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Continuous Dependence of Solutions of Equations
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Abstract

It is shown under very general conditions that the solutions of equa-
tions depend continuously on the coefficients or parameters of the equa-
tions. The standard examples are solutions of monic polynomial equations
and the eigenvalues of a matrix. However, the proof methods apply to any
finite map T : Cn → Cn.

Contents

1 Introduction 1
1.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Hausdorff distance . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Definition of continuous dependence . . . . . . . . . . . . . . . . 4

2 The topological case 4
2.1 Sufficient conditions for continuous dependence . . . . . . . . . . 4
2.2 Continuous dependence in terms of quotient maps . . . . . . . . 8

3 The algebraic case 10
3.1 The general polynomial case . . . . . . . . . . . . . . . . . . . . . 10
3.2 Finite maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Examples 13

1 Introduction

Suppose that we are trying to solve an equation or system of equations that
depends continuously on coefficients or other parameters. Two examples that

Keywords and phrases: Hausdorff metric, root of polynomials, finite map
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come immediately to mind are finding the complex solutions of a standard monic
polynomial equation

xn + a1x
n−1 + · · ·+ an = 0 (1)

or the eigenvalue equation
det(xI −A) = 0. (2)

Examples involving a system of equations are finding the real intersection of a
fixed sphere and a general plane

s2 + t2 + u2 = 1 (3)

as+ bt+ cu = d

or the real or complex intersection points of two generic conic sections

au2 + buv + cv2 + du+ ev + f = 0 (4)

αu2 + βuv + γy2 + δuv + εv + ζ = 0.

We would certainly hope that the solutions of these equations depend con-
tinuously on the coefficients ai, matrix entries ai,j , or the coefficient vectors
(a, b, c, d) and (a, b, . . . , ε, ζ). The key case for continuity of solutions is case (1),
though we formulate and prove continuity theorems in a more general setting.
The third and fourth cases are more subtle. In case (3) solutions can have di-
mension 0 or 1 or vanish completely. In case (4) solutions can escape to infinity,
or become a one dimensional curve. We discuss further examples throughout
the paper and in Section 4.

For most of the paper, we use methods of elementary algebra, topology and
complex analysis. For the work on finite maps in Section 3 we need to use some
concepts from algebraic topology.

1.1 Problem setup

To formally solve the continuity problem we will use the concept of Hausdorff
distance, discussed later in the section, and the following formulation of solving
an equation with parameters. Let f : X×W → Y be a continuous map. Solving
an equation with parameters may be stated as: Given f : X ×W → Y , w ∈W
(the parameter space) and a fixed y0 ∈ Y solve

f(x,w) = y0 (5)

i.e., find the solution set

Sw = {x ∈ X : f(x,w) = y0}. (6)

So, for example, in the sphere and plane case (3)

X = R3, Y = R2,W = R4,

x = (s, t, u), w = (a, b, c, d), y0 = (1, 0),

f(x,w) = (s2 + t2 + u2, as+ bt+ cu− d).
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The question we which to answer is the following. What are the continuity
properties of the map

w → Sw. (7)

An alternate and convenient formulation is that of fibres of a continuous map.
Set

XW = {(x,w) : f(x,w) = y0} (8)

and
T : XW →W, T (x,w) = w, (9)

so that
T−1(w) = Sw × w. (10)

The map from W to solutions is then given by π1 ◦ T−1 : w → Sw, and so we
can alternatively study

w → T−1(w) (11)

for any map T : X →W, where we have dropped the W from XW or convenience
of notation. The interpretation of X should be obvious from context.

Assumption 1 Throughout this note we are going to make the following as-
sumptions.

1. The spaces X,Y, and W are locally compact metric spaces.

2. The metrics on X and W satisfy the property that there is an ε0 > 0 such
that Bε(x) is compact (Bε(w) is compact) for every ε ≤ ε0 and x ∈ X
(w ∈W ).

These conditions will certainly hold for the cases of interest. Also note that XW

satisfies the same properties.
In the remainder of this section we set up a technical framework that allows

us to rigorously define continuous dependence of solutions. In Section 2 we
consider the continuity problem in a general topological framework. In Section
3 we consider the case of systems with finitely many algebraic solutions over R
or C, and in Section 4 we consider some further examples.

Acknowledgement This paper was inspired by a talk given at the Indiana
MAA section meeting by Vania Mascioni entitled “On the homeomorphism be-
tween polynomials and their roots” [Mas].

1.2 Hausdorff distance

We are going use the Hausdorff metric to quantify the notion that two sets are
close. Let (X, d) be a metric space, let A ⊆ X be a subset, and let ε > 0. Then

Aε = {x ∈ X : ∃y ∈ A, d(x, y) < ε}
=

⋃
x∈A

Bε(x),

3



where Bε(x) the open ε-ball about x. Observe that

A =
⋂
ε>0

Aε.

If A and B are two compact subsets of X then the Hausdorff distance between
A and B is defined by

dH(A,B) = inf{ε : A ⊆ Bε and B ⊆ Aε

= max

(
max
x∈A

d(x,B),max
y∈B

d(y,A)

)
.

So two sets A,B are ε close if every point of A is within ε of a point B and vice
versa. The following is well known.

Proposition 2 Let X be a metric space and XH the set of compact, non-empty
subsets of X. Then (XH , dH) is a metric space. If X is complete then so is
(XH , dH).

1.3 Definition of continuous dependence

Definition 3 Let f : X ×W → Y, respectively T : X → W, be a continuous
map. The solution set to equation (5), respectively T (x) = w, depends continu-
ously on the parameter w ∈ W if and only if the map W → XH map given by
w → Sw, respectively w → T−1(w), is a well-defined and continuous map.

Remark 4 Though our primary interest is in equations with a finite number
of solutions the Hausdorff distance allows for an infinite though compact set of
solutions. See Example 29.

2 The topological case

2.1 Sufficient conditions for continuous dependence

The following two examples show how continuity can fail.

Example 5 Consider finding the real solutions to

εx2 − 2x+ 1 = 0

with −∞ < ε <∞. The solutions are

1 +
√

1− ε
ε

=
2

ε
− 1

2
− 1

8
ε+O(ε2),

1−
√

1− ε
ε

=
1

2
+

1

8
ε+O(ε2).

As ε → 0 we lose the first solution (escapes to infinity) and for ε > 1 we lose
both solutions. The second deficiency disappears if we look for complex solutions
but there is no way to repair the situation in the following example.
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Example 6 Let T : X → C2 be the map obtained by blowing up the origin. X =
{(w1, w2, (x : y)) ∈ C2 × P1 : w1y = w2x}. The map T is given by

T : (w1, w2, (x : y))→ (w1, w2).

Now T−1((0, 0)) = {(0, 0)}×P1 but otherwise T−1(w1, w2) = {(w1, w2, (w1 : w2))} .
The exceptional fibre has infinitely many points but all other nearby fibres are
singletons.

These two examples illustrate the failure modes for continuity of Sw or
T−1(w). Pick w0 ∈W and consider w → w0.

1. The solution set Sw, respectively T−1(w), may have points that are not
close to any points of Sw0 , respectively T−1(w0), i.e., solutions escape to
infinity.

2. The solution set Sw0
, respectively T−1(w0), may have points that are

not close to any points of Sw, respectively T−1(w), i.e., solutions in Sw0
,

respectively T−1(w0), vanish upon perturbation.

We can eliminate these failure modes by imposing the following conditions on
the map T.

Definition 7 A map T : X → W is called proper above w0 ∈ W if there is a
compact neighbourhood V of w0 such that T−1(V ) is compact. The map T is
proper if T−1(K) is compact for every compact K ⊆W.

Definition 8 A map T : X → W is open above w0 ∈ W if there is an open
neighbourhood U of W such that T : T−1(U)→ U is an open map.

Throughout the remainder of this section we frame our discussion on solu-
tions in terms of the fibres of a map T : X →W.

Theorem 9 Suppose that T : X →W is a map satisfying.

1. T is a proper map,

2. T is an open map,

3. T (X) is dense in W (if not take W = T (X)).

Then, the map T−1 : W → XH given by w → T−1(w) is continuous.
Proof. First we show that T is surjective and has compact non-empty fibres.
This implies that the map w → T−1(w) ∈ XH is well defined. Let w0 ∈ W. By
the local compactness of W there is a decreasing sequence {εn} with εn > 0,
εn → 0, and the closed ball is Bεn(w0) compact. Now

T−1(w0) =
⋂
n>0

T−1(Bεn(w0))

5



since every x on the right hand intersection must satisfy d(T (x), w0) ≤ εn for all
n. Since T (X) is dense in W and T is proper then T−1(Bεn(w0)) is a non-empty
compact set and hence the intersection on the right is a non-empty compact set.
Thus T−1 : W → XH is well defined.

Now we prove that T−1 is continuous. Seeking a contradiction, suppose that
T−1 is not continuous. Then we have a sequence wn → w0 with dH(T−1(wn), T−1(w0)) ≥
ε. This means that for all n we have either

∃xn ∈ T−1(wn) such that d(xn, T
−1(w0)) ≥ ε (12)

or
∃x′n ∈ T−1(w0) such that d(x′n, T

−1(wn)) ≥ ε, (13)

corresponding to the two failure modes. Passing to a subsequence we may
assume that either condition 12 is valid for all n or condition 13 is valid for
all n. Suppose condition 12 is valid for all n. By dropping a finite number of
terms we may assume that the sequence {xn} ⊆ T−1(U) for some compact
neighbourhood U of w0. The sequence then has a convergent subsequence and
by passing to a subsequence we may assume that we have a limit xn → x0, so
d(xn, x0)→ 0. Since T (xn) = wn then x0 ∈ T−1(w0) by continuity. But

lim inf d(xn, x0) ≥ lim inf d(xn, T
−1(w0)) ≥ ε > 0

a contradiction.
Now Suppose condition 13 is valid for all n. Then by a similar argument we

have x′n → x0 ∈ T−1(w0), and by the triangle inequality

d(x0, T
−1(wn)) ≥ d(x′n, T

−1(wn))− d(x′n, x0)

Since d(x′n, x0) < ε/2 for all large n we get d(x0, T
−1(wn)) ≥ ε/2 for all large

n. But T is open and so the image T (Bε/4(x0)) is an open set V containing w0.
It follows there are infinitely many wn ∈ V and hence that T−1(wn)∩Bε/4(x0)
is non-empty. This contradicts d(x0, T

−1(wn)) ≥ ε/2 for all large n.

Remark 10 The proof actually shows that the properness of T implies that it
is surjective.

Remark 11 The property of being proper guarantees that we do not lose so-
lutions at wn → w0.. i.e., failure mode 1 above. The property of being open
guarantees that we do not lose solutions when we consider a perturbation w near
w0, namely failure mode 2. The next three examples show how both properties
are necessary.

Example 12 Consider the set X ⊆ C2 = {(x,w) : x(xw − 1) = 0}. Let T be
the map (x,w) → w. For w 6= 0, T−1(w) = {0, 1/w) and T−1(0) = {0}. The
map T is open but not proper and we lose solutions as w → 0.

Example 13 Consider example 6 again. The map T is proper but fails to be
open at the points on the exceptional fibre T−1((0, 0)).
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Example 14 Here is a variant of the previous example which has finite fibres
generically and one infinite compact fibre. The total space X is a Möbius band
with an even number of twists. Let ∆ ⊆ C be the closed unit disc and let
X ⊆ ∂∆×∆ be the set

X = {(x,w) ∈ ∂∆×∆ : Im(xsw) = 0} ,

where s is some integer, and let T : X → ∆ be the map (x,w) → w. Now
T (x,w) = w if and only if w is a real multiple of xs. If w 6= 0 then xs = ±w/ |w|
and there are 2 |s| solutions. If w = 0 then T−1(w) = ∂∆× {0} . The map T is
clearly continuous and proper but not open.

Theorem 9 is actually an equivalence under weak conditions as we show in
the next proposition.

Proposition 15 Suppose that X,Y satisfy the conditions given in Assumption
1. Suppose also that T : X → W is surjective map with compact fibres, Then
the map T−1 : W → XH given by w → T−1(w) is continuous if and only if T
is a proper, open map.

Proof. One direction has already been shown. Suppose that the T−1 is contin-
uous. First we show that T is proper. It suffices to show that for every w0 ∈W
that there is compact neighbourhood V of w0 such that T−1(V ) is compact. Let
ε > 0 be such that Bε(x) is compact for every x ∈ X. By compactness, there is
a finite set {x1, . . . , xk} ⊆ T−1(w0) such that

T−1(w0) ⊆
n⋃
i=1

Bε/2(xi).

This implies that the closure of the ε/2 neighbourhood (T−1(w0))ε/2 is compact.

For, if x ∈
(
T−1(w0)

)
ε/2

then there is an x′ ∈ T−1(w0) such that d(x, x′) < ε/2,

and in turn there is an xi such that d(x′, xi) < ε/2. By the triangle inequality

d(x, xi) < ε and x ∈
n⋃
i=1

Bε(xi) which is a compact set. Now, by continuity of

T−1, there is a δ > 0 such that Bδ(w0) is compact and d(w,w0) < δ implies
that dH(T−1(w), T−1(w0)) < ε/2. From the definition of dH we have T−1(w) ⊆(
T−1(w0)

)
ε/2
⊆ (T−1(w0))ε/2. Therefore every point of T−1

(
Bδ/2(w0)

)
lies in

(T−1(w0))ε/2 a compact set. It follows that T is proper
Next we show that T is open. It suffices to show that for every x0 ∈ X

and δ > 0 that T (Bδ(x0)) contains some ball Bε(w0) about w0 = T (x0). By
continuity there is an ε > 0 such that for w ∈Bε(w0), dH(T−1(w), T−1(w0)) < δ.
This implies that there is a point x′ ∈ T−1(w) such that d(x′, x0) < δ. But then
w = T (x′) lies in the image T (Bδ(x0)) and hence T (Bδ(x0)) contains Bε(w0),
showing that T is open.

Remark 16 The proof shows that if T : X → W is proper and open above
w0 ∈W then w → T−1(w) is continuous at w0.
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2.2 Continuous dependence in terms of quotient maps

Let T : X → W be any map. We can define an equivalence relation v on X
by x v y if and only if T (x) = T (y). The quotient space X/T is the standard
quotient space X/ v whose points are the equivalence classes of v, i.e., the
fibres of T. Let q : X → X/T be the quotient map. Let us also assume that
T is continuous and surjective, and has compact fibres. There are two ways to
topologize X/T.

1. The standard quotient topology in which open sets are those sets U ⊆ X/T
such that the union of equivalence classes

⋃
u∈U

u is open in X, i.e., q−1(U)

is open in X.

2. The topology induced by the Hausdorff metric on compact subsets of X,
called the Hausdorff topology. This only makes sense if T has compact
fibres.

We have a diagram of maps

X
↓ q ↘
X/T

p−→ W

where, q : x → x = T−1(T (x)) is the canonical projection and p(u) = T (x)
for any x ∈ u. Note that p is a bijection and identifies X/T with W. The
map q is automatically continuous for the quotient topology on X/T and the
quotient topology is the finest topology on X/T for which q is continuous, it
need not be continuous for the Hausdorff topology. The map p is continuous
for both topologies. For, if U ⊆ W is open then p−1(U) = q(T−1(U)) which
is open in quotient topology. On the other hand if un → u0 in X/T in the
Hausdorff topology then there are xn ∈ un and x0 ∈ u0 such that xn → x0 and
limn→∞ q(un) = limn→∞ T (xn) = T (x0) = q(u0).

We would like to know conditions under which p is a homeomorphism, for
the two different topologies. This would give us an alternative formulation of
continuous dependence of preimages and solutions. We have already answered
the questions for the Hausdorff topology. The complete conditions are given in
the following proposition.

Proposition 17 Let X and W be locally compact metric spaces and let T :
X → W be a continuous surjective map with compact fibres. Let X/T be the
quotient space defined above and p : X/T →W the canonical bijection. Then

1. If T is an open map, then p is a homeomorphism with respect to the
standard quotient topology on X/T.

2. If T is a proper, open map then then p is a homeomorphism with respect
to the Hausdorff topology on X/T.
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3. If T is a proper map, then the Hausdorff topology of X/T is finer than the
quotient topology of X/T .

4. If T is a proper, open map, then the quotient topology of X/T and the
Hausdorff topology of X/T are the same.

Proof. Statement 1. We need to show that for each open set U ⊆ X/T that
p(U) is open inW . But by definition q−1(U) is open inX and p(U) = T (q−1(U))
which is open if T is an open map.

Statement 2. Assume that T is a proper, open map. It was shown in the
proof of Theorem 9 that T−1 : W → XH , w → T−1(w) was continuous. This
is equivalent to p−1 being continuous for the Hausdorff topology. Since p is
continuous, then p is a homeomorphism.

Statement 3. A set U ⊆ X/T is open in the quotient topology if and only
if q−1(U) = T−1(p(U)) is open. A set U ⊆ X/T, open in Hausdorff topology,
has the following characterization. For each u0 ∈ X/T and ε > 0 let w0 = p(u0)
and set

BX/T (u0, ε) = {u ∈ X/T : dH(u, u0) < ε}
= p−1

{
w ∈W : dH(T−1(w), T−1(w0)) < ε

}
.

A set is open in the Hausdorff topology if and only if is a union of BX/T (u0, ε)
for various u0 and ε.

To show that the Hausdorff topology of X/T is finer than the quotient topol-
ogy of X/T, when T is proper, we proceed as follows. Select U ⊆ X/T, open
in the quotient topology, we must show that it is open in the Hausdorff topol-
ogy, i.e., for each u0 ∈ U we must find an ε > 0 such that BX/T (u0, ε) ⊆ U.
As U is open in the quotient topology then T−1(p(U)) is open, hence V =
T−1(p(U)) is an open subset of X containing T−1(w0). We are first going to
show that V contains T−1(Bη(w0)) for some small η, from which it follows that
BX/T (u0, ε) ⊆ U. Let {ηn} be a decreasing sequence of positive numbers with

limit 0. We may suppose that T−1(Bηn(w0)) is compact for all n. If none of the

T−1(Bηn(w0)) lie in V then there is xn ∈ (X − V )∩T−1(Bηn(w0)) for every n.

Since T−1(Bη1(w0)) is compact and the sequence {xn} lies in the compact set

(X − V )∩T−1(Bη1(w0)), then there is a convergent subsequence of {xn}. Pass-
ing to the subsequence, we may assume that {xn} is convergent with limit x0 in
(X − V ) ∩ T−1(Bη1(w0)). But d(T (xn), w0) ≤ ηn so T (x0) = limn→∞ T (xn) =
w0. Thus x0 ∈ T−1(w0) ⊆ V, a contradiction.

Now we show that q−1(BX/T (u0, ε)) ⊆ T−1(Bη(w0) ⊆ V , for some ε and
hence BX/T (u0, ε) ⊆ U which is what we require. Seeking a contradiction,
suppose that q−1(BX/T (u0, ε))) " T−1(Bη(w0)) for all ε. Then we may find a
sequence un with dH(un, u0)→ 0 and such that wn = p(un) satisfies d(wn, w0) ≥
η and dH(T−1(wn), T−1(w0)) → 0. By the definition of the Hausdorff metric,
it follows that there are yn ∈ T−1(wn) and zn ∈ T−1(w0) such that d(yn, zn) <
dH(T−1(wn), T−1(w0)). Since T−1(w0) is compact we may assume by passing
to a subsequence that zn → z0 ∈ T−1(w0). Likewise yn → z0 as d(yn, zn) → 0.
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But, we get limn→∞ wn = limn→∞ T (yn) = T (z0) = w0, a contradiction. This
completes the proof of Statement 3.

Statement 4. Assume that T is a proper, open map. By statements 1 and
2, p is a homeomorphism for both topologies. Therefore the topologies have to
be the same.

3 The algebraic case

3.1 The general polynomial case

We now consider the polynomial case (1). We have the following theorem.

Theorem 18 The set of roots of a polynomial equation

xn + a1x
n−1 + · · ·+ an = 0 (14)

depend continuously on the vector of coefficients w = (a1, . . . , an) in the sense
of Definition 3.

Proof. Let X = C, W = Cn, then we just have to show that the induced
map T : XW → W given by equations (8) and (9) is proper and open. Let us
begin by showing that T is proper. It suffices to show that if M > 0 is any
constant and |ai| ≤ M for all i, then there is a constant N, dependent on M,
such that roots (x1, . . . , xn) must satisfy |xi| ≤ N for all i. For, if K is any
compact set then for some M , K ⊆ BM ⊆ W, the closed ball of radius M in
the maximum norm. It follows that that T−1(K) ⊆ (BN ×BM )∩(X ×W ) and
hence is compact. To find N , we argue as follows. From (14) we get for x 6= 0,

xn
(

1 +
a1
x

+ · · ·+ an
xn

)
= 0

so
(
1 + a1

x x
n−1 + · · ·+ an

xn

)
= 0. Pick x and b so that |x| ≥ b > 1. Then

1 ≤
∣∣∣1 +

a1
x

+ · · ·+ an
xn

∣∣∣+
∣∣∣−a1

x
xn−1 − · · · − an

xn

∣∣∣
=

∣∣∣a1
x

+ · · ·+ an
xn

∣∣∣ ;
and, so,

1 ≤
∣∣∣a1
x

+ · · ·+ an
xn

∣∣∣ ≤ ∣∣∣a1
x

∣∣∣+ · · ·+
∣∣∣an
xn

∣∣∣
≤ M

b
+ · · ·+ M

bn
≤ nM

b
.

If b > nM, then we get a contradiction and so |x| ≤ b. The largest possible value
b is nM so we may take N = nM. Thus T is proper.

Next we show that T is open. It suffices to show that for arbitrary (x0, w0) ∈
XW and every open neighbourhood (x0, w0) ∈ U ⊆ XW , T (U) contains an open
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neighbourhood of W. We may take U to be of the form Bε(x0)×Bη(w0)∩XW

where Bε(x0) ⊂ X, and Bη(w0) ⊂ W will be appropriately chosen. Now set
f(x,w) = xn + a1x

n−1 + · · ·+ an so that in factored form

f(x,w) = xn + a1x
n−1 + · · ·+ an =

s∏
i=1

(x− xi)ei ,

where x0 = xi for some i. We are going to use contour integrals to recover the
number of zeros near x0. Using logarithmic differentiation with respect to x we
get:

f ′(x,w)

f(x,w)
=

s∑
i−1

ei
x− xi

.

Let γ0 be a small circular loop enclosing x0 but no other roots. From basic
complex analysis, the contour integrals

1

2πi

∮
γ0

dx

x− xi
dx = 1,

if xi is enclosed by γ0, and

1

2πi

∮
γ0

dx

x− xi
dx = 0

otherwise. Thus

1

2πi

∮
γ0

f ′(x,w)

f(x,w)
dx =

s∑
i−1

∮
γ0

eidx

x− xi
= e0

Now if we vary the coefficients w0 to a nearby w, then 1
2πi

∮
γ0

f ′(x,w)
f(x,w) dx varies

continuously as long as no zero of f(x,w) crosses γ0. Using a similar argument,
1

2πi

∮
γ0

f ′(x,w)
f(x,w) dx counts the number of zeros (with multiplicity) of f(x,w) = 0

contained within γ0. Picking Bη(w0) sufficiently small so that the above argu-
ment is holds and Bε(x0) to be the interior of γ0, we obtain for each w ∈ Bη(w0)
an x ∈ Bε(x0) such that f(x,w) = 0. Hence T (Bε(x0)×Bη(w0)∩XW ) contains
Bη(w0) and it follows that T is open. All is now proven.

3.2 Finite maps

LetK = C or R, and topologizeKn with the maximum norm. Let T : Kn → Kn

be a polynomial map which is integral in the following sense. For each coordinate
function ξi(x) = xi there is an equation of integral dependence

ξni
i (x) + ai,1(T (x))ξni−1

i (x) + · · ·+ ai,ni
(T (x)) = 0. (15)

for some polynomial functions ai,j(w) on Kn.
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Definition 19 A polynomial map T : Kn → Kn is called finite if each of the
coordinate functions ξi satisfies an equation of integral dependence as given in
equation (15).

Example 20 Let T : K2 → K2 be defined by (z, w) = T (x, y) = (x + y, xy).
The equations of integral dependence can be written as

x2 + zx+ w = 0,

y2 + zy + w = 0.

Example 21 More generally let T : K2 → K2 be defined by

T (x1, . . . , xn)→ (σ1(x1, . . . , xn), . . . , σn(x1, . . . , xn)),

where the σk are the elementary symmetric functions

σk(x1, . . . , xn) =
∑

i1,...,ik

xi1 · · · · · xik

taken over k-subsets {i1, . . . , ik} of distinct indices. Then, it is well known that
for each xi

xni +

n∑
k=1

(−1)nσkx
n−j
i = 0.

Proposition 22 A finite map has finite fibres.

Proof. Fixing w0 = T (x0) the coordinates of ξi(x0) must satisfy an equation
as in (15). Thus there are only finitely many values for ξi(x0). It follows that
the are only finitely many possibilities for x0.

Proposition 23 If T : Kn → Kn is finite, then T is proper.

Proof. The proof is essentially the same as the proof of properness given in
the proof of Theorem 18. If the values of w = T (x) are bounded then the
solutions ξi(x) in equation (15) are also bounded by the argument of the proof
of Theorem 18. This implies that T−1(V ) is compact whenever V is compact.

To get results on openness we need to define the notion of multiplicity of
a zero of a system of complex equations, see [Mil], [Or], [Pal], [Sto]. For this
discussion we are going to use the standard Euclidean metric in Cn:

‖x‖ =

√∑n

i=1
xixi.

Suppose that w0 = T (x0), there are no nearby solutions and so for a small ball
Bε(x0) the map Mx0 : ∂Bε(x0)→ S2n−1 defined by

Mx0
(T − w0) =

T (x)− w0

‖T (x)− w0‖
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is well defined and continuous. The induced map

(Mx0
)∗ : H2n−1(∂Bε(x0);Z)→ H2n−1(S2n−1;Z)

is multiplication by an integer and called the multiplicity of the zero of T (x) =
w0 at x0. We denote this by µx0

(T − w0).The multiplicity µx0
(T − w0) is a

positive integer assuming there is a zero at x0 and is independent of ε for all
sufficiently small ε. If w′ is a point near w0

µx0
(T − w0) =

∑
x′

µx′(T − w′) (16)

where x′ ranges over all roots T (x′) = w′ contained in Bε(x0). The point w′ must
be chosen in a small ball Bη(w0) such that T − w′ never vanishes on ∂Bε(x0).
This can be arranged because of the continuity of ‖T (x)− w′‖ in x and w′, and
the compactness of ∂Bε(x0).

Proposition 24 If T : Cn → Cn is a finite map then T is open.

Proof. The proof is similar to the proof of openness for Theorem 18. It suffices
to show that for every solution x0 of T (x) = w0 there are nearby solutions to
T (x) = w′ for w′ close to w0. This is guaranteed by the multiplicity equation
(16).

We now have.

Theorem 25 Let T : Cn → Cn be a finite map then the preimages T−1(w)
depend continuously w ∈ Cn in the sense of Definition 3.

Example 26 Following example 20, consider the equation x2 + w1x + w2 = 0
solved over the reals, and the associated map T (x1, x2) = (−x1−x2, x1x2). The
image of the roots in the parameter plane is given by w2

1 − 4w2 ≥ 0 This is
a closed region bounded by a parabola. The associated map T fails to be open
above the boundary locus w2

1 − 4w2 which is where the loss of solutions occurs.
Of course, the problem disappears when we consider complex coefficients and
solutions.

4 Examples

Example 27 Consider the problem of finding the eigenvalues of a matrix. By
expanding the determinant in equation (2) we may use Theorem 18 to conclude
that the eigenvalues depend continuously on the matrix entries.

Example 28 Are their interesting examples where the solution sets are not
finite sets of points? Consider the problem of finding eigenvectors of a matrix,
i.e., Solve

Ax = λx, λ ∈ C, x ∈Cn.

13



Since the solution set in x is never compact, then we need to projectivize. So let
Pn−1 be the projective space obtained from Cn and observe that for A and λ fixed
the equation Ax = λx makes sense in projective space. It will be a closed subset
of projective space and hence a compact set. We may formulate our parametric
solution problem T : X →W as follows:

X =
{

(λ,x, A) ∈ C× Pn−1 ×Mn(C) : Ax = λx
}
,

W = Mn(C), T (λ,x, A) = A.

If A is a matrix with distinct eigenvalues then there will be n points of the form
(λi,xi) lying above A. If there is a multiple eigenvalue, say a double eigenvalue
with geometric multiplicity 2, then there n− 2 points of the form (λi,xi) and a
projective line λ× P1, the latter corresponding to the double eigenvalue.

Example 29 An interesting example of polynomial maps T : Cn → Cn are
gradient maps defined by

T (x) = ∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
,

where f : Cn → C is a polynomial. To be specific, pick

f(x, y, z) = x4 + y4 + z4 + xyz,

then,
T (x, y, z) = (4x3 + yz, 4y3 + xz, 4z3 + xy).

The topological properties of this gradient map have consequences for the varia-
tion of topology of the family of surfaces defined by

f(x, y, z) + ax+ by + cz = d.

See [Br] for more details. By Bezout’s Theorem the typical fibre has 27 points.
Using Maple’s Groebner basis package one can show that x, y and z all satisfy
degree 27 polynomials with coefficients that are polynomials w1 = ∂f

∂x , w2 =
∂f
∂y , w3 = ∂f

∂z , and so we conclude that ∇f is finite.
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