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Abstract. This paper is concerned with finding two solutions of a set covering problem
that have a minimum number of variables in common. We show that this problem is NP-
complete, even in the case where we are only interested in completely disjoint solutions.
We describe three heuristic methods based on the standard greedy algorithm for set
covering problems. Two of these algorithms find the solutions sequentially, while the
third finds them simultaneously. A local search method for reducing the overlap of the
two given solutions is then described. This method involves the solution of a reduced
set covering problem. Finally, extensive computational tests are given demonstrating
the nature of these algorithms. These tests are carried out both on randomly generated
problems and on problems found in the literature.



In numerous practical situations it is desirable to find multiple and mutually indepedent solu-
tions to the same problem. For example, in network communications, we may want to find several
edge-disjoint paths linking two nonadjacent nodes. The existence of such paths reduces the chance
that the two nodes cannot communicate, since noncommunication takes place only when all links
must have been severed. Another example occurs in staff scheduling, where a manager wants to
have several independent teams of workers so that each team has all the resourses needed to com-
plete the job. In combinatorial optimization, typical examples where such situations occur involve
finding a set of pairwise disjoint cliques in a graph maximizing the total number of vertices or
finding multiple pairwise disjoint edge covers in a graph. This paper is concerned with the problem
of finding two solutions to the set covering problem that share a minimum number of variables.

This problem has an important application in the design of tests for evaluating the psychiatric
condition of a patient. Psychometric testing is performed by means of large questionaires involving
many (sometimes hundreds of) “items” or questions. The answers to these questions are used to
determine the condition of the patient. It was noticed, however, that the patient’s condition can
be identified even if only a subset of the questions is used. There are many subsets of questions
providing all the necessary information for classifying a patient. If 0-1 variables are associated to
each of the original questions, to indicate whether a question is eliminated from the list or main-
tained in it, then the acceptable set of questions capable of providing the necessary classifications
can be obtained by solving a system of set-covering type inequalities.

Frequently it is important for psychiatrists to administer the same test repeatedly to the same
patients. It is advisable in such a situations to minimize the number of overlapping questions ap-
pearing in two or more questionaires. This can be achieved by finding several distinct solutions to a
system of set-covering type inequalities; the number of questions appearing in any two questionaires
is the number of those components of the solution vectors that take the value 1 in both solutions.

Many exact and heuristic algorithms have been proposed for the set covering problem, par-
ticularly due to their importance in large aircraft scheduling problems, each capable of solving
large instances of the problem. While there is a vast literature on the set covering problem
(11, 4, 6, 8, 12, 16]), it appears that the question of finding two maximally disjoint solutions to
a set covering problem has not been previously addressed.

In this paper we are concerned with the problem of finding two solutions to a set covering
problem in such a way so that their overlap is minimized. In Section 1, we give a constrained
quadratic pseudo-Boolean optimization model for this problem and show that the related decision
problem is NP-complete. In Section 2 we develop three heuristic algorithms and a local search
procedure for obtaining good approximations to our model. Finally, in Section 3, we describe some
computational results obtained for each of these algorithms. These tests are performed both on
randomly generated problems and problems obtained from the literature [5].

1 Problem Formulation and Complexity

In this section we will give a formal definition of our problem, along with a formulation of it as a

quadratic pseudo-Boolean optimization problem. Finally, we will show that the decision problem

is NP-complete, even if we only wish to determine whether there exist two disjoint solutions.
Given the ground set N = {1,2,...,n}, the problem we shall consider is the following:



Overlapping Covers:
Instance: A collection Ny, Ny,..., Ny of subsets of N and an integer k.
Question: Do there exist collections C1,C2 C N, such that (a) N; N C; # ) for all
i=1,...,mand j=1,2, and (b) |Cy NCy| < k?

This combinatorial decision problem has an equivalent integer programming formulation. Let A be
an (m X n)-matrix where
aij={ 1 ifj€5;

0 otherwise.

The question then becomes: Do there exist two solutions x,y € {0,1}" such that

The associated optimization problem can be formulated as an integer program:

T
min Zmiyi (1)
i=1

s.t.
Ax>1 (2)
Ay >1 (3)
x,y € {0,1}", (4)

‘which can be viewed as a quadratic set-covering problem. From now on, we will call solutions x,y
covers if they satisfy (2) and (3), respectively.

Since problem Overlapping Covers is very similar to the set-covering problem, it is to be
expected that this problem is also NP-complete. Indeed, this is the case. Before we prove this
result, for the special case where k = 0, we first need a Lemma characterizing whether two non-
overlapping solutions can exists. For both proofs, we use the equivalent integer programming

formulation of the problem.
Lemma 1 Given a 0-1 matriz A, there exists two covers X,y such that
Ax>1, Ay>1, xTy=0 (5)

if and only if there exists a cover z such that, for every 1 <i <m,

n n
1 S Zaijzj S Zaij — 1. (6)
Jj=1 =1

Proof. Let x and y be covers that satisfy (5) and suppose there exists an i < m such that

n n
Z a,-jzj = Z a,;j.
=1 j=1



This implies that x; = 1 for all j such that a;; = 1. Since y is a cover, there exists a j < n such
that a;; = 1 and y; = 1. But this contradicts x and y satisfying (5). Hence, x satisfies (6).

Now suppose there exists a cover y satisfying (6). For each i, let L(¢) = {j : a;; = 1,y; = 0}.
Consider the following constraints:

S xi>1 i=1,...,m. (7)
JEL(?)

Let x be a solution to (7) with z; = 0 if j ¢ {JiZ; L(?); then x and y satisfy (5). O

Theorem 1 Overlapping Covers is NP-complete, even if k = 0.

Proof. Consider an instance of the NP-complete problem Not-All-Equal 3SAT:

Not-All-Equal 3SAT:
Instance: A set U of variables and a collection C of clauses over U such that each
c € C has |¢| = 3.
Question: Is there a truth assignment of U such that each ¢ € C has at least one
true literal and at least one false literal?

We will construct an instance of Overlapping Covers and show, using Lemma 1, that the answer
to Not-All-Equal 3SAT is YES if and only if the answer to Overlapping Covers with k = 0 is
YES.

For each u € U, construct two variables z,,T,, representing the two literals used in our 3SAT
problem. For each ¢ € C, we will represent the literals as z;. Hence, z; = z, or z; = T, for some
variable u € U. Consider the following set covering constraints:

Zz,— >1, ceC (8)
i€c

Ty +Ty > 1, uel. (9)

Suppose the answer to Not-Al1-Equal 3SAT is YES, and let z be such a truth assignment. It
is easy to see that the following conditions must hold:

1<) %<2, ceC
i€c

1<z +TF, <1, wuel.

Hence, by Lemma 1, Overlapping Covers has a YES answer. If Not~Al1-Equal 3SAT has a NO
answer, then, for every truth assignment z, there must exist a ¢ € C such that

Zzi=3.

ieC

By Lemma 1, this implies that Overlapping Covers has a NO answer. a



2 Heuristics and Local Search Algorithms

In this section we describe three heuristic methods for solving the Overlapping Covers problem
(1)-(4). Each algorithm is a variant on the standard greedy algorithm for the set covering problem,
but with differing methods for obtaining the two needed solutions. Two of the algorithms obtain
the two solutions sequentially, using the first solution to obtain the second solution, while the third
algorithm obtains the two covers in parallel.

We will also describe a local search algorithm for reducing the overlap of any pair of solutions
of the set covering problem. This is achieved by obtaining a cover to a related set covering problem
which uses the two given solutions. In this way we make all of our improvements in one step,
instead of the traditional local search algorithms that make many small improvements.

Throughout this section, the following definitions are used. Let IV be the set of variable indices
and M be the set of row indices. Let S; and Sy be the sets of variables selected for the covers
x and y. A row ¢ is covered if there exists a variable j such that 7 is selected for that cover and
a;j = 1. We denote the cost of variable j by cost(j) and the number of variables in row i by size(i).
At each iteration, let ¢(j) denote the number of uncovered rows ¢ such that a;; = 1, i.e the number
of new rows that would be initially covered by variable j if j is selected. In addition, for each row
¢ we let 7(2) be the number of variables in row ¢ that have been selected in the current cover.

Since each heuristic described below is a variant of the standard greedy method for set covering
problems, we will review that algorithm. At each iteration, the greedy method obtains the list of
unselected variables j that maximize the greedy function G(j) = c(j)/cost(j). This list is referred
to as the candidate list CL. A variable j is then selected randomly from CL. Once a variable has
been selected, the value of c(k) is updated for each unselected variable k. The algorithm continues
until all rows have been covered. For an analysis of this algorithm, see [8].

2.1 Twosol Algorithm

In this section, we describe a heuristic Twosol for solving (1)-(4). This algorithm uses the greedy
method described above to generate two solutions with minimal overlap.

Twosol can be broken down into two main components: first, we find an initial solution that
tries to “leave room” in each row for a second solution; second, we find a second solution which
uses as many variables as possible that are not used in the first solution. In order to obtain our
initial cover Sz, we initially assign each variable j a cost cost(j) = 1. At each iteration, we select a
variable j from the candidate list CL. We then update the data structures () and ¢(5) for each
row ¢ and variable j. If there exists a row ¢ such that r(i) = size(i) — 1, i.e. there is only one
unselected variable k remaining in row i, we change the cost of variable k to cost(k) = M, for some
large number M. This change of cost is done, in the spirit of Lemma 1, in an attempt to generate
solutions with no overlap. Because of this change in cost, a variable j with cost(j) = M will only be
selected if there are no more unselected variables with unit cost. This procedure is then repeated
until all rows have been covered.

Once an initial solution S, is obtained, we proceed to find a second solution that has minimal
overlap with the first. For each variable j € Sz, we set the cost of j to cost(j) = M; for all other
variables, we assign a unit cost. In this way, we will only have a variable j selected in both solutions
if a second solution cannot be obtained without it. This second solution Sy is then obtained using



the standard greedy heuristic for set covering problems.

2.2 GRASP

In this section, we present a randomized version of the Twosol heuristic described in Section 2.1.
This heuristic is based on the GRASP heuristic for set covering problems that was described
in 2, 3, 11, 12]. GRASP algorithms, or “Greedy Randomized Adaptive Search Procedures”, have
been used to develop effective heuristics for various combinatorial problems (see [13] for references).
In general, this procedure chooses a candidate list RCL of possible next iterates using a greedy
function, and then randomly chooses the next iterate from this list. Once a solution is obtained,
a local search algorithm is employed to improve upon the solution. This algorithm is repeated
many times, with the best solution kept throughout. The randomization in the algorithm occurs
in the generation of a candidate list. In traditional greedy methods, the candidate list consists
of those variables j optimizing a given greedy function. In a GRASP algorithm, the candidate
list is expanded to contain those variables that are within a certain user-defined percentage of the
optimal greedy function value. This allows a larger variety of variables to be chosen, including
those that may not give the greatest gain in the current iteration. The GRASP algorithm is run
many times to take advantage of this randomization, with the best solution updated after each run.
Since greedy methods typically do not generate optimal solutions, such approaches have typically
produced better heuristic values (see for example [12, 13, 16]).

The GRASP algorithm for the overlapping set covering problem incorporates a randomized
version of the Twosol algorithm described in Section 2.1. Thus we first use a randomized greedy
algorithm to obtain each solution separately. Initially, we assign each variable 7 a unit cost (cost(z) =
1). At each step in finding a cover, we initally find v = max{G(j) : j not selected}. We then create
the candidate list

RCL = {j not selected : G(j) > (1 — a)v},

where 0 < o < 1 is a parameter describing how large our candidate list is. A variable j is then
selected randomly from RCL and placed in S;. We make certain that an unselected variable i with
cost(i) = 1 is chosen, if one exists. This ensures that the general idea of our deterministic heuristic
is kept. Each ¢(j) and r(2) is updated for all unselected variables j and rows i. If there exists a row
i such that r(i) = size(i) — 1, i.e. there is only one unselected variable k remaining in row i, we
change the cost of variable k to cost(k) = M, for some large number M. This process is repeated
until all rows have been covered.

Once a solution is found, we obtain a second solution much like we did in Section 2.1. Initially,
we set cost(j) = M for each j € S; and set cost(j) = 1 for all other variables. In each iteration,
we obtain the candidate list RC'L as above by first identifying v and including those indices with
greedy function value at least (1 — a)y. Again, a variable 7 € RCL is selected at random and
placed in S,,. We then update each c(k) and iterate again until all rows have been covered.

We generate multiple covers in order to take advantage of the randomization process. To do
this, we generate, for every “first” solution S, a series of “second” solutions Sy, and do our “local
search”. After each pair of covers is obtained, the best solutions are updated. Typically, one would
generate multiple “first” solutions, and for each such solution, generate multiple “second” solutions.



2.3 Generating Solutions Simultaneously

In this section we describe the heuristic Simul for obtaining solutions with small overlap. This
heuristic differs from the first two in that the two solutions will be constructed simultaneously
instead of sequentially. Because of this difference, we need to keep track of two instances of the
same problem, one for each solution. These instances will be referred to as instance I, and instance
I,. For each instance we will use the definitions costz(j) (costy()), cz(5) (cy(5)), and () (ry(3))
to refer to the information needed for instance I, (1,).

Th Simul heuristic is very similar to the greedy heuristic described in Section 2.1. At each
iteration, we select a variable from instances I, and I, that covers the most uncovered rows at
minimum cost. We then update each instance and proceed. In each iteration, we wish to select
variables j; and jy that (a) have not been selected in the other instance, and (b) are not the last
unselected variable in a given row. To do this, we set up two candidate lists for each instance:
the “good” list Cf (C¥) and the “bad” list Cf (Cy). CF (C}) contains those unselected variables
in instance I, that have been selected in instance I, (I;) as well as those variables that are the
last remaining unselected variable in some row of instance I (I,). Cy (C¥) contains all remaining
unselected variables of instance I, (I,). In order to select the next two variables, we first select,
using a greedy approach, the best variable in C7 and CJ. If either of these lists is empty, we
select a variable from the “bad” list. If we have selected the same variable, we choose other
variables at random from the same lists that have the same greedy value, if possible; otherwise
we make no change in variables. Once the two variables j; and j, have been selected, we update
the data structures as follows: (a) in instance Iy (I;), jo (jy) is moved from CY (C%) to CY (CF);
(b) each cz(k) and ¢y(k) is updated for all unselected variables in I, and Iy; (c) each rz(i) and
1y(?) is updated in I and I. If there exists a row i in instance I (I,) with r,(i) = size(i) — 1
{ry(é) = size(i) — 1), then the remaining free variable in row 7 is moved from C§ (C¥) to C¥ (C}).
This process is repeated until at least one of the instances has no remaining uncovered rows. If
the other instance has rows still uncovered, we complete this cover by using the standard greedy
algorithm, where each variable j € Cy has cost(j) = 1 and each j € Cj, has cost(j) = M.

Example. Consider the following set covering constraints:

wy + wy + ws
wy + wy + ws
un + ws + ws

wy + wy
wy + w3 + Ws

Wy + Wy
w3 + wy + ws

vV IV IV IV IV IV IV
O T = T = =,

At the start of Simul we have the following data:
Cy, Cd = {1,2,3,4,5}
br Cy 0
ca(l) =¢y(1) = 4



ex(?) =c,(2) = 4
ca(3) = ¢y(3) 4
co(4) =cy(4) = 3
ex() = c,(5) = 4.

lteration 1: We choose the following variables at random from Cg and C}: jz = 1, jy = 2. This
leads to the following updated instances and data (we list only uncovered rows in each instance):

I, wy+wsg+ws>1 Iyj: witws+ws >1
wy +wy > 1 wy+wg 2> 1

w3 +wy +ws > 1 w3 + wy + ws > 1
= {3,5} CY = {3,5}
Cy ={2,4} CY ={1,4}.

Note that 7 = 4 is in both C¥ and C} since it is the last remaining unselected variable in a row
of instances I, and I,,.

Iteration 2: At the start of this iteration we have cz(3) = cz(5) = 2 and ¢,(3) = ¢,(5) = 2.
Choosing at random the variables j, = 3, j, = 5, we get the following instances:

I;: wo+ws>1 I wi+wg>1
cs =0 CY=0
{245} C})’ {134}

Iteration 3: We now have ¢(2) = cz(4) = 1, cz(5) = 0, ¢,(1) = ¢;(4) = 1 and ¢,(5) = 0. We
now randomly choose the variables j; = 2, j, = 1 to obtain covers S; = {1,2,3} and S, = {1,2,5}.

Let us remark here that we can implement a GRASP version of Simul similar to the GRASP
version of Twosol. In this version, we expand the candidate list in each instance I and I, by using
some predefined parameter . Here we only include variables within the same list; for example, if
Cg # 0, then RCL C C7. This way, we only choose those variables that would give an overlap if
it is necessary to cover every row.

2.4 Local Search Method

In this section we describe the local search method used after two solutions have been found using
any of the heuristics given in Sections 2.1, 2.2, and 2.3. This procedure tries to find all improvements
at once by solving an additional set covering problem. Our local search procedure changes the cover
Sz in the following way. Let S be the solution of the “local search” set covering problem and let S
be those variables in S, that are not in S,. Then our revised cover S, becomes S U S.

Suppose we are given two covers S; and S. Let OV = 5; NS, be those variables in both covers
and let F'= N — (55 U Sy) be those variables in neither cover. The variables in our “local search”
set covering problem are N = OV U F. The set of rows for this new problem consists of all those
rows ¢ € M that contain a variable j € OV and no variable in S; — OV. In other words, we are



trying to cover with variables in I the rows that are only covered in solution S, by variables in
OV. Each variable j € OV is assigned cost(j) = M, while each j € F is assigned cost(j) = 1.
Once this new problem is defined, the standard greedy algorithm is used to obtain a new solution
S, and then Sy = SUS.

Example.  Consider the example given in Section 2.3. The two covers given there were
Sz = {1,2,3} and S, = {1,2,5}. Our “local search” set covering problem then consists of the
variables OV U F' = {1,2} U {4} and rows

wy+wy > 1
wtwy 2> 1
we+ws = 1.

Note that any row which contains variable 3 and either of variables 1 or 2 (i.e, rows 1,3, and 5) are
not included in this new problem since j = 3 covers these rows already and will be in the revised
cover S;. The standard greedy algorithm will give one of two solutions: S = {1,4} or § = {2,4}.
Choosing the first one, without loss of generality, yields the revised cover S, = {1, 3,4} which only
overlaps Sy in one variable. It is not too difficult to see that this is the best we can do with these
rows.

3 Computational Results

In this section we present the results of computational experiments used to examine the bahavior of
the algorithms given in this paper. We implemented six versions of our algorithms: Twosol, GRASP
algorithms with a = 0.25 and a = 0.5, Simul, and GRASP versions of Simul with a = 0.25 and
a = 0.5. Our algorithms were written in C++ and were run on a Silicon Graphics MIPs 10000
with 192M memory and 175 Mhz clock speed. The GRASP versions of Twosol generated 25 ”first”
solutions and, for each such solution, 20 ”second” solutions, for a total of 500 solutions, while the
GRASP versions of Simul generated 500 pairs of solutions. The algorithms were tested on several
types of problems, some from the literature and others randomly generated. The problems from
the literature come from [1, 4, 12, 16} and are available on the internet ([5]).

The first set of problems from the literature are problem sets 4-6 from [1] and sets A-E from
[4]. Most of these problems were originally generated to test weighted set covering problems. Here,
we disregard the costs of the columns. Table 1 gives the details on these problems. Note that, for
these problems, we have more columns than rows.

For the problems in each of the above problem sets our algorithms found two disjoint solutions.
This does not not seems surprising; in randomly generated problems, we should expect that, if
there are many more variables than constraints, there are more choices for covers, and hence, at
least two disjoint solutions.

The next set of problems we consider comes from [12]. These problems arise in computing the
1-width of incidence matrices of Steiner triple systems. The f-width of a (0, 1)-matrix A is the
minimum number of columns that can be selected from A such that all row sums of the resulting
submatrix of A are at least 3. The incidence matrices A that arise from Steiner triple systems
have precicely 3 ones per row. These problems are considered computationally difficult for the set
covering problem. Details for these problems are given in Table 2. For several of the test problems



Problem Set Rows Columns Density (%) Number of Problems

4 200 1000 2 10
5 200 2000 2 10
6 200 1000 5 5
A 300 3000 2 5
B 300 3000 5 5
C 400 4000 2 5
D 400 4000 5 5
E 50 500 20 5

Table 1: Details of Problem Sets 4-6 and A-E

Problem Rows Columns Best Known Cover Bound on Overlap

Aq 12 9 5 1
Ass 35 15 9* 3
Aoy 116 27 18* 9
Ags 330 45 30* 15
Agy 1080 81 61 41
Aggz 9801 243 204 165

Table 2: Details of Steiner Triple Problems ( * optimal)

of this type (Ag, A1s, A27, A4s), the optimal cover size is known. Since this size is more than half of
the number of variables, a lower bound on the minimal overlapping of two solutions can be derived.
For all other problems, we only have the best known size of the cover; hence, any “lower bound”
derived from them may not actually be a bound. We list each of these bounds in Table 2.

The test results for these problems are given in Table 3. Note that, as can be expected, the
GRASP versions of Twosol and Simul performed better than the deterministic versions. Also, the
GRASP versions of Twosol found optimal solutions for Ag, A;s, and Agy.

The third set of problems, the CYC set, is derived from an old question of P. Erdds ([9]): what
is the minimum number of edges of a hypercube that can be chosen so that every cycle of 4 edges
contains at least one chosen edge? This question can be viewed as a set covering problem, with
the hypercube edges corresponding to the variables and the 4-cycles to a constraint. We consider
problems generated from hypercubes of dimensions d = 6,7, 8,9, 10. Details of these problems are
given in Table 4.

Test results for this problem set are given in Table 5. For these problems, we see that the
deterministic algorithms perform much better than their randomized versions, and that, for the
larger problems, the more you increase the amount of randomization, the worse the algorithm
performs. This may be due to the structure of the problem, but we cannot be certain. Otherwise,
note that the deterministic algorithms give optimal or near optimal solutions in every problem.



GRASP Simul - GRASP
Problem Twosol a=025 a=05 Simul a=025 a=05
Ag 1 1 1 1 1 1
Ais 4 3 3 4 3 3
Asy 11 9 9 11 10 10
Aus 18 18 18 21 18 19
Agy 48 45 45 49 45 44
Aggy 174 167 168 171 168 169
Table 3: Results on Steiner Triple Problems
Problem Rows Columns Density
CYC.6 240 192 2.1
CYC.7 672 448 0.9
CYC.8 1792 1024 0.4
CYC.9 4608 2304 0.2
CYC.10 11520 5120 0.08
Table 4: Details on CYC Problems
GRASP Simul - GRASP
Problem Twosol a=025 a=05 Simul a=025 a=05
CYC.6 0 0 0 0 0 0
CYC.7 0 0 0 0 0 0
CYC.8 0 0 2 0 1 7
CYC.9 0 3 11 1 13 35
CYC.10 1 25 76 14 69 141
Table 5: Results on CYC Problems
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GRASP Simul - GRASP

n m  Row Density Twosol a=1025 a=05 Simul o=025 o=05

50 500 3.26 20.92 20.8 21.12  21.12 20.52 21.16
1000 3.28 2094 28.72 29.28 29.4 28.88 29.44

1250 3.30 31.68 31.48 31.88  31.84 31.36 31.8

TOTALS 82 81 82.28 8248 80.76 82.4
75 750 4.14 22.32 21.92 22.8 22.24 21.8 22.76
1500 4.18 33.76 33.6 34.84  34.28 34.16 34.56

1875 4.17 37.64 37.68 38.68  38.28 37.84 38.76

TOTALS 93.72 93.2 96.32 94.8 93.8 96.08
100 1000 5.26 16.8 16.72 17.76 16.8 16.52 17.73
2000 5.26 31.48 31.88 33.52  32.16 32.08 33.28

2500 5.25 36.36 36.76 38.38 3744 37.16 38.2

TOTALS 84.64 85.36 89.66 86.4 85.76 89.21

Table 6: Results on Randomly Generated Problems

The last set of problems we consider are randomly generated. We generated random data sets
with n = 50, 75, and 100, and, for each n, we took m = 10n, 20n, 25n. These were done because of
our experience in the Steiner Triples and CYC problems sets, where there were more constraints
than variables. The matrices are generated with density approximately 5% so that each row has
at least 2 entries. For each n and m, we generated 25 test problems. Results of the test runs on
these problems are given in Table 6. We also include the average number of variables per row in
the problems. In Table 6, we indicate the best average solutions for each problem set. Versions
of the algorithms Twosol and Simul generate the best solutions for roughly half of the problems.
Also, there does not appear to be much difference between the best version of Twosol and the best
version of Simul. In addition, note that as we increase the randomization of the algorithms, the
solutions tend to get worse. This also occurred in the CYC problem set.

We will next describe the effect of the “local search” procedure we implemented. We use the
Steiner Triple problems described in Table 2, the CYC problems described in Table 4, and the
randomly generated problems where m > n. Test results for all problems are given in Table 7.
We give the percentage of improvement over the initial solution of each algorithm. We note that
the Twosol algorithm and its GRASP version with a = 0.25 generate solutions that are almost
local, and hence our “local search” yields little improvement. Also, we see great improvement in
the Simul algorithms. Our procedure in general gives modest improvements when added to each
of the described algorithms.
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Problem Set GRASP Simul-GRASP

') m Twosol a=0.25 a=05 Simul a=025 a=0.,
Steiner Triples 0.0 1.62 3.56 4.81 4.67 5.75
CYC 0.0 0.0 1.30 61.11 60.80 51.04
50 500 0.19 2.07 4.69 14.63 13.49 10.34
1000 0.14 1.78 5.06 7.78 7.32 5.28
1250 0.25 0.88 1.60 9.03 3.57 3.28
75 750 0.36 2.49 5.00 18.83 22.03 16.32

1500 0.47 0.94 3.86 14.73 10.48 8.67
1875 0.11 0.53 4.07 12.12 10.50 7.01
100 1000 0.71 3.69 9.39 27.21 29.88 30.88
2000 0.38 2.57 5.10 18.95 19.07 16.21
2500 0.66 1.71 4.34 14.29 14.85 11.90

Table 7: “Local Search” test results (in percentages)

4 Conclusions

In this paper we described two basic algorithms and randomized versions of them for the problem
of determining two maximally disjoint solutions to a set covering problem. These algorithms were
tested on problems both randomly generated and from the literature, yielding good approximate
solutions in each case.

As stated in the introduction, it is often desirable to have more than two solutions to a set
covering problem that are pairwise maximally disjoint. The Twosol algorithm and its GRASP
version can be extended to provide solutions for this case. The major change that would be needed
is adjusting the cost of a variable when it has been chosen by other solutions. We may, after finding
k solutions, make the cost of variable ¢ be k; x M, where k; is the number of solutions that have
z; = 1. Unfortunately, the Simul algorithm does not have such an easy transition to handle this
problem.
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