined, and so we must cast (IBVP) into
a weak form. Multiply equation (1.1) by a smooth test function ¢(t,z) with
¢(T,z) =0 and %% = 0 on 012, and then integrate over (0,7") x (2. Integrate
the term involving ¢u, by parts in t use Green’s second identity on the term

involving ¢ A u to obtain

/Quo(:c)qS(O,z)dx+/0T/Qu(¢t+A¢) dxdt+/0T/m¢gds,,dt=o. (3.1)

The restriction of the L2(2) function u to 0 is not well-defined, but since
%3 = 0 on 92 the boundary integral involving ug-‘s vanishes. This is the weak
form of (1.1) - (1.3).

In preparation for the eigenfunction expansion, let {Ax, ¥i(z)}, & =
0,1,... be an eigensystem for —A on {2 with homogeneous Neumann bound-

ary conditions, so that

A+ Mty = 0 in Q,

0

aink 0.
The eigenvalues A are non-negative; order them by magnitude, so \; <
Ak+1- With the boundary condition %’ff = 0, the first eigenvalue \y = 0, is
simple, and has a constant eigenfunction. We normalize the eigenfunctions

so that ||1k||z2() = 1 for all k£, and so obtain an orthonormal basis for L?(12).
The function ¥p(z) is constant and o(z) = 1/4/|Q]. Orthogonality of the



eigenfunctions then implies that

/ﬂz,bk(x)dxzo, k>1.

In this and later sections we will make use of the following standard esti-

mate for solutions to Laplace’s equation with Neumann boundary conditions.

Lemma 3.1 Let f; € L*(Q), f, € L*(09), and let (zx) € H(Q) satisfy

Ay = fi in Q, (3.2)
%}s = f2 on 8(2,
[#@d = o,

Then
l¥lla @) < Cllfallzoay + | Alle)

where C depends on the domain €.
Proof. For all ¢ € H(2), 1 obeys
[ vo-Vpdz= [ ¢rds.— [ ¢fids.
Q So Q
Set ¢ = 1 to obtain
[Vl de= [ vrds.— [ bide
Q So Q
so that
V22 00y < 1llczoyll foll z2on) + ¥l 2|l fill 2oy (3-3)
A standard trace inequality ([1]) yields
[l 00 < Cilldllarn @) < €1 (Il + IVYlla) - (34)

9



Since /Q ¥ dr = 0, we have a Poincaré inequality of the form

¥z < CollVY|l L2y, (3.5)

where C; depends on 2. The inequalities (3.5) and (3.4), in conjunction with
(3.3), yield

VY2 ) < Ci(Ca + D fall200) + Coll fill 2y

which, combined with (3.5), yields the bound

1l @) < CUlfall200) + | fill2@)

for an appropriate constant C. 0O

The main result of this section is

Lemma 3.2 The solution u(t,z) to (3.1) is unique in C((0,T); L%(Q)), and

can be expanded as
u(t,z) = v(t,z) + j—%—l— + I—;—ﬂ /Ot G(s)ds + ki Ti(t)r(z) (3.6)
=1

where v(t,z) defined on (0,T) x Q denotes the unique function which satisfies

the family of elliptic problems (indexed by t)

1

Dy = —G(t) in Q, 3.7
60 (3.)

ov

B = g(t,z) on 9Q,

t —
/Qv( , ) dz 0,
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and

Gt) = [ g(t2)as., (3.8)

d, = /Q (uo(z) — v(0, 7)) (x) dz (3.9)

alt) = ——/Qvtzbk(x) dr, k>0, (3.10)
G()

co(t) m (3.11)

To(t) = dee™ + /Otck(s)e"\"(t_’)ds, k>0 (3.12)

where || denotes the measure of Q, dS, denotes surface measure on 05},
and v, is the derivative of v(t,r) with respect to t (which exists with the
given hypotheses). The function G(t) is the net rate at which heat enters

at time t. We also have the estimate

= tl|ge (¢, -
> 720 <2 (el + A2 ) g
k=1 1

Proof.

It is straightforward to show that any function u(t,z) € C([0,T] x L?(Q0))
which satisfies (3.1) for all smooth test functions ¢(¢, z) with ¢(T,z) = 0 and
%% = ( is necessarily unique. To see this, set ¢ = 0 and ug = 0. Then equation

(3.1) becomes
| ' [ w @+ 86) dadt =o0. (3.14)

Let f(t,z) be any smooth function defined on [0,T] x 2, and let ¢(t,z) be a

classical smooth solution to the parabolic problem

11






de+0¢ = fin Qx(0,T)

0
-a—: = 0 on 900 x (0,T),
o(T,z) = 0.

Note that this is well-posed, since the “initial” condition is specified at time
t = T and we solve backwards to ¢ = 0. With this ¢ as the test function,

equation (3.14) becomes

/OT/Qu(t,x)f(t,g;) dzdt =0,

for any smooth f. We conclude that if u is integrable (for example, if u(t, z) €
C(R; L*())) then u = 0. By linearity, the solution for any uo and g is
unique.

It is simple to verify that u(t,z) defined by equation (3.6) represents a
formal solution to (3.1) or to (1.1)-(1.3). Conversely, the representation can
be derived by expanding the function w(t,z) = u(t,z) — v(t, ) in terms of
eigenfunctions, as

w(t,z) = 3 Th(e)ve ().

=0
‘The function w satisfies an initial-boundary value problem similar to (1.1)-

(1.3) but with homogeneous boundary conditions. The initial conditions and
other inhomogeneous terms, and the properties of the eigenfunctions, lead
directly to the expansion (3.6).

We will now show that the function u(t,z) defined by (3.6) lives in the
space C(IR; L*(£2)) and satisfies equation (3.1). First, the function v(t, z)

12



satisfying the boundary value problem (3.7) satisfies v(t,-) € H(Q) (see
[3]). Also, under the assumptions on g one can show that the function v,
exists, that v(t,-) € H'(Q), and satisfies
A = I—(1—2—|G’(t) in Q, (3.15)
%1:—;- = g(t,z) on 99Q,

/ﬂvt(t,x)da: = 0.

The above assertion can be proved by approximating v, with difference quo-
tients: let vy(t,z) = (v(t + h,z) — v(t,z))/h; the function v,(t,z) satis-
fies a boundary value like (3.2), with f; = (G(t + h) — G(t))/h and f, =
(9(t+h,z) —g(t,z))/h on the right. The bounds in Lemma 3.1 show that v,
approaches (in H'(Q)) some function v, which satisfies the boundary value
problem (3.15).

We claim that the right side of equation (3.6) represents a function in
the class C(IR; L%(Q2)). To prove this we first note that the first three terms
on the right-hand side of (3.6) belong to C(IR; L?(f2)): The second term
is constant in both ¢ and x, while the third is clearly continuous in ¢ and
constant in z. In regards to the first term v(t, z), the same elliptic estimates
from above allow us to bound the L?(Q2) norm of v(t + h, z) —v(t, z) in terms
of the L2(9€2) norm of g(t + h, ) — ¢(t, z); if g(t,z) varies continuously as a
function of ¢ into L2(8Q) then clearly v(t,z) € C((0,T) x L*(Q2)).

We claim that the infinite sum is also in this space. First, for each t the
sequence {Tx(t)} is in £2, the Hilbert space of square-summable sequences.

To see this note that the sequence dipe *** is in £2 for any ¢t > 0, since dj

13



is square summable. Given the form of T} (t) it is clear that the sequence

{T(t)} will be in £ if and only if the sequence
/Ot Ci (s)e“’\"(t‘s) ds
is also £2 for t > 0. From equation (3.10) we have
Zcz = [Ju(t ')”%2(9) < 00.

Also, since v; depends continuously on ¢, the mapping t — {cx(t)} is contin-
uous from R to £ and so for 0 <t < T we have %2, c(t) < M for some
constant M; in fact, Lemma 3.1 shows that ||v||12(q) < Cl|g:llL2(a) Where C

depends on ). We can then estimate

g (_/Ot ci(s)e™ =) ds)2 < i (/Ot c2(s) ds) (/Ot e~ {t-9) ds)

(3.16)

= 2/\1/ Zc?(s (3.17)

1
— [ Mds = — su
2\ /0 2\ 0<t£T lgellzay

IA

where in (3.16) we have used Holder’s inequality, and in (3.17) we have
interchanged the integral and summation (permissible since the series con-
verges). We conclude that {Ti(t)} is square-summable and so u(t,z) de-
fined by equation (3.6) is in L?(Q) for each fixed t. The continuity of the

map t — {ck(t)} and, as shown above, boundedness of the linear map
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ck(t) = f5 ce(s)e ™+ ds imply that the composition t — Ti(t) is con-
tinuous from IR to £2, and so u(t,z) € C((0,T); L*(Q)).

We now show that u(t,)) actually represents a solution to (3.1). Let
u,(t,z) denote the series solution (3.6) truncated after n terms. Clearly

un(t,-) converges to u(t,-) in L2(2). In fact, u, - u in C((0,T); L%(R)), for

lu(@, ) — ualt, M2y = Z Tz (t)

=n+1
and so the functions f,(t) = 32, TZ(t) are monotonically decreasing to

zero, hence converge uniformly to zero as n — co. We conclude that

sup |lu(t,-) —ua(t,-)|lz2() = 0
0<t<T

as 1 — 00.

Define

L8 = [w@d0ads+ [ [ oft2)e(,2)ds.
1 56,2) (90 + B9) dade

where ¢(t, x) is a smooth function on [0,T] x  with ¢(T,z) = 0 and %% =0
on 0N. Integrating by parts shows that

L(un,¢) = /Q¢(0,$) (Uo(l') - gdkzjjk(x)) dz (3.18)
/OT/f;d)(t,x) (vt +kz::10k(t)¢k(:c)> dz dt (3.19)

We claim that L(u,,$) = 0asn — oco. To see this note that the first integral

above can be bounded as
f,0.9) (1) = 3 dte(a)) do < 1602l — - desilir
k=1 k=1

15



which clearly converges to zero as n — o0, since the dy are the Fourier

coefficients of ug(z). The second integral in (3.19) can be bounded as
/ /¢(t$(vt + ch )) dz dt
= / (M’ ez @lloe + ch(t)% ||L=(n)) dt

< ( /OT l6(t, M=oy dt) (sup 3 ck(t> (3.20)

T k=n+1
Again, the sequence of functions f,(t) = Y2, ci(t) is monotonically de-
creasing and converges pointwise to zero, hence f,(¢) converges uniformly to
zero on (0,T). We conclude that the right side of equation (3.20) converges
to zero. This shows that L(u,, ) converges to zero. But since since u, — u
in C((0,T); L*(Q)) it is easy to check that L(un,¢) — L(u,¢), and so we
conclude that L(u,$) = 0. It follows that u(t,z) defined by equation (3.6)

represents the unique solution to equation (3.1). O

4 Uniqueness for Bounded Regions

We now consider the more general case in which the initial condition ug
need not be constant. Here we will assume that (2 is a bounded region. The
essential idea in this section is simple. We note from the proof of Theorem 2.1
that if uniqueness fails then there must be some “insulated” region D. Within
such a region, heat neither enters nor leaves, so that the average temperature
of D cannot increase with time. This is the basis of the argument that follows:
intuitively, if the applied flux g pumps enough heat into Q2 over a long enough

period then no region D can remain at the same average temperature, and
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so a uniqueness result must hold. We make this physical argument precise

below.

Theorem 4.1 Let g(t,z) denote a fluz in the class C1(R; L2(9Q)) supported
for x € Sy with ||g(t,-)||r200) < Mo for allt > 0 and ||g,(t,)||L2(00) < My
for all t > 0. Suppose also that G(t) defined by equation (3.8) satisfies
G(t) =2 Go > 0 for all't. Let u(t,x) be the solution to (1.1)-(1.3) or its
weak form (8.1) (the initial condition ug is not considered known). Then
knowledge of u(t,z) for 0 < t < oo and z € S; uniquely determines the

region ) and the initial condition ug.

Proof of Theorem 4.1. Suppose that u; and u, are solutions to the weak
form (3.1) of (IBVP) on domains ; and Q,, respectively, with initial con-
ditions u;(0, ) = uo(x) and uy(0,z) = tp(z). We assume that temperature
measurements are taken on an open subset S; C (9Q; N 9€s) and the same
flux ¢(t,z) applied on an open subset Sy C (9 N 9Qy). We will show that
there is some time T" > 0 such that measurements of u; and uy on (0,7) x S}
must differ.

Assume that u; = uj on (0,00) xSy, and set ' = Q;NQy. Let w = uy—us.
The function w then satisfies

%g_Aw=0,mswxm¢m, (4.1)

with w = g—‘:” = 0 on S; x (0,00). Let p be a point in S; and B a ball centered
at p such that BN 3 C S;. Let By denote that portion of B which lies
outside (. Define w(t,z) on Q' U By as

~ — ‘UJ(t, .’L”), e
w“”‘{o z € By

17



Standard regularity results (see [4]) show that w € L2((0,T); H*()) for
any T > 0. Since w = %‘5 = 0 on &), it is easy to check that w €
L*((0,T); H*(Y U By)). The function @ vanishes on By x (0,00) and we
conclude from Lemma 2.2 (with the minor alteration —T' — 0) that @ van-
ishes on £’ x (0, 00). This shows that u; = up on ' X (0, 00). Also, since (4.1)
has a unique solution for given initial and boundary conditions, we conclude
that ug = %y on V.

Suppose that ; # Q. Then either Q;\ Qs or 3\ contains a nonempty
connected component D; we assume the latter, so D C (2 \ @1). The
boundary of D consists of portions of 9 \ (Sp U Sy) and 905 \ (S U Sy).
On these portions of the boundary the applied flux g is identically zero.
Standard regularity results then show that us is a classical solution to the
heat equation and smooth on D, and we therefore have %‘—:}2 = (0 on dD. Since
D is bounded and us is smooth,

d [ Oup _ Ouy _
a/Du2(t,a:)aza:_/D o dr = /Auzdz— 5 45 =0.

The integral [, us(t,z) dz on the left is just the total thermal energy inside
D, and since D is insulated this integral must be constant. We will now show
that this is impossible for an applied flux g(¢,z) of the form specified in the
statement of the theorem.

Let uy(t, ) be expressed via an eigenfunction expansion as in equation

(3.6). Integrating over D shows that
do|D| | |D|

/l)u2(t,x)dx=fl)v(t,x)dx+m ol " G(s) ds+/ ZTk(t de(z) d

(4.2)

18



where T} (t) is defined by equation (3.12), dy by equation (3.9), and v satisfies
(3.7) with Q replaced by Q,. Since G(t) > G, for all ¢, that integral f; G(s) ds
grows at least as fast as Gyt; however, the other terms in the equation can
be shown to be o(t) as t = co, and this will show that [, u»(t,z) dr cannot
be constant.

To see that the first integral on the right side of equation (4.2) is bounded

in t, note that

< VIDlll, Nz o)
VIDlv(t, ez @,

and apply Lemma 3.1 with the fact that |[g(t,-)||12(a0) < Mo.

l/D v(t,x) dz

IA

The second term in equation (4.2) is constant and, therefore, bounded in

t. The last term can be estimated by noting that

‘/D i Te(t)e(z) dz| < \/ﬁ i Ti ()i (z) dz ’
k=1 & o
< m E Ty (t)r(z) dz ,

k=1 L2(Q)

]

Jﬁ.' > 7200 (43)

From equation (3.12) and the estimates (3.16)-(3.17) we can bound

ki::sz(t) < 2 (g(dke—A"t)2 + (e“*k‘/ot cn(s)eM* ds)z)

CMlt)

< 2 (6—21\11-‘"'&0"%2(9) + —Er

Combining this with (4.3) shows that

Mlt)”2 (4.4)

A;Tk(t)¢k($) dz < zm <6—2A1t"u()”%2(m + ‘é“x’l‘
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The quantity on the right side of (4.4) is clearly o(t), and so grows more
slowly than f§ G(s) ds. Equation (4.2) then shows that for sufficiently large ¢
the integral [, us(¢, ) dr must increase, a contradiction that proves Theorem
41. O

If in addition to the conditions above g is analytic in ¢ (for example, if
g is independent of ¢, so ¢ = g(z)) then we can do better. Suppose that
g(t,x) € C*((0,T); L*(8R)), i.e. for each t; > 0 there is some § > 0 such

that g(t,z) can be written as

00 . k
g(t,z) =3 (t—to) k()

!
o K

for all t with |t — to] < &, where g, € L%(8Q). In this case the solution to
(1.1)-(1.3) is analytic in ¢, i.e.,

00 _ k
at,r) =3 8= (o)

iz K

where u; € L?(f2). Suppose that two domains ©; and 2 give rise to the
same temperature measurements on (¢1,t2) X S; with ¢; < t5. Arguing as in
the proof of Theorem 4.1 we find that u; = up on (¢1,%2) X (21 N Qp), but
since u; and u, are analytic in ¢t we have u; = uy on (0,00) x (€3 N ). The

rest of the proof of Theorem 4.1 remains unchanged and we have

Theorem 4.2 Let g(t, ) denote a fluz in the class C*(R; L*(9)) supported
for z € Sy with ||g(t,)|r2a0) < Mo for allt > 0 and ||g:(t,-)||[2(80) < M
for t > 0. Suppose also that G(t) defined by equation (3.8) satisfies G(t) >
Go > 0 for all t. Let u(t,z) be the solution to the IBVP (1.1)-(1.8) or its

weak form (8.1) (the initial condition uy is not considered known). Then
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knowledge of u(t,z) for any open time interval 0 < t; <t <ty andz € S

uniquely determines the region §) and the initial condition uy.

5 Other Boundary Conditions

The results of the previous section show that we can uniquely identify the
unknown portion of the surface of €1 if we pump in enough heat for a long
enough time. However, under such conditions the Neumann boundary con-
dition %ﬁ = 0 on 02 becomes less realistic from a physical standpoint. Those
portions of the boundary on which a nonzero flux is not applied will tend
to lose heat to the surrounding environment. In this section we consider
uniqueness results under boundary conditions which model this heat loss.
The proofs are quite similar to those of the previous section.

Suppose that u(t, z) satisfies the initial-boundary value problem
Ju

5 —Ou = 0on R*xQ | (5.1)
g% +au = g(t,z), on R* x 8Q (5.2)
u(0,z) = wup(z) on Q (5.3)

with @ > 0 and Sy C 9. The Robin boundary condition g;i +ou =0
corresponds to a Newton-cooling type of heat loss on the boundary with
ambient temperature scaled to zero; note that we have assumed that the loss
term —au applies even on Sy, where the flux g is applied.

The solution u to the initial-boundary value problem (5.1)-(5.3) can be
represented with an eigenfunction expansion, as

u(t,z) = ’U(t, :L') + i Tk(t)'l,[)k(.'lt) (5.4)

k=0
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where v(t, z) satisfies the family of elliptic problems (indexed by )

Aw = 0in 9 (5.5)
%MU = ¢ on A9, (5.6)
Ti(t) is defined by
Te(t) = e+ e cu(s)e™ ds, (5.7)
and
alt) = — /Q vt () dz, (5.8)
d = /Q (uo(z) — (0, 2)) ¥ () dz (5.9)

and finally, {\t, ¥r(z)} is an orthonormal eigensystem for —A, i.e., for each
k,

AP+ Mt = 0 in Q,

%+a¢k = 0, on 9N.
an

We order the eigenvalues by magnitude. It is easy to check that all eigenvalues

are strictly positive.

As before, we assume that we have measurements of u(t,z) for z € S; C

on.

Theorem 5.1 Let (u1,$:) and (uz, Q) be solutions of (5.1)-(5.3) with (SpU
Sy) C (091 N 8Q2). Suppose that the applied fluz g(t,z) € CY(R; L%*(89))
and s supported in Sy for each t. Also, assume that

1. g(t,x) s not identically zero.
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2. g(t,x), %‘f(t,x) >0 for all z and t.

—+ 0 ast = 0o.

3. "%%(t’ ) L?(89)

Then uy = ug on RY x S, implies that Q; = Q.

Proof. Our proof proceeds by contradiction. Suppose Q; # 5. The same
reasoning as in the proof of Theorem 2.1 shows that we must have some

nonempty region D C Q (where Q is ; or ;) on which

%—tlf—Au = 0on RtxD
X rou = 0, on Rt x 8D
on

u(0,z) = wup(z) on D
(where u is either u; or uy). We first observe that the solution u(t,z) on D
must tend exponentially rapidly to zero as t — 00. To see this, note that
u(t, z) can be expanded on D in terms of eigenfunctions

w(tyz) = 3 dee () (5.10)

k=0
with

dk = ‘/‘Duo(x)ik(:l‘) dx.
and {Ay,¥x(x)} is an eigensystem for —A on D with boundary conditions

%%—f + atp = 0 on 8D. Again, the eigenvalues are strictly positive. From the
representation (5.10)

l/;)u(t,a:)dxl < \/I—a"U"m(D)
_ \/l—l;l(i(dke‘xotf)l/z

k=0
= 0(e™ (5.11)
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where A > 0 is the smallest eigenvalue for the above eigensystem.
We shall complete the proof of Theorem 5.1 by contradicting relation
(5.11) in the following way: We shall show that, under the hypotheses on g,

(1) / u(t,z) de — / v(t,z)dz as t — oo.
D D
(2) /D v(t, z) dz is bounded away from zero, uniformly in t.

From these two facts, it is clear that / u(t,z) dr must be bounded away
from zero, uniformly in ¢, the desired coxll)tradiction to (5.11).

To establish (1), we first show that ||u — v|jz2(q) =+ 0 as t — co. Note
that (5.4) and (5.7) imply

lu— vl = 3 Ti)
k=0

0 t 2 o

< 2> (/ ck(s)e_)‘*(t—’)ds> +2) die
k=0 0 k=0
00 t 2

= 2y (/0 ck(s)e’x"("’)ds) + o(1) (5.12)
k=0

where the last equality follows from the fact that Ay > 0 for each k. The

integral appearing under the sum on the right can be bounded as

t 2 t/2 t 2
(/ ck(s)e—)u(t—s)ds) — (/ ck(s)e_’\"(t‘s)ds +/ ck(s)e"\“(t‘s)d3>
0 0 t/2
t/2 2
2 ( / ck(s)e“’\"(t‘s)ds)
0

¢ 2
+2 ( / ck(s)e_’\"(t")ds)

t/2

t/2 t/2
< 2 (/ c(s) dS) (/ e~ 2M(t=s) da:)
0 0
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+2 ( /t P i(s) ds) ( / :2 e~ (t=2) d:z:)
ewz\kt _ e—21\gt t/2

2 1 _ 6—I\kt ¢ 2 d
A=) L o

From the bounds (5.12) and (5.13) we conclude that

9 o -—/\',t -—2/\kt t/2 0 p 1 ___e—z\kt t 62 J
— 2, < A . -
o=l < 03 (¢ [ s+ IR [ ey as)

k=0
< C((e™ - e—w) / e fjci(s) ds

+(1— et // Z&(s ds) (5.14)

for some constant C, where we have interchanged the summation and integral
for the convergent series and used that fact that A\g < Ax for k > 0.
Next, note that from equation (5.8) we have Y22 ck(t)? = [|lve(t,-)172(q)»
where v; satisfies
Avy = 0 in @, (5.15)

-5;+avt = g; on 0N (5.16)

Standard estimates similar to Lemma 3.1 show that we can bound
||vt||L2(f2) < C”gt"m(an)- (5.17)

It then follows from (5.14) and (5.17) that

Ct,  _ _
le = ol < S =) sup Jlas, lzaen
O<s<t/2

+(1—e™) sup |lg(s,)llz20m) (5.18)
t/2<s<t
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Since ||ge||L2(90) tends to zero as t increases, it is clear that the right side
of (5.18) tends to zero, and so |lu — v||z2¢qq) = 0 as t = co. In fact, |ju —

v||z2(py = 0 for any D C , so that

I/D(u —v) dzr| < |lu — vl ) < V/IDlllw = vllL2p) = O,

from which we conclude

/Du(t,x) dz — /;) v(t,z)dzx (5.19)

as t = oo, which is (1).
It remains only to establish (2). To this end, let us first consider the case
in which g(¢,z) € C*(IR; C%(0Q)). Then the function v(t,-) € C*() for all t.
We have by the maximum principle that the minimum value of v(t,z) on
occurs at a point on J{2 at which g:’—, < 0. At such a point, av = g — %‘;— >0,
from which we conclude that v(¢t,z) > 0 for £ € Q. In particular, for any
D C Q we have [,v(t,z)dr > 0, with equality if and only if v(t,z) = 0.
Since v = 0 if and only if ¢ = 0 (from (5.15)-(5.16)), the hypotheses on
g imply that /D v(t,z)dz > 0 for each t. (In particular, /D v(0,z)dz > 0.)
Furthermore, since g, > 0, the same reasoning shows that [, v;(¢,z)dz > 0

for any D C @ and all t > 0. Consequently, for each t > 0,

/Dv(t,a:) dz = /Dv(O,x)d:v—{-/Ot—a%/Dv(s,x) dzds
= /Dv(O,x) d:v+/0t/th(s,a:) dzds
> /Dv(O,x)dz>0,

where we have used the fact that D is bounded and smooth enough to inter-
change the order of integration and differentiation. This establishes (2) for
g(t,z) € CY{IR; C?*(090)).
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Finally, we note that the same conclusion holds if g(¢, -) is merely L2(9Q),
rather than C2(9(2), for we can approximate any non-negative g € L?(912)
arbitrarily closely (in L%(8))) with a non-negative function g(¢,-) € C?(09Q).

From the standard estimate

lv = 3ll2) < Cllg = dllz2 (00

where ¥ satisfies the boundary value problem (5.5)-(5.6) with g replaced by

g, we conclude that ||v — ¥||2(p) can be made arbitrarily small. Since

|/ ot.2)dz— [ 5(t,2) ds| < DIl = dllao) < Cllg = Glizion)

and since fj, 9(t,z) dz > 0 uniformly in ¢, we conclude that [, v(¢,z)dz > 0

uniformly in ¢ also. This establishes (2), and completes the proof. O

6 Concluding Remarks

We have examined a variety of settings in which the Cauchy data for the
heat equation uniquely determines the shape of the region on which the heat
equation is defined. Specifically, if the initial temperature is constant over the
region of interest then the Cauchy data—temperature and heat flux—on any
open portion of the boundary of the region over any time interval determines
the shape of the region. In the case that initial conditions are not constant
the Cauchy data on the time interval (0, 00) uniquely determines the shape
of the region, provided that the flux satisfies certain reasonable conditions.
For insulate boundary condltlons = 0 the flux g(¢,z) must provide a net

positive heat flux at all times, bounded away from zero, and ¢; must be

27



bounded. For the Robin boundary condition 3—3 + au = 0 the flux should be
positive at all points and times.

While a uniqueness result holds, this inverse problem is most certainly
ill-posed; the shape of the region will not be a continuous function of the
measured data in any reasonable norm. A next logical step is to examine
and quantify the nature of the ill-posedness and the kinds of features of the
boundary that can be stably estimated from the Cauchy data. This should
give insight into useful reconstruction algorithms. Such an algorithm might
be based on the ideas in [2]—linearize the forward problem and examine
the linearized map from the “boundary shape” space to the measured tem-
perature data. The forward map will be given as an integral operator with
smooth kernel, and will of course have an unbounded inverse. We are cur-
rently studying such an approach to gain an understanding of stability and

reconstruction possibilities.
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