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Abstract

We examine the inverse problem of determining the shape of some unknown portion
of the boundary of a region 2 from measurements of the Cauchy data for solutions to the
heat equation on Q. By suitably linearizing the inverse problem we obtain uniqueness
and continuous dependence results. We propose an algorithm for recovering estimates
of the unknown portion of the surface and use the insight gained from a detailed analysis
of the inverse problem to regularize the inversion. Several computational examples are
presented.
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1 Introduction

Thermal imaging is a technique that can be used for fast, non-contact detection and evalua-

tion of defects in materials. It has been used successfully in a variety of nondestructive testing

*This research was supported in part by the NSF under Grant #DMS-9623279.

1



applications, including the detection and imaging of defects in aircraft [7]. The technique
consists of applying a heat flux to the surface of the sample to be imaged, then monitoring
the surface temperature response of the sample. From flux-temperature measurements one
tries to estimate the internal properties of the sample, or to determine the condition of some
inaccessible portion of the sample boundary.

The resulting inverse problem is extremely ill-posed. The flow of heat through an object
is of course a diffusive process, and as a result the reconstructions obtained using this method
suffer from “blurring” due to the diffusion. Attempts have been made to understand the
nature of the blurring, and counteract it, e.g., [5],[6]. In [2] we examined a quasi-steady state
version of the problem and the associated blurring due to the ill-posedness of the problem.
Other attempts at estimating interior sample properties from boundary measurements have
used least-squares estimation techniques, e.g., [1], [4].

In this paper we make a detailed examination of a common problem in thermal imaging—
the determination of the shape of some inaccessible portion of a sample’s boundary. Specif-
ically, let 2 be an n dimensional box or “slab”, 2 = {z € R™; 0 < 7} < br}. We assume
that the “front surface” at x, = b, is accessible for measurements. The rest of the surfaces,
including the “back surface” z, = 0, is considered to be inaccessible and may, under certain
conditions, suffer damage or corrosion and so assume the shape z, = S (1,...2,-1). The
goal is to determine the function S by making measurements on the accessible portion of
the boundary.

In [3] we established that the inverse problem of determining the shape of an inaccessible
portion of the boundary of a sample from thermal measurements is uniquely solvable given
some modest restrictions on the domain and input heat flux. The results are applicable
here—the boundary can, in principle, be determined. In this paper we consider a linearized
version of the inverse problem and use this to establish a simple relation between the input
flux, back surface profile S, and measured data. In some ways our approach is similar to
that of [5], in which the authors linearize by establishing a Born approximation for the front
surface data in order the reconstruct the back surface. However, our results hold for any type
of back surface or input flux. Although our main interest is stability and reconstruction, we

also establish a uniqueness result for reasonable input fluxes. For the most common case in



which the input flux is spatially constant (but a function of time) we establish sharp stability
estimates for the inversion process and develop an algorithm for estimating the back surface
profile from front surface measurements. Finally, we present computational examples. Our
analysis and results hold for regions in any dimension n > 2, but we present computational
examples only for two dimensional domains.

The paper is organized as follows. In section 2 we give a careful statement of the forward
and inverse problems, and construct a linearized version of the inverse problem, that is,
we linearized the relationship between the back surface described by z, = S(zy,... y Tn—1)
and the temperature data. In section 3 we establish an integral equation which relates S
to the front surface data and use this relation to establish uniqueness for the linearized
inverse problem under realistic assumptions on the input flux and initial condition. Finally,
in section 4 we use this relation to examine the stability of inversions in the case in which the
input flux varies in time, but is spatially constant. We present an algorithm for recovering

estimates of the back surface and show a number of examples.

2 The Forward and Inverse Problems

2.1 Notation and Geometry

We will use © = (z1,...,2,) to denote a point in R" and will write = (2',z,) with
x' = (21,...,%Zn-1) to distinguish the nth component of 2. Let B denote a box in n — 1
dimensions, of the form 2’ € R™ ™! with 0 < z; < b, for some br, 1 <k <n-1. Let Q) denote
the n-dimensional box consisting of points z = (2, z,) with 2/ € B and 0 < z, < d, where
d is a constant which denotes the thickness of €)y. The n-dimensional box )y represents
the undamaged or reference configuration of the sample to be tested. The region ) is
bounded, but with minor modification our results also hold for unbounded regions, e.g., in
which B = R™™!. We will highlight this at the appropriate point.

Let  denote the damaged sample whose boundary is to be determined. We take
to comsist of points x = (2',z,) with 2’ € B, S(z') < z, < d, where S is a C? function

defined on B with supp(S) C B. The value of S represents the amount of material loss in
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the sample. Of course, material “loss” dictates that S > 0, although this restriction is not
mathematically required. The requirement that S be C? will later be relaxed. We use I'; to
denote the top surface of the sample, (2, d), with 2’ € B. I'; is that portion of the boundary
of (¥ which is accessible for measurements. Let I’y denote the “back” surface of the sample,

(a',S(2')) with 2’ € B.

2.2 The Forward Problem

The function u(t, ) will be used to denote the temperature of the sample at position z and

time ¢. The forward problem which models the flow of heat through the sample Q2 (or Q) is

%tlf-—aAu = 0 in (0,00) X Q, (2.1)
0
Iia—z- = g(t,2') on Iy,
%,
fca—:j = 0,on 9N\,
w(0,z) = f(z).

Here a > 0 is the thermal diffusivity of the sample (assumed constant, and with temperature
variation sufliciently small that « is independent of u). The constant x > 0 is the thermal
conductivity of the sample (with the same assumptions as ), and g(t, 2’ ) is the input heat
flux applied to the top surface at time ¢ at the point (z/,d). We will assume that g has
compact support in time and is not identically zero. The vector v is the outward unit
normal on J§. Note that we are modeling the unknown portion of the boundary of  as a
perfect thermal insulator.

We have included the physically relevant constants «, e, and d, since the conditioning
of the inverse problem depends heavily on the relative values of these parameters and is
therefore of practical interest. However, for now we introduce rescaled dimensionless variables
f=z/dand t = 2t and define @(f,7) = Ru(t,r) = g-u(%?—f, dz). The heat equation (2.1)

then becomes,

%%——Aﬁ = 0 in (0,00) x £, (2.2)
FagY, . .
(—9—3 = g(t,z), on Ty, (2.3)



— = 0, on I, (2.4)
4(0,%) = f(2). (2.5)

with §(£,%) = g(%f, dz') and f() = £f(di). Here Iy denotes the rescaled back surface
(#,8(3") with S(&) = LS(d#') and T'; denotes the surface (¢,1). {2 is the region bounded
by I’y and I'; on top and bottom, and dB on the “sides”.

We will continue our analysis with the rescaled problem (2.2)-(2.5), but will omit the

tilde’s on the variables and domains.

2.3 The Inverse Problem

The inverse problem is this:

Letu(t, z) satisfy the initial-boundary value problem (2.2)-(2.5) with known input flux g(t,a’).
We may or may not consider the initial temperature f(z) as known. Given measurements

of u(t,x) for x € I'y over a time interval (t,,t,), determine the back surface x, = S(').

The relevant questions are:
¢ Under what conditions is the back surface uniquely determined?

e How stable is any inversion with respect to noise in the temperature and flux measure-

ments?
e How can one efficiently recover an estimate of the back surface?

In [3] we proved that for any bounded region (not necessarily of the form described above),
knowledge of the flux-temperature data on any open portion of 9§ and over a “sufficiently
large” time interval uniquely determines the unknown portion of the boundary (in this case,
(z',.5(2"))) and the initial condition, provided the input flux satisfies certain assumptions. If
one know a priori that the initial data f is constant, then knowledge of the flux-temperature

data over any time interval suffices to determine the unknown portion of the boundary.



However, with no assumptions on the input flux and initial condition one can construct
counterexamples to uniqueness.
The main focus of this paper is the latter two questions posed above, although along the

way we prove some uniqueness results.

2.4 The Linearized Inverse Problem

In this section we derive an approximate linearized relationship between S and u. We begin
with a change of coordinates. Let ¢ : R® — IR™ denote the map
z, — S(z’
(', z,) = (a:’, 15 S(EL"))>
for 2’ € B, S(2') < x, < 1. Then ¢ maps the sample region § into the region € while
keeping I'y fized. Also, since S(2’) < 1, it’s easy to see that ¢ is invertible. Define the
function v(t, x) = u(t,¢~'(x)) on Q, where u(t, z) satisfies (2.2)-(2.5). It is not difficult to

check that v(t, z) satisfies the equation

1 Ov

m—a—t———v-yvu:() (26)

in (0,00) x Qp, where D¢ denote the Jacobian of ¢, |D¢| the determinant, and v =
(D¢)(D¢)" /|D¢|. The boundary and initial conditions (2.3)-(2.5) become

-g% = g(t,2') on Ry, (2.7)
—g—% = 0 on 8Q0\R1, (28)
v(0,2) = f(¢7'(x)) (2.9)

where 77 = (D¢)v. Here R; denotes the top surface of Qq, {(2/,1);2’ € B}. We will use R,
to denote the bottom surface {(z',0);2’ € B}.

Let us now formally linearize the forward problem about S = 0. Let up(t, z) denote the
solution to (2.2)-(2.5) with S = 0 (so ug(t,z) is defined for z € ). Let us assume that
S(z') is “small” and that v(t,z) = w(t,z) + w(t,z) with w also small. Note that w is the

perturbation in the temperature response due to the material loss in the sample. If we put



v = ug + w into equations (2.6)-(2.9), expand, drop quadratic terms, and use the fact that
ug satisfies (2.2)-(2.5) on (0, 00) x £, we find that to first order w(t, z) satisfies
ow

5 Aw = V- -yVuy+ S(a') A wug in (0,00) x £, (2.10)
0

51—5— = —S(a')g(t,z") on Ry, (2.11)

%ll—i}- = -VS§. V’LL0,0H 690 \ Rl, (212)

w(0,z) = (1- :vn)-a—gi—x)S(x') (2.13)

where V.S denotes the gradient of S thought of as a function of n variables which happens

to be independent of x,. The matrix v can be written out explicitly as

) —S(@'V o1 (2o —1)V'S
T, ) = ( (0= VST S() )

where I,_; is the n — 1 by n — 1 identity matrix and the column vector V'S is the gradient

of 5 as a function of variables z,,...,z,_;. Equations (2.10)-(2.13) define a linear relation

between S and w.

It is this linearized version of the heat conduction inverse problem that we will analyze.

3 Integral Representation of the Solution

Define d(¢,2") = w(t,2',1) where w satisfies (2.10)-(2.13). The function d(t, ') is the tem-
perature data from the accessible portion of 8. Given the linear relation between S and w
(and hence d), the function d(t,2') can be expressed as an appropriate weighted integral of
S(z'). This is the focus of the following Lemma 3.1 below. In what follows we use V' ¢ to
denote the gradient of a function ¢ in variables z,,...,z,_; and A’¢ to denote the Laplacian

of ¢ in the first n — 1 variables.

Lemma 3.1 Let ¢(t,x) be a solution to the heat equation %‘té —A¢p=0o0n(0,T) x Qy with
g% =0 on 0 \ Ry and ¢(0,2) =0 for x € Qy. Then

T / a¢ ! /
/O/Rld(t,x)au(T t,2',1) da’ dt (3.14)

T
= /0 /RO S@)[V'(T - t,2',0) - V'ug(t,2',0) + ¢(T — t,2',0) A uy(t,2’,0)] da’ dt.



Note that by standard regularity results for the heat equation the functions 4y and ¢ are
smooth on Ro—indeed, they are analytic and extend as analytic solutions of the heat equation
across Ro. Thus the quantity multiplying S(z') under the integral on the right in Lemma
3.1 is well-defined.

The proof of Lemma 3.1 amounts to nothing more than a rather tedious calculation
involving repeated use of Green’s identities, integration by parts, equations (2.10)-(2.13),

and the equations satisfied by ¢ and uy. We relegate it to an appendix.

3.1 Good Test Functions and Uniqueness

We now construct a class of test functions ¢(¢,z) to be used in the integral representation
(3.14). These functions allow us to extract specific information about the function S from
the front surface data d. Let A = (Af,...,\,_;) denote an n — 1 dimensional real-valued

vector with A\, = jm /by, j and integers; we will write A? to denote )\ - \. Define
c(A, 2") = cos(A1xy1) cos(Aexa) - - - cOS(Ay_1Zp_1).

Then for a function ¢(z') defined on B the integral [ c(\, 2')é(2') d2’ is a coeflicient in the
(multiple) Fourier cosine expansion of ¢ over B. In particular, as ranges over all permissible
values the set c(A, ') forms an orthogonal basis for L?(B). Let us use the notation f (s,x)

for the Laplace transform of a function f(t,z) with respect to ¢.

Lemma 3.2 For c¢(\,2') as defined above we have

/Bc(/\,a:')ci(s,:v') dz’ (3.15)
= 1 ! ’ / ! ’ ’ 82u0 ’ '
= \/—sti——)\?sinh(m)LC(/\’x) ——VS(s,a:).Vuo(s,x,0)+5(x)5?(3’$,o) dz’.

n

Proof: Let ¢y(t,z,) denote the unique solution to

a¢0 82¢0 _ 2
n oz = =Ny, 0<x, <1 (3.16)
o _
é?a:n (tv 1) - h(t)a
O _
5;;(75,0) = 0,
¢0(O,$n) = 0.



Here h(t) is any sufficiently smooth input heat flux. That ¢y is unique is easy to show. (We
will in fact explicitly construct ¢g later.) Define ¢(t,z) = ¢o(t,z,)c(\, 2'). The function
#(t, ) satisfies the heat equation on Qg = B x (0,1). Also, ¢(0,z) = 0. We have that %f =0
on the bottom surface Ry. With i chosen as Ay = jw/b; where j is any integer, we have
%f = 0 on the “sides” of Qp, so that %% = 0 on 0Q \ R;. The function ¢ is then a legitimate

test function for (3.14), which now takes the form
/ e, 7' /T d(t, ' YW(T —t) dt | do’ dt = (3.17)
B o '
T
/ S(z'") (/0 ¢o(T —1,0)[V'c(A, ') - V'ug(t,2',0) + (A, 2') A ug(t, 2, 0)] dt) dz' dt,
B

where we have used V¢ = (¢9Ve¢,0) on Ry, and noted that the integration is really over the
box B. Given the assumptions on {1y, S, and the smoothness of the functions involved, the
interchange of integration is certainly permissible.

Now Laplace transform both side of equation (3.17) with respect to 7. Using the elemen-
tary convolutional properties of the Laplace transform (again, with justifiable interchange of

integrals) we obtain

~

h(s)/Bc(/\,z')cZ(s,x') dz’

= q@o(s, 0) /B S(@') [V'e(N, ') - V'ig(s, 2/, 0) + c(A, 2') A dg(s,2’,0)] d2’, (3.18)

where h(s) denotes the Laplace transform of h, etc. We can in fact write out ¢ (s,0) by
Laplace transforming the one-dimensional heat equation (3.16) and solving the resulting
two-point boundary value problem, to find that ¢y(s,0) = 2h(s)/(V/s + X2 sinh(v/s + X2)).
Substituting this into equation (3.18) shows that

/B e\, 2')d(s, ') da’ (3.19)
1 ! ! ~ / ! -~ ! !
= Vo T b (e T /B S(@') [Vie(A,2') - V'ig(s, 2, 0) + (A, 2') A dg(s, 2',0)] da.

Note that & cancels—the temporal behavior of the test function is irrelevant.
If we integrate the first term under the integral on the right by parts, and use the fact

that S is supported in a compact subset of B we obtain exactly Lemma 3.2.m



3.2 Uniqueness for the Linearized Inverse Problem

We can use Lemma 3.2 to prove that the data d determines the back surface S under a

variety of conditions on the input flux g. We consider three cases:
Lemma 3.3 Let the input fluz satisfy one of the conditions

1. The input fluz is independent of 2', so g = g(t).

2. The input flux is nonnegative, g(t,z') > 0.

3. The input fluz is of the form g(t,2') = cos(f;a:j), 1<j<n—-1.

with the solution w to the linearized problem (2.10)-(2.13) with constant initial condition. In
all cases we of course assume that the fluz is not identically zero. Then the data d(t,z') =

w(t,2',1) for t > 0 determines the function S(a').

Proof: In any case to prove uniqueness it suffices by linearity to show that if d = 0 then

S = 0. Hence let us assume that d = 0 for t > 0 and so d = 0. In this case, since

W Sinlh( 7T # 0 we conclude that the integral on the right in Lemma 3.2 vanishes for all
A. Since ¢(A,z’) forms a complete orthonormal set as A ranges over all appropriate values,
we conclude that —V'S(2’) - V'ig(s,’,0) + S(z’)%i:‘gﬂ(s,x’,O) =0 for 2’ € B and all s > 0.
Inverse Laplace transforming shows that

32u0

- V'S(a’) - V'ug(t,2’,0) + S(z') oz

(t,2',0) = 0 (3.20)

in B, for all t > 0.

To prove case (1) in the Lemma, we note that if g = g(t) is independent of 2’ then so
is ug(t,2’, x,) satisfying (2.2)-(2.5) (with S = 0 and zero initial condition). In this case
equation (3.20) becomes S (x’)%ﬂ(t,x’ ,0) = 0 for 2/ € B and t > 0. As noted earlier, the
function ug(t, r) is analytic near Ry. We can conclude that the function u, (t,z) = g%s is itself

a solution to the heat equation near Ry and, since %‘l = 0 on Ry, we have u;(t,2',0) = 0 on
Ry. But if S # 0 then S%z—;gﬂ = 0 forces gf: = 0 on some open neighborhood in B. Since u,
has zero Cauchy data on an open subset of B over an open time interval, we conclude that

uy = 0. This forces ug to be a constant, contradicting g # 0. This proves case (1).
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To prove case (2), we use the identity V'ug- V'S = V. (SV'uy) — S A’ ug in conjunction
with equation (3.20) to obtain

—V' - (SV'up) + S Aug =0

in B, for all t > 0. If we integrate this over B and apply the divergence theorem, noting that
S has compact support, we obtain fp S A ugdz’ = 0 or, since ug satisfies the heat equation

Oug r__

We can conclude that -(% Jro Suoda’ = 0, so [p Sugda’ is constant in time. However, a
simple argument using the maximum principle and the fact that g(¢t,z) > 0 shows that
‘%‘tﬂ(t,x’,()) > 0 a.e. on Ry. If S > 0 on any open interval we conclude that Sro Sug da’
cannot be constant. The establishes uniqueness in case (2).

To prove case (3), we note that equation (3.20) defines, for each t, a first order linear
PDE for the function S(2'). If g(t,2') = cos(Ajz;) then the function wuy(t,z) is of the
form h(t,xn)cos(z’?axj) (with zero initial conditions). At any time ¢t > 0 the vector field
V'uy(t,2’,0) is of the form -5 Sin(i;fl'j)ej where e; is the n — 1 dimensional unit vector in
the z; direction. It’s easy to see that V'ug is noncharacteristic for any surface of the form
z; = b with b constant and that since S is compactly supported in B we have S = 0 on
z; = b for some b with 0 < b < b;. On such a surface S has zero “initial data”’ and integrating

equation (3.20) along the characteristics of V'ugy across B shows that S =0 in B.m

Remark 3.1 It is not clear what the weakest conditions are which can be imposed on the
input fluz and/or initial conditions to obtain uniqueness for the linearized inverse prob-
lem. However, uniqueness does NOT hold without some additional conditions on S, g,
and/or the initial condition. For ezample, consider Qy = (0,1)% in two dimensions and let
up(t, o1, q) = e~ *+9T) cos(3mzy) cos(bay) where b is any constant. This function satisfies
the heat equation in Qy with %%ﬂ = 0 on the bottom and sides of )y, and nonzero flur on

top (if b is not a multiple of ). However, equation (3.20) is satisfied for allt > 0 by any

multiple of the function

Oa 0< Ty S (_1;'7

2
S(xy) = (— sin(37m:1))#7, % <z <
0, 3 <z <1

11



If we choose b > 3m then S is C'. Thus a nonzero S yields zero boundary data in the
linearized problem for an appropriate combination of input flux and initial data. This coun-
terezample is similar to those we presented in [3] for the full nonlinear inverse problem.
Analogous counterezamples can be produced in higher dimensions.

Houwever, in the general case it is not hard to see that if S is NOT uniquely determined, so
that equation (3.20) holds, then the vector field V'uy must be characteristic for the boundary
of supp(S) (wherever O(supp(S)) is suitably smooth), i.e., %—‘3 = 0 on 9(supp(S)). If V'ug
were noncharacteristic on some portion of d(supp(S)) then one could use equation (8.20) to

show that S = 0 inside some region of supp(S), a contradiction.

Remark 3.2 [t is interesting that under the most natural physical conditions—S > 0 and

g > 0—one obtains a uniqueness result.

Remark 3.3 In the case that B = R"™! (50 the sample is unbounded ) one can still linearize
and construct an integral representation analogous to Lemma 3.1, if S has compact support.

If we consider test functions of the form
e(\ ') = &)

where A € R*™" then we find that Lemma 3.2 also holds. The left side of equation (3.15)
becomes the Fourier transform with respect to the spatial variables of d(s,x').
The uniqueness proof in cases (1) and (2) also carries through, although there is no

obuvious analogy for the third case.

4 Stability and Reconstruction for Spatially Constant

Flux

In this section we make a more detailed examination of the structure of the inverse problem
for the most physically relevant flux in which g = g(¢) is a function only of time. This is
typically the case when the flux is provided by heat or flash lamps applied to the surface of

the sample.
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4.1 Spatially Constant Input Flux

We will assume that the input flux is of the form g = g(¢). If uo(¢,z) satisfies (2.2)-(2.5)
with S = 0 and zero initial condition then ug is a function only of ¢ and z,,. One can Laplace

transform the resulting one-dimensional heat equation to find that

(s, 22) = g(s) cosh(a:,,\/g)'
T /ssinh(y/s)

It is then simple to see that %ﬂ = siig(s, Tn). Substituting this into equation (3.15) produces

(4.21)

d(s,\) = M(s,\)§(s)S(A) (4.22)

where ci(s, A, 2') is the Laplace transform in ¢ of the Fourier cosine coefficient corresponding
to A, g(s) is the Laplace transform of g(t), and S()) is the Fourier cosine coefficient of S at
frequency A. The function M(s, A) is given by

_ Vs
M(s,)) = Vs + A2sinh(v/s + A2) sinh(y/s) (4.23)

One could attempt to reconstruct S(2’) using equation (4.22) as follows: First, compute

d(s, A\, z') by computing [z d(t,z')c()\,2') d2’, the Fourier coefficient of d(t,z'), and then
Laplace transform in ¢ (or vice-versa—transform and then compute the coefficient. Given the
smoothness assumptions it won’t matter). Then divide by M(s, A)§(s); according to equation
(4.22), this gives S(\). One can then compute S(2') from its Fourier cosine expansion.
However, it is clear from equation (4.22) that the inversion process will be extremely ill-
posed, with spatial frequencies A in the data weighted essentially by [Ale? in the inverted
Fourier transform. This is similar to the result we obtained in [2] for the quasi-steady state
version of the problem.

We note also that if g(t) > 0 then for any fixed “frequency” s > 0 such a reconstruction
is always possible, for M(s,A) > 0 and g(t) > 0 implies A(s) > 0 for all s > 0, and so
we never divide by zero. In this case the measured data at any fixed s always encodes the
information needed to determine S().

Actually, we can inverse Laplace transform equation (4.22) explicitly and provide addi-
tional insight into the relationship between S and d, especially the time dependence of that
data d. We assume that g(t) is supported in an interval [0, T], and that we wish to compute

the inverse transform at a time ¢ > T (after the input flux has been turned off).
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Lemma 4.1 Let g(t) be supported in an interval t € [0,T]. Then for t > T the inverse
Laplace transform of M (s, A\)§(s) is given by

K(t,A) = r2(0)e™ + 3 [m()g(=577%)e ™7™ 4 ry(5)a( =20 — M)e @] (4.24)
j=1

where

2(-.1)J'+1]'27T2

nU) = s =) (4:29)
nig) = ZILEI (420
VT (Xt ) '

for j > 1, and r3(0) = ﬁfﬁ%l

Proof: If the flux g(t) is supported in an interval ¢ € [0,7] then §(s) (considered as a
complex-valued function) is analytic in the complex plane. It is not difficult to check that
despite the square roots and whatever branch is chosen for them, the function M (s, A) as
a function of s is in fact analytic in the complex plane, except for isolated poles along

the negative real axis. We can inverse Laplace transform M (s, A)§(s) (which we denote by

K(t,\)) as

1 a+1i00
K(t,)) = 5~ / et M (s, ) (s) ds. (4.27)
(see, e.g., [8], Volume 2) where the integration is along the strip a + ui, u = —00 to u = oo

with @ > 0. Simple estimates show that the integral converges for ¢t > 7.

Given that the integral converges and that e M (s, A\)g(s) is analytic except at poles
on the negative real axis, we may attempt to evaluate K(t,)\) with a contour integral.
The details of the inversion depend slightly on the value of A2, but in the case in which
A2 # m2(k? — 52) for integers j, k, we find that M has simple poles at s = —k272 and at
s = —k*n? =M fork € Z, k>1. If A2 # 0 then the singularity at s = 0 is removable.
Consider a contour in the complex plane as in Figure 1. It is straightforward to estimate
that the integral of M(s, A)§(s) over the pieces s = u+ bi and s = u + di approaches zero as
b,d — oo.

For the integral over s = c + iu, if we assume that t > T (so we are attempting to
evaluate K (¢, A) after the input flux has been turned off) we can also show that the integral
of M(s,))g(s) over s = ¢+ iu approaches zero as ¢ — —o0, provided we choose ¢ so that

the path does not pass through the poles of M. Specifically, since g(t) is supported in [0,T]
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we have [§(s)| < Ce™7, and using s = ¢ + iu with u real we obtain

/C+"°° oot e*'g(s) /s ds
e—ioo  sinh(y/s)sinh(vs + A2)v/s + A2
ctico e 1) /sds
¢ /c—ioo sinh(y/s) sinh(v/s + A2)y/s + A2
/°° Ve +1udu
oo sinh(v/c + tu) sinh(ve + iu + A2)Ve + iu + A2

< Cet-T)

For |c| sufficiently large and any fixed A the quantity |v/c+ tu/v/c+ tu + A2| is arbitrarily
close to 1 (uniformly in «) and we have from above

/°° Ve +iudu

Cec(t——T)
—o0 sinh(v/¢ + tu) sinh(vc + tu + A2)v/c + 1u + A2

< Ceft=D

© du
/—oo sinh(v/c + 1u) sinh(vV¢ + tu + \2)

<

< Ccelt-T) / . . ) ( / , : ) (4.28)
~oo | sinh(v/c + 1u)|? -0 |sinh(vc + tu + A2)[2
We now make use of the identity |sinh(ve+7u)|?> = sin?(p;) + sinh?(p,) where p; =

\/(-—c+ vt +u?)/2 and py = \/(c+ Vc? + u?) /2; note that p; and p, are real. It’s easy to
see that for |c| < |u| and since ¢ < 0 we have py > u/+/2 so that

du du
S SRRVeTIE = Ju sin®(py) + sinh’ (ps)

/ du
ul>le] sinh?(p)
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/ du
Jul>Iel sinh®( )
4v2

eV —1°

If we choose of the form ¢ = —n?(2k + 1/2)? for k € Z then m(‘\/l@:‘"ﬁﬁ < 1 for all u, so

that fl_c||cl I—S:]Td\/%—m; < 2|c|. Combining this with the above estimates shows that

/00 du < 42
—oo [sinh(vc+ )2 T \ev2d —

for some constant C' and for |¢| sufficiently large. A similar estimate can be made for

T+ 2|c[> < Cl¢|

the second integral on the right in (4.28), noting that if X\ is fixed then the choice ¢ =
—n2(2k + 1/2)? still avoids the poles in the integrand for sufficiently large k. All in all we
find from (4.28) that

c+ioo st o
/ est : 6 g(S)\/EdS < Cec(t-—-T)Icl
c—ico  sinh(y/s)sinh(vs + A2)V/s + A2

which, since ¢t — T > 0, clearly tends to zero as ¢ =& —00 as ¢ = —72(2k + 1/2)2.

We can thus compute K(t, A\) by computing the residues of e** M (s, A\)§(s) in the left half
plane. The poles occur in the function M (s, A); straightforward calculations (still assuming
that A% # w?(k%— j2) for integers j, k) show that M (s, A) has simple poles at s = —k?72 with
residue 7 (k) and at s = —k?n? — A? with residue ry(k), where 7;(k) and r5(k) are given by
equations (4.25) and (4.26), respectively. It then follows from the residue theorem applied
to the integrand in equation (4.27) that K(t, \) is given by the series (4.24).

The above analysis was done under the assumption that A? # w%(k? — j2) for integers j, k;
if this is not true then one or more of the simple poles may “coalesce” into a quadratic pole
and a slightly different residue computation is needed. However, it is easy to see that the
value of K (¢, ) must depend continuously on A, and so we will simply write equation (4.24)
with the understanding that in the exceptional cases for A the correct value is obtained by
continuity. m

One special case that is worth noting, however, is A = 0. In this case a residue compu-

tation shows that

K(t,0) = §(0) + i r(k)e Kt
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where 7(k) denotes 2g(—k*n?) — 4k*n2[¢ (—k*n?) + tg(—k272)).

It is also worth noting that we can similarly compute K(ty,A) for times t; < T, or
under the assumption that g(t) does not have compact support. In this case we split g(t) =
91(t) + g2(t) with g; supported in [0,%] and g, supported in [tg,00). The function K(to,\)
can be computed by doing two contour integrals, one corresponding to g;, the other to gs.
The contour for g; is as before, around the left half plane. The appropriate contour for g, is
around the right half plane, and in fact evaluates to zero since M(s,\) has no poles there.
This is really an expression of causality—what the flux does at times t > ¢, has no effect on
K (tg, A) or the data d(tg, A).

It is instructive to examine the function K(¢,)\) in the special case that the flux is
g(t) = 8(t), an impulse at time ¢ = 0. Figure 2 below shows K (¢, \) in two dimensions (so A

is a scalar) as a function of ¢ for several different values of \.

1

0.9+

08

071

Figure 2: Function K(t,\) for several values of ).

Note that the peak value of K drops rapidly as A increases, and that X decreases rapidly in
t. This illustrates that there is an optimal time window for making measurements, an issue

we will explore below.
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4.2 Uniqueness, Stability, and Reconstruction

Equation (4.24) shows that the relation between the Fourier coefficients d(t,\) and the

Fourier coefficients S()\) of the function S is given at any time ¢ as
d(t,A) = K(t,\)S()). (4.29)

We can simply recover the Fourier coefficients of S from measurements taken at any given

time t = ¢, as

S0 = Ky
provided of course that K(#y,A) # 0. Again, however, as in the Laplace “s” domain, such
an estimate magnifies error by a factor proportional to |A|el.
In practice, one has data from time ¢ = ¢; to time t = t,, and it makes sense to use all
of the data in any reconstruction. Realistically, however, the data will be noisy, and hence

provide no consistent estimate of S or S. In this case we might attempt to estimate 3 (A) by

choosing that function which minimizes the error
tz .. ~
/ “[dt,N) — KNS dt.
ty

The minimizer is easily found to be

2 K(t,A\)d(t, \) dt

SO = JEK2(E,N) dt

(4.30)

This is the scheme we use in our reconstructions, with a few adaptive modifications discussed
below.

The series formula (4.24) converges rapidly for ¢ > T, sufficiently rapidly that K(t,\) is
analyticin ¢ for ¢ > T It follows that K'(t, A) cannot vanish on any open interval t; < t < 1o,
and so (in the absence of noise) the estimate (4.30) will recover S, and so S. This is a stronger

version of uniqueness than previously stated:

Lemma 4.2 For the linearized inverse problem with fluz g = g(t) and constant initial con-

dition, the data d(t,z') over any interval t; <t <ty uniquely determines S(a’).

From equation (4.30) on can also obtain a stability estimate for the estimate of S(A). For

simplicity, let us consider the case t; = 0, t; = co. Let the actual back surface be Sy(z') with
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Fourier cosine coefficients Sp()), and “true” data (for the linearized problem) dy(¢,z') with
Fourier expansion dy(t, A). Let the actual noisy data be given by d(t,x') = do(t, ') +e(t, z),
with Fourier coefficients do(t, A) + é(t, A). The estimate based on (4.30) produces

A) dt

A A K(t,M)e(,
S(A):S’o()\)+ = RO di

~

Let E()\) = S()\) — Sp(A). An elementary estimate with Parseval’s inequality yields

Joe é2(t, \) dt

BN < m,

(4.31)

provided that the numerator is finite. We can bound the denominator away from zero in
terms of A by first noting that, by Plancherel’s Theorem,

/O K2(t,\) dt = / 7 |M(s, N2 ds (4.32)

—100

with M given by (4.23). Parameterize the integral as s = ju with u real. A bit of tedious
algebra shows that

: ulg(iu)[®
K(iu,\)|? = 4.33
& ) VAL +u? (cosh2(p2) - cos2(p1)) (coshQ(,/u/Q) — cos?( u/2)) (4.33)

where p; = \/(\/ At +u? — A2)/2 and p, = \/(\/ A* 4+ u? + A%) /2. From (4.33) one can rather

easily obtain a bound of the form

| 1GNP du 2 o

for some constant C. Combining this with equations (4.31) and (4.32) we then have

Lemma 4.3 Let the estimate of S be constructed according to equation (4.30) on the interval

0 <t < co. Then the error in the estimate S(\) is bounded as

IS(A) = So(N)] < C|ALeM ( /0 T8t ) dt) v

It is fairly easy to construct examples showing that this is the best possible continuous

dependence result.

Remark 4.1 We obtained equations (2.2)-(2.5) by rescaling the original equations (2.1)

and the associated boundary and initial condition. If we account for the effect of the sample
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depth d find that A should be replaced by d)\, and the continuous dependence result Lemma
4.3 yields
N N oo 1/2
1S(X) = So(A)] < CldAlelN ( /0 &(t, \) dt) . (4.34)

Thus the ability to resolve high frequency detail drops off ezponentially with sample depth.
Also, by considering the rescaling in time we see that the characteristic time scale for

the problem is % As a result larger diffusivities compress the period in which measurements

should be taken. That the time scale is proportional to the square of the sample depth has

been noted elsewhere,

4.3 Examples

Below we present several reconstruction examples. In all but the last two figures the “uncor-
roded” or reference sample region )y was taken as the two dimensional region (0, 10) x (0, 1)
in the zy plane. The region {2 whose back surface is to be recovered is given by {(z,y);0 <
z < 10,5(z) < y < 1}, where S is a C! function with compact support in (0,10). Data
for the heat equation on 2 was generated by first transforming the heat equation and as-
sociated conditions (2.2)-(2.5) to the modified equation and boundary conditions (2.6)-(2.9)
(but NOT linearizing). We then solve (2.6)-(2.9) on p using a Crank-Nicholson differenc-
ing scheme. Typical grid sizes were 50 to 100 nodes in the = direction, 30 to 40 in the Y
direction, with 20 to 60 time steps. The large linear systems at each time step were solved
with a preconditioned conjugate gradient method.

The reconstruction was done in Matlab with a straightforward implementation of equa-
tion (4.30). First note that the data appearing in (4.30) is the perturbation in the temperature
response caused by corrosion. We thus first compute the temperature response of the ref-
erence region {y and subtract this from the data generated for ). We then compute the
finite cosine transform of the data at each time step using an FFT-based algorithm; the
function K (¢, A) is implemented with equation (4.24), truncated after 30 terms. The integral
in equation (4.30) is computed simply with the trapezoidal rule. The reconstructions are
extremely fast—on the order of one second with 64 data points on the top surface times 40

time samples.
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There is one other modification we make to the implementation. If one considers Figure
2, it is apparent that for certain frequency-time combinations the value of K (¢, A) is so small
that the corresponding Fourier cosine frequencies should not be used. We thus perform a
thresholding—if | K (¢, A)| < € for some chosen value (which should depend on the noise level
in the data), then the corresponding points are automatically omitted from the reconstruction
based on equation (4.30). This turns out to be an enormous improvement over a straight
implementation of equation (4.30), especially for large A, for in examination of Figure 2 it
is apparent that for higher frequencies one has a rather small “window of opportunity” for
capturing the relevant information in the signal. Nonetheless, if A is sufficiently large, it may
turn out that no stable estimate of S(\) is possible (as in our last example).

In the first example we use the back surface defined by S(z) = 0.1f(2.5,7.5, 2) where

64

G—ap@ -’ b—2) (4.35)

f(a’ bﬂx) =

(see Figure 3). The input flux was g(t) = 10 for 0 < t < 0.1, 0 for ¢ > 0.1, and zero initial
conditions were used. Data was taken a 64 equally spaced points on the top surface for 40
equally spaced time intervals from ¢ = 0.1 to ¢ = 4.0 (examination of K (t, A) shows that this
1s the time interval in which most of the information should lie). The solid line in Figure 3
represents the actual back surface, the dashed line is the reconstruction. For this figure a
threshold of 0.01 was used, i.e., those values of K(t,\) < 0.01 and the corresponding data
were discarded, although even at the highest frequency at least one value of K remained for
at least one time slice. The data was noiseless, down to the resolution of the heat equation
solver (about 4 significant figures). Note that the estimate slightly overshoots. This is
typical, and due to the fact that the linearized model of the material loss for the forward
problem predicts smaller temperature perturbations than the full nonlinear model. As a
result, an inverse solver based on the linear model must “overestimate” the back surface

corrosion in order to obtain the same temperature perturbation.
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Let us consider another more challenging example, in which the back surface is defined
by S(x) = 0.1f(4,6,) + 0.08(5,8,z), with f given by (4.35). With noiseless data and the

same parameters as example 1 we obtain the reconstruction shown in Figure 4.

Exampie 2
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Figure 4

However, if we add noise to the data in the previous example the reconstruction becomes

considerably more difficult. For the following example we add Gaussian noise to the data
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from Figure 4, independent in both the x and t variables, with zero mean and variance
equal to 10 percent of the RMS strength of the perturbed signal u — ug. The result, with

regularization € = 0.01, is the rather unsatisfactory estimate below:

Example 3
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Figure 5

Increasing the regularization to € = 0.1 results in the reconstruction shown in Figure 6.

Although the estimate has been smoothed, the ability to distinguish the peaks is lost.

Example 4
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Figure 6
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We now present an example to illustrate the difficulty of increasing sample depth in
estimating the back surface profile. In Figure 7 we consider a simulated sample made of
aluminum (thermal diffusivity o = 0.946%), sample thickness 0.5 cm, with the sample
length 5.0 cm. The back surface profile is given by S(z) = 0.05f(2,3,z) + 0.04f(2.5,4, z),
about 10 percent of the plate thickness. We use an input flux g(t) = 1 for 0 < t < 0.1
seconds, and 0 for ¢ > 0.1 seconds. Examination of the rescaled variable ¢ = ot =~ 3.785t
and Figure 2 shows that the first second of data should contain the all of the relevant

information concerning S. We thus take data from time £ = 0.1 to ¢t = 1.1 seconds. The

data contains 10 percent RMS noise, and the recovered estimate with € = 0.01 is as shown

in Figure 7.
0.05 T T T
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:
0011
0
-00t} L
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[¢] 0.5 1 1.5 2 25 3 3.5 4 45 5
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Figure 7

If the sample depth is increased to 1.0 cm and the other parameters kept the same
(including the noise level, kept at 10 percent of the signal strength for the data used in Figure
7), the estimate with € = 0.01 is as shown in Figure 8. Decreasing € to 0.001 results in little
change in the estimate, but any further decrease results in a hopelessly noisy reconstruction.

Increasing € to 0.1 results in a reconstruction that is identically zero.
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If we increase the sample depth to 1.5 cm we find that (with this noise level) no satisfactory
estimate of the back surface can be obtained. This illustrates the fact quantified in equation

(4.34)—resolution and stability of the estimates decay exponentially with increasing sample

depth.

5 Conclusion

Our analysis in this paper shows that by linearizing and using appropriate test functions
one can extract relevant information concerning the back surface profile of a sample from
front surface temperature measurements in thermal imaging. With such an approach one
can prove uniqueness and continuous dependence results for the inverse problem, as well as
recover back surface estimates and regularize the inversion in an insightful way.

The approach here should extend in some form to a broader setting. The idea of lin-
earizing with respect to the unknown portion of the boundary of the sample extends to more
general domains (we have already worked out the details in a fairly general setting). In this
case one can also use suitable test functions to extract information about the unknown part

of the surface from temperature measurements, although the test functions cannot typically
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be written down explicitly as we have done here. Nonetheless, one might construct such test
functions numerically and use a similar approach to reconstruction.

In the present and more general setting it would also be interesting to consider what type
of input flux is optimal, in the sense of giving maximum resolution and/or stability for a given
input energy. It should be possible to construct such a flux, probably numerically, by some
variation of the “power method” for finding the largest eigenvalue for a linear operator. Such
an approach has been used to find optimal input fluxes for the impedance imaging problem
[10].

And although we considered a reconstruction scheme only for the case in which the flux
is spatially constant, it would be interesting to see whether the technique used in the third
case case of the uniqueness theorem—finding a first order PDE satisfied by S(z')—could be

used as the basis of a reconstruction algorithm.
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7 Appendix: An Integral Identity ‘

In this section we derive the identity (3.14).

Let {2y denote Q x [0,T], 9Q7 denote 9 x [0,T], P, denote (z, = 1) x [0,T] and P,
denote IQy \ Py for some fixed time T' > 0. Let ¢(z,t) be a sufficiently smooth test function
defined on Qr with ¢, + A¢ = 0 and ¢(T,z) = 0 for z € Q. Also, let us take %f =0
on 9N\ P,. Throughout we treat S(z') as a function of all n spatial variables, which just

happens not to depend on z,, so ar,, = 0.
Multiply the left side of the linearized heat equation (2.10) by ¢ and integrate the first

term by parts in ¢ and the second by parts in z to obtain

ou _ 90 ou
/QT (é_é? —¢AU) d:z:dt-/anT (u-a—l—/--— 3_> da’ dt — / u|i=q di.

where we have used %‘? + A¢ = 0. From the boundary conditions (2.11) and (2.12) for the

linearized problem the right side above yields

Ju
/QT <¢—5—t-—¢Au) drdt = 99 4o dt+/ Ségda’ dt

P (91/

+ /P 9VS - Vuyda' dt - /Q wd|emo dz. (7.36)

Now we turn to the right side of the linearized heat equation (2.10). Multiply the right
side of equation (2.10) by ¢ and use the identity

¢V - (kVug) = V - (¢6Vuyg) — (Vo) - kVuq

and the divergence theorem to obtain (using n - (¢SVuy) = S¢g on P;, 0 on Py, and
n - (¢xVug) = Ség on Py, ¢V.S - Vuy on Py)
/ﬂ #(V - KVug+ 85 Aug) drdt = [ 4VS-Vuoda'dt— [ V- xVuodu d
T 43 T

+ 2 Segda dt — / V($S) - Vugdedt. (7.37)
Py Qr

Using equation (2.10) to equate the right sides of equations (7.36) and (7.37), and using

the initial conditions, we find that

/Pl ua; dr' dt = /(l—xn)

(9S)-Vug) dz dt.
(7.38)
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If we expand the integral over {1 in equation (7.38) out in terms of ugy, @, and S we

obtain

_ /ﬂ (V- kVug + V(¢S) - Vug) dz dt

611:0 3(}5
ox, 0z,

_ Buo 8¢ _
= /QT [(1-xn) (aznvs-v¢+ &rnvs.vuo) 25

— ¢Vug - VS] dx(d@t39)
Now let us apply the identity aVb - Ve = V - (acVb) — ac A b~ ¢Va - Vb to the terms on
the right above which involve V.S. With S playing the role of ¢ we obtain (using the various
boundary conditions on ¢, ug, and the divergence theorem)

— [ (Vo kVuy + V(¢S)- Vug)dzdt = — / Ségdz’ dt + / SV - Vuo da dt
Qr P Qr

5‘¢> Buo
- /QT {(1—%)5 <0wn D ug + oz, A¢> ——S¢Auo] dr dt

)
- /QT S(1—2) 5~ (Vo - V6) da .

Replace A¢ = —%% and Aug = %"tﬂ and integrate the last term on the right above by

parts in z, to obtain some nice cancellations and

— [ (V¢ &Vug + V(8S) - Vo) da dt = — / S¢g da’ dt
Qr P

0¢) 8u0 Buo Bqﬁ /
- /QT l(l — Ty)S (8:::,, ot 2. Bt) —-SqﬁAuo] dwdt-i-/Po SV ¢ - Vuy dz' dfz.40)

Integrate the second term under the {1 integral by parts in t

— [ (Vo kVuy+ V(8S) - V) dz dt = — / S¢g da’ dt
Qr Py

J¢P Oug 0uq .
- /(;T [(1 mn)S (axn ot + axn8t¢ — S¢ A ug d.’l?dt-l"/Po SV¢ - Vugdz' dt

0
- /9(1 - xn)SqﬁaZOIt:O da. (7.41)

Finally, integrate the mixed partial term by parts in z,; all terms in the {2 integral cancel

and we obtain

. / (V- kVuo + V(8S) - Vug) dz dt = — / S¢gde’ dt
Q7 Py

o+ (SV¢ - Vug+ S¢ A ug) do’ dt — /Q(l - xn)S¢g-:—Q|t=0 dz. (7.42)

Py n
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Now use equation (7.42) to replace the corresponding term on the right in equation (7.38).

We obtain
a¢ ' _ ’
u—dz' dt = (SV¢-Vug+ Sé A up) dz’ dt
p Ov Py

or
9¢

u-—_
pn Ov

'This equation expresses the boundary data (or really, a weighted integral of the boundary

dz' dt = /P (V - $Vup)S de’ dt. (7.43)

data) in terms of integrals involving the function S. Note that ug and ¢ are known functions.

One minor modification can be made. Let us take ¢ to satisfy the forward heat equation
with %f = 0 on Ry and ¢(0,z) = 0. Modify the linearized inverse problem appropriately
(noting that ¢(T'—t, z) satisfies the backward heat equation with the appropriate conditions).
Equation (7.43) becomes exactly equation (3.14) in the text.
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