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Ramanujan-like Congruences of the
Distinct Partition Function

Ian Blumenfeld

Cristi Carlstead

Mimi Cukier

Wesley Terwey

In his work with the partition function, Ramanujan observed several congru-

ences of the form p(An + B) ≡ 0 (mod m). We adapt this form to several

congruences of the distinct partition function, p2(n). We show that one can

determine all ordered pairs of integers (A,B) for which p2(An + B) ≡ 0

(mod 2) and show families of congruences modulo 4. Finally, we offer a

proof of a congruence modulo 5 satisfied by the distinct partition function.
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Introduction

In 1919 Ramanujan discovered several families of congruences satisfied by

the partition function [Ra]. He proved that

p(5n + 4) ≡ 0 (mod 5)
p(7n + 5) ≡ 0 (mod 7)

p(11n + 6) ≡ 0 (mod 11).

It was our purpose to look for Ramanujan-like congruences for the dis-

tinct partition function.

A partition of n is a non-increasing sequence of positive integers whose sum

is n. The partition function, p(n), counts the number of partitions of n. For

example, the partitions of 5 are:

5
4 + 1
3 + 2

3 + 1 + 1
2 + 2 + 1

2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1.

And hence, p(5) = 7.
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Definition 0.1 The generating function, A(q), of a sequence a0, a1, a2...is

the power series A(q) =
∑

n≥0 anq
n.

The generating function for the partition function is

P (q) =
∞∑

n=0

p(n)qn =
∞∏
i=1

1

1− qi
. (0.1)

Definition 0.2 The distinct partition function, p2(n), counts the number of

partitions of n into distinct parts.

For example, p2(5) = 3 where the distinct partitions are:

5
4 + 1
3 + 2.

The generating function for the distinct partition function is

P2(q) =
∞∑

n=0

p2(n)qn =
∞∏
i=1

(1 + qn). (0.2)

Definition 0.3 A mod m congruence is a congruence of the form p2(An +

B) ≡ 0 (mod m), A ∈ , B ∈ , and the congruence is true for all nonnegative

integers n.

We have focused on distinct partitions of d when d is of the form An+B. To
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aid us in our search for congruences of the form p2(An + B) ≡ 0 (mod m)

we performed a computer search. For each A and B, the program calculated

the number of distinct partitions of An + B for 0 ≤ n ≤ 200. The program

then output the greatest common divisor of each set of p2(An+B) giving an

upper bound on the actual greatest common divisor. This gave us data (see

Appendix A) to examine for patterns in the number of distinct partitions of

An + B.

One basic theorem that explains the patterns of the greatest common di-

visors between different A’s in the chart in Appendix A is

Theorem 0.1 Let ai, b,mi ∈ , for 1 ≤ i ≤ k, If we have congruences of the

form

p2(a1n + b) ≡ 0 (mod m1)
p2(a2n + b) ≡ 0 (mod m2)

...
p2(akn + b) ≡ 0 (mod mk),

then p2(a1a2a3...akn + b) ≡ 0 (mod LCM(m1m2m3...mk)).

Proof Suppose we have congruences of the form
p2(a1n + b) ≡ 0 (mod m1)
p2(a2n + b) ≡ 0 (mod m2)

...
p2(akn + b) ≡ 0 (mod mk).

All numbers of the form (a1a2a3...akn + b) are also of the form (ain + b) for i = 1, 2, ...k.

Thus
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p2(a1a2a3...akn + b) ≡ 0 (mod m1) and
p2(a1a2a3...akn + b) ≡ 0 (mod m2) and

...
p2(a1a2a3...akn + b) ≡ 0 (mod mk).

By the Chinese Remainder Theorem, p2(a1a2a3...akn + b) is a multiple of LCM(m1, m2, ...mk).

Hence, p2(a1a2a3...akn + b) ≡ 0 (mod LCM(m1,m2,m3, ...mk)). 2

Another pattern can be explained by the following lemma.

Lemma 0.1 If p2(An + B) ≡ 0 (mod m) for all n ∈ , then for all s ∈ ,

p2(An + (B + As)) ≡ 0 (mod m).

Proof If p2(An + B) ≡ 0 (mod m) for all n ∈ ,

then note that An + (As + B) is of the form A(n + s) + B.

Therefore, p2(An + B + As) ≡ 0 (mod m).

2

In this report we prove the existence of general families of mod 2 congruences

through the use of elementary number theory techniques. After which, we

explore certain congruences that hold modulo 4 with the use of a recursive

function describing the distinct partition function. In our final section we

show a congruence modulo 5 using a method of finite verification described

by Eichhorn [Ei].
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The Mod 2 Congruence

A study of our chart of congruences (Appendix A) reveals that the most

common nontrivial value of m for p2(An + B) ≡ 0 (mod m) appears to

be m = 2. Hence, we first focused our attention on determining mod 2

congruences. A result due to Euler allows us to determine exactly when

p2(n) ≡ 0 (mod 2). We can then use this result to determine when p2(An +

B) ≡ 0 (mod 2) for all n ∈ .

Theorem 1.1 (Euler’s Pentagonal Number Theorem)
∞∏

n=1

(1− qn) = 1 +
∞∑

n=−∞
(−1)k(q

3n2+n
2 ).

Note that
∏∞

n=1(1−qn) is the generating function for E(n)−O(n), where

E(n) is the number of partitions of n into an even number of distinct parts ,

O(n) is the number of partitions of n into an odd number of distinct parts.

To see this, look at the expansion of
∞∏

n=1

(1− qn) = (1− q)(1− q2)(1− q3)...,
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we can see that positive qn terms come from distinct partitions of n into an

even number of parts, while negative qn terms come from distinct partitions

of n into an odd number of parts.

Theorem ?? shows that the coefficients of
∏∞

n=1(1− qn) are odd exactly

when n is of the form 3k2+k
2

, for k ∈ . Therefore, p2(n) = E(n) + O(n) ≡ 0

(mod 2) if and only if n 6= 3k2+k
2

for any k ∈ .

Numbers of the form 3k2+k
2

, k ∈ are known as the generalized pentago-

nal numbers. For the remainder of the report, we will call an integer n a

pentagonal number if it is of this form.

In our introduction, we mentioned that a congruence of the form p2(An+

B) ≡ 0 (mod m) implies congruences of the form p2(An + Ar + B) ≡ 0

(mod m) for each r ∈ (this is Lemma ??). We now present a result that

allows us to find information about p2(An + B) from what we know about

p2(An + Ar + B).

Theorem 1.2 If p2(An+B) is odd for some n ∈ , then there exists an m ∈
with m > n such that p2(Am + B) 6≡ 0 (mod 2).

Proof Suppose we have p2(An + B) 6≡ 0 (mod 2) for some n ∈ . Then

An + B =
3k2 + k

2
(1.1)

for some k ∈ . If an appropriate m exists, we should have

Am + B =
3h2 + h

2
(1.2)

for h ∈ . From (??) and (??), we have

m− n =
(h− k)(3(h + k) + 1)

2A
. (1.3)
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Making the right side of (??) an integer will allow us to produce an m so

that p2(Am+B) is odd. To do this, choose h = 2lA+k, where l is a positive

integer large enough so that 2lA + k > |k|. (this makes the right side of (??)

positive). Now we can simply add this quantity on to n to find m. 2

Note that a repeated application of this method allows us to find an in-

finite, increasing sequence of m’s for which p2(An + B) 6≡ 0 (mod 2). This

allows us to prove the following

Corollary Let r ∈ . If p2(An + Ar + B) ≡ 0 (mod 2) for all n ∈ , then

p2(An + B) ≡ 0 (mod 2) for all n ∈ .

Proof Suppose p2(An + B) 6≡ 0 (mod 2) for some n ∈ and use the method

described in the proof of Theorem ?? to find an m > (n + r) for which

p2(Am + B) 6≡ 0 (mod 2). Then the congruence p2(An + Ar + B) =

p2(A(n + r) + B) ≡ 0 (mod 2) does not hold. 2

Using Euler’s Pentagonal Number Theorem, we can eliminate certain val-

ues of A and B from candidacy for mod 2 congruences. For instance,

Example For all B, l ∈ , there exists an n so that p2(B
ln + Bl−1) ≡ 1

(mod 2).

Proof Let n = 6Bl−2. We need to show that An + B = 6B2l−2 + Bl−1
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is of the form 3k2+k
2

for some k ∈ . Let k = 2Bl−1. Then we have

12B2l−2 + 2Bl−1

2
= 6B2l−2 + Bl−1.

Since Bln + Bl−1 is pentagonal for at least one value of n, we cannot have a

mod 2 congruence. 2

In fact, we can find all A,B such that p2(An + B) ≡ 0 (mod 2). We first

present a simple result and then develop an equivalent but more convenient

method of determining mod 2 congruences. First, we require a lemma.

Lemma 1.1 p2(An + B) ≡ 0 (mod 2) if and only if 24An + 24B + 1 is

square.

Proof If p2(An + B) 6≡ 0 (mod 2) for some n ∈ , then, for this n,

An + B =
3k2 + k

2
.

So,

k =
−1±√24An + 24B + 1

6
.

Therefore, An + B is pentagonal exactly when k is an integer. Note that
√

24An + 24B + 1 ≡ ±1 (mod 6), so k is an integer exactly when the quan-

tity 24An + 24B + 1 is square. 2

Theorem 1.3 p2(An + B) ≡ 0 (mod 2) for all n ∈ if and only if 24B + 1

is a quadratic non-residue of 24A.

(⇐) Consider the quantity 24An+24B+1. If it is square, then 24B+1 ≡
x2 (mod 24A) for some x. Hence, if 24B+1 is a quadratic non-residue of 24A,

10



then 24An + 24B + 1 is never square. Thus, Lemma ?? shows a congruence

modulo 2.

(⇒) If 24B + 1 is a quadratic residue of 24A, then there exists an n such

that

24An + 24B + 1 = x2

for x ∈ . We may now use Lemma ?? to show that no congruence modulo 2

is possible. 2

We can refine our result to a similar statement involving A rather than

24A. We first require some groundwork.

Lemma 1.2 24B + 1 is a quadratic residue of 2i for all B, i ∈ .

Proof We will prove this inductively. First, we can easily see that 24B+1 ≡
1 (mod 2i) for i ≤ 3 as 2, 4 and 8 all divide 24. As 1 is always a quadratic

residue, the statement is true.

Assume, for some i ≥ 3, that 24B + 1 ≡ x2 (mod 2i). Then either

24B + 1 ≡ x2 (mod 2i+1) or 24B + 1 ≡ (x2 + 2i) (mod 2i+1). In the first

case, 24B + 1 is a quadratic residue of 2i+1, and we are done.

Suppose, then, that 24B+1 ≡ (x2+2i) (mod 2i+1). Consider the quantity

(x+2i−1)2 = x2+2ix+22i−2. We know that x is odd as 24B+1 ≡ x2 (mod 2i).

Also, since i ≥ 3 implies 2i− 2 ≥ i + 1, this reduces to (x2 + 2i) (mod 2i+1).

Therefore, (x + 2i−1) is a square root of 24B + 1 (mod 2i+1). 2

Lemma 1.3 24B + 1 is a quadratic residue of 3j for all B, j ∈ .
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Proof Since 3 divides 24, 24B + 1 is congruent to 1, a quadratic residue

modulo 3. It is a consequence of Hensel’s Lemma that if x is a quadratic

residue of a prime p, then {x + rp | r ∈ , 0 ≤ r < pj−1} are all quadratic

residues of pj. Therefore, x ≡ 1 (mod 3) implies that x is a quadratic residue

of 3j for all j. Hence 24B + 1 is a quadratic residue of 3j for all j. 2

Now we need a theorem presented in [HW].

Theorem 1.4 Let m = m1m2 . . . mk, where the mi are relatively prime. The

number of roots of the equation

f(x) ≡ 0 (mod m)

is equal to the product of the number of roots of each congruence

f(x) ≡ 0 (mod mi), i = 1, 2, · · · , k.

In particular, this tells us that if f(x) has a root modulo each of the mi,

then f(x) has a root mod m. With this, we can present an interesting result.

Theorem 1.5 24B + 1 is a quadratic residue of 2i3j for all B, i, j ∈ .

Proof From Lemmas ?? and ??, 24B + 1 is a quadratic residue of 2i and 3j

individually. Therefore, the equations

x2 − (24B + 1) ≡ 0 (mod 2i)

and

x2 − (24B + 1) ≡ 0 (mod 3j)
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have roots, and, from Theorem ??, so does

x2 − (24B + 1) ≡ 0 (mod 2i3j).

2

We now can prove the promised refinement of Theorem ??.

Theorem 1.6 p2(An + B) ≡ 0 (mod 2) for all n ∈ if and only if 24B + 1

is a quadratic non-residue of A.

Proof (⇐) This proof is identical to the proof of the first half of Theorem??.

We merely consider the quantity 24An+24B+1 modulo A, rather than mod-

ulo 24A.

(⇒) If 24B + 1 is a quadratic residue of A, then it is a solution of the

equation

x2 − (24B + 1) ≡ 0 (mod A). (1.4)

Also, x = 1 is a solution of the equation

x2 − (24B + 1) ≡ 0 (mod 24).

If gcd(24, A) = 1, then Theorem ?? implies that

x2 − (24B + 1) ≡ 0 (mod 24A)

has solutions. Then 24An + 24B + 1 is square for some n ∈ . For this n,

(An + B) 6≡ 0 (mod 2).

13



If gcd(24, A) 6= 1, then write A = 2k3lc, where gcd(24, c) = 1. Since c

divides A, (??) implies that there exists an x such that

x2 − (24B + 1) ≡ 0 (mod c). (1.5)

Theorem ?? allows us to say, for some x,

x2 − (24B + 1) ≡ 0 (mod 24 · 2k3l) (1.6)

And, by applying Theorem ?? to (??) and (??),

x2 − (24B + 1) ≡ 0 (mod 24A)

has solutions. As in the proof of Theorem ??, Lemma ?? implies that (An+

B) 6≡ 0 (mod 2) for some n. 2

This type of machinery allows us to explain many patterns in our chart of

congruences. One such result is an immediate consequence of the preceding

discussion.

Corollary If A = 2i3j for some i, j ∈ , and there exists an m such that

p2(An + B) ≡ 0 (mod m) for all n ∈ , then m is odd.

Proof Theorem ?? implies that 24B + 1 is a quadratic residue of 2i3j.

By Theorem ??, this is enough to eliminate the possibility of a congruence

p2(An + B) ≡ 0 (mod 2). 2

The following result allows us to account for rows and even a parabola in

our congruence chart (see Appendix A) for which congruences modulo 2 do

not exist.

14



Theorem 1.7 If p2(An+B) ≡ 0 (mod m) for all n ∈ and 6B2

A
is an integer,

then m ≡ 1 (mod 2).

Proof Recall from Lemma ?? that if 24An+24B+1 is square for some n, then

there can be no mod 2 congruence. Let n = 6B2

A
and let D2 = 24An = 144B2.

Then 2D = 24B and (D +1)2 = 24An+24B +1 is a perfect square. Lemma

?? now tells us that there can be no congruence modulo 2. 2

In particular, mod 2 congruences do not exist when A = 1, A = 2, A = 3,

A = 6, A = B, and A = B2.
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The mod 4 Congruences

After completely characterizing mod 2 congruences, it is natural to examine

the analogous structure: mod 4 congruences. Here, we found a recursive

formula given by Ewell [Ew] helpful.

Theorem 2.1 (Ewell):

If n is not pentagonal,

p2(n) = 2
∑

k=1

(−1)k+1p2(n− k2) (2.1)

where the index runs over values that give non-negative arguments for p2(n).

Theorem 2.1 follows from the identities

∞∏
n=1

1− xn = 1 +
∞∑

n=1

(−1)n
(
x

3n2−n
2 + x

3n2+n
2

)
,

∞∏
n=1

1− xn =
∞∏

n=1

(1 + xn)

(
1 + 2

∞∑
n=1

(−1)nxn2

)
.

By showing that there are an even number of n− k2 which are pentago-

nal, we can obtain mod 4 congruences. In particular, showing there are no
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pentagonal numbers of that form is sufficient to prove some cases of mod 4

congruences.

Theorem 2.2 :

p2(132n + 20) ≡ 0 (mod 4), for all n ∈ .

Proof : First of all, because 24 · 20 + 1 is a quadratic non-residue mod 169,

Theorem?? implies that p2(169n+20) is even for all n ∈ . Hence, Theorem??

implies that none of the integers of the form 169n + 20 are pentagonal num-

bers. Thus, we can use (2.1) to get

p2(169n + 20) = 2
∑

k=1

(−1)k+1p2(169n + 20− k2).

By Theorem??, we know that, for all n, k ∈ , p2(169n + 20 − k2) is even if

24(20−k2)+1 is a quadratic non-residue of 169. However, 24(20−k2)+1 ≡
2k2 (mod 13). 2 is a quadratic non-residue of 13. Hence, 2k2 is a non-residue

of 132. Thus, we have our mod 4 congruence. 2

The following more general theorem can be proven using exactly the same

method:

Theorem 2.3 : For all n ∈ :

If q is a prime ≡ −1,−5,−7,−11 (mod 24), 24B + 1 ≡ 0 (mod q), and

24B + 1 is a quadratic non-residue of q2, then

p2(q
2n + B) ≡ 0 (mod 4).

17



First, we need a lemma:

Lemma 2.1 −24k2 is a quadratic non-residue of a prime p if and only if

p ≡ −1,−5,−7,−11 (mod 24).

Proof of Lemma: −24k2 will be a quadratic non-residue only when −6

is. It is well-known that −6 is a quadratic residue of a prime p if and only

if p ≡ 1, 5, 7, 11 (mod 24). Therefore, −6 and −24k2 are quadratic non-

residues of p if and only if p ≡ −1,−5,−7,−11 (mod 24). 2

Proof of Theorem: If 24B + 1 is a quadratic non-residue of q2, then

Theorem?? shows that p2(q
2n + B) ≡ 0 (mod 2) for all n ∈ . As a conse-

quence of Theorem??, we know then that none of the numbers of the form

q2n + B are pentagonal. Therefore, we can use (2.1) on p2(q
2n + B) to get

p2(q
2n + B) = 2

∑

k=1

(−1)k+1p2(q
2n + B − k2).

Examine p2(q
2n+B−k2). This is even if 24(B−k2)+1 is a non-residue of q2,

for all k. But, 24(B − k2) + 1 ≡ −24k2 (mod q). Therefore, by Lemma 2.1,

we can apply Theorem?? to see that, for all n ∈ , p2(q
2n+B) ≡ 0 (mod 4). 2

However, this particular method of proof does not work on other such

suspected mod 4 congruences, most notably p2(5
2n + 6) ≡ 0 (mod 4). In-

stead, we would need to prove that an even number of pentagonal numbers

of the form 25n + 6 − k2 exist, for all n, k ∈ . This currently is beyond our

abilities, at least in the general case.

Such a general proof would help out immensely in proving a more complete
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mod 4 conjecture. Similar in style to Theorem??, empirical evidence sup-

ports this conjecture very strongly.

Conjecture 2.1 : p2(An + B) ≡ 0 (mod 4), for all n ∈ if and only if

A = p2k, p is a prime, p > 3, 24B + 1 ≡ 0 (mod p), and 24B + 1 is a

quadratic non-residue of p2.

We have two possible techniques that may lead to a proof of this. First, and

most promising, comes from another partition function, described by Alladi

[Al].

Definition 2.1 : g3(n, k) is the number of distinct partitions of n with dif-

ference of at least 3 between parts, with exactly k differences larger than 3.

There is a theorem of Alladi [Al] which states

p2(n) =
∞∑
i=0

g3(n, i)2i.

Note that this is odd only when g3(n, 0) is odd, and we know that this can

only be odd for n pentagonal. Also note that g3(n, 0) is either 0 or 1. There-

fore, if we look at non-pentagonal n, we can find mod 4 congruences whenever

g3(n, 1) is even. More work on this function might prove useful in helping to

prove mod 4 congruences.
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The second possible approach comes from an older idea. Dyson proposed,

and Atkin and Swinnerton-Dyer proved [ASD], that a property about par-

titions, called the Dyson rank, separates partitions of 5n + 4 into 5 equal,

distinct classes when reduced modulo 5. Similar results were found for an-

other Ramanajun partition congruence, p(7n + 5) ≡ 0 (mod 7).

Definition 2.2 : The Dyson rank of a partition is defined as the partition’s

largest part minus its number of parts.

Definition 2.3 : Let N2(m,n) be the number of distinct partitions of n with

Dyson rank m. Let N2(m, w, n) be the number of distinct partitions of n with

Dyson rank congruent to m modulo w.

We have noticed from empirical evidence that if the number of distinct par-

titions of n is divisible by 4, then the Dyson rank, reduced modulo 4, divides

all these partitions into 4 disjoint and equal classes.

Conjecture 2.2 : If p2(n) is divisible by 4, thenN2(0, 4, n) = N2(1, 4, n) =

N2(2, 4, n) = N2(3, 4, n).

For example, the distinct partitions of 11, when classified by Dyson rank

reduced mod 4 are:

≡ 0 (mod 4) ≡ 1 (mod 4) ≡ 2 (mod 4) ≡ 3 (mod 4)
10 + 1 8 + 2 + 1 11 9 + 2

7 + 3 + 1 7 + 4 8 + 3 6 + 4 + 1
6 + 5 5 + 3 + 2 + 1 5 + 4 + 2 6 + 3 + 2.
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Providing an explanation for this phenomenon would be of great assis-

tance in determing mod 4 congruences.

The combinatorial interpretation of the Dyson rank may be simple to un-

derstand, but it is difficult to use in proofs. Thus, we derived the generating

functions for N2(m,n) and N2(m,w, n). These proofs of distinct partition

Dyson rank are modeled off of Atkin’s and Swinnerton-Dyer’s proof of the

Dyson rank generating functions for unrestricted partitions. [ASD]

Theorem 2.4

∞∑
n=0

N2(m,n)qn =
∞∑

s=1

q
1
2
s(s+1)+m

s−1∏
t=1

1− qs+m−t

1− qt
,

∞∑
n=0

N2(m,w, n)qn =
∞∏

t=1

(
1 + qt+1

) ∞∑
r=0

∞∑
s=0

qm+rw+1

s∏
t=1

(
1− qm+rw+t

)
.

Proof: Let δm,n(s) be the number of distinct partitions of n into exactly s

parts the largest of which is s + m. Each of these has Dyson rank m, so

the total number of distinct partitions with Dyson rank m is
∞∑

s=1

δm,n(s) =

N2(m,n). It is fairly easy to see that δm,n(s) is also the number of of distinct

partitions of n−s−m into exactly s−1 parts none of which exceed s+m−1.

Examine G(q, z) =
s+m−1∏

i=1

(1+zqi). This is the generating function for distinct

partitions where no part exceeds s+m−1. The z variable is introduced as a

counter variable for the number of parts in the partition. Therefore, G(q, z)

will have the term
∞∑

n=0

δm,n(s)zs−1qn−s−m in its expansion. From a simple
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product identity, we know that:

s+m−1∏
i=1

(1 + zqi) =
s+m−1∑

u=0

zuq
1
2
u(u+1)

u∏
t=1

1− qs+m−t

1− qt
.

The right-hand side must have a
∞∑

n=0

δm,n(s)zs−1qn−s−m term. This will only

happen when we are at the u = s− 1 term of the expansion due to the zs−1.

Therefore:

∞∑
n=0

δm,n(s)zs−1qn−s−m = zs−1q
1
2
s(s−1)

s−1∏
t=1

1− qs+m−t

1− qt
,

or,
∞∑

n=0

δm,n(s)qn = q
1
2
s(s+1)+m

s−1∏
t=1

1− qs+m−t

1− qt
.

Summing these from s = 1 to ∞:

∞∑
s=1

∞∑
n=0

δm,n(s)qn =
∞∑

s=1

q
1
2
s(s+1)+m

s−1∏
t=1

1− qs+m−t

1− qt
=

∞∑
n=0

N2(m,n)qn.

Next, simple observations lead to the fact that N2(m,w, n) =
∞∑

r=0

N2(m+

rw, n). This means

∞∑
n=0

N2(m,w, n)qn =
∞∑

n=0

∞∑
r=0

N2(m + rw, n)qn

=
∞∑

r=0

∞∑
s=1

q
1
2
s(s+1)+m+rw

s−1∏
t=1

1− qs+m+rw−t

1− qt

=
∞∏

t=1

(
1 + qt+1

) ∞∑
r=0

∞∑
s=0

qm+rw+1

s∏
t=1

(
1− qm+rw+t

)

by simple product identities. 2
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Finding a family of n which satisfy N2(0, 4, n) = N2(1, 4, n) = N2(2, 4, n) =

N2(3, 4, n) would be a great step; however, the general awkwardness of the

generating function for N2(m,w, n) makes this difficult.

In a similar vein, instead of using the generating function N2(m,w, n),

we could attempt to find a combinatorial proof of the Dyson rank identities,

similar to the famous Franklin proof of Euler’s pentagonal number theorem,

described in Appendix B.

In fact, if we examine the Dyson rank equivalence classes modulo 4 and

apply the Franklin transformation to them, we can see that N2(0, 4, n) =

N2(2, 4, n) and N2(1, 4, n) = N2(3, 4, n) for all non-pentagonal n. This is be-

cause the Franklin transformation either adds or subtracts 2 from the Dyson

rank of the original partition.

This fact provides a simpler method of proof for the Dyson rank, in that

only one equality needs to be shown if p2(n) ≡ 0 (mod 4). Such an equality

could be shown if a transformation, similar to Franklin’s, between successive

classes could be found. Obviously, a one-to-one correspondence in this trans-

formation is imperative, if a combinatorial proof is to be found.
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The mod 5 Congruence

The resemblance of the linear congruence families found thus far to those

of Ramanujan has lacked the notable characteristic of powers of odd prime

moduli. Indeed, the most famous of the congruence families found for the

general partition function were of moduli of the form 5α7β11γ. In this section

we intend to demonstrate a congruence for p2(n) that is more similar to those

of Ramanujan in that it is of the modulus 5.

In running the computer search, we discovered that the greatest common

divisor of all the p2(125n + 26) was 5. This lead to the conjecture that for

all n ∈ ,

p2(5
3n + 26) ≡ 0 (mod 5). (3.1)

As the Jacobi identities that were first used in the proofs of the Ramanu-

jan congruences are not easily adaptable to the case of p2(n), we are forced to

find a method that differs from those used in most proofs for the Ramanujan

congruences. Dennis Eichhorn, in [Ei], gives a canonical method for deter-

mining the truth of any linear family of congruences for certain types of

arithmetical functions, as determined by their generating function. The final

result, if this approach can be applied, is that verifying the congruence up
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to a finite value of n will suffice to show that the congruence is true for all

values of n.

First we will need to state a few necessary theorems and equations from

the theory of modular forms.

Definition 3.1 For any positive integer N , the subgroups Γ0 and Γ1 of SL2()

are defined by

Γ0(N) =

{(
a b
c d

)∣∣∣∣ ad− bc = 1, c ≡ 0 (mod N)

}

and

Γ1(N) =

{(
a b
c d

)∣∣∣∣ ad− bc = 1, c ≡ 0 (mod N), a ≡ d ≡ 1 (mod N)

}
.

We refer to N as the level. It will later be important to know the indices of

these two subgroups in SL2(). These are well known, and are given in [Ko]

as

[SL2() : Γ0(N)] = N
∏

p|N
(1 +

1

p
) (3.2)

and

[SL2() : Γ1(N)] = N2
∏

p|N
(1− 1

p2
). (3.3)

In both cases the p values are prime.

Definition 3.2 We call a function f(z), defined on the upper half plane H,

a modular form on Γ0(N) of weight k and Nebentyphus character χ if it

satisfies

f(Az) = χ(d)(cz + d)kf(z),
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where A =

(
a b
c d

)
∈ Γ0(N) acts on the upper half plane, H, in the usual

way, i.e Az := az+b
cz+d

.

Similarly, we have

Definition 3.3 A function f(z), defined on H, is a modular form on Γ1(N)

if it satisfies

f(Az) = (cz + d)kf(z)

for all A ∈ Γ1(N) and z ∈ H.

In either case, if f(z) is holomorphic at the cusps (f(z) holomorphic for

z ∈ ) it is referred to as a holomorphic modular form. It should also be

noted that the set of all holomorphic modular forms on Γ0(N) with weight

k and character χ forms a finite dimensional vector space over , Mk(N,χ).

Similarly those of weight k on Γ1(N) for a finite dimensional vector space

over , Mk(N).

For later use we will also give the definition of the Hecke operator Tm. It

is a linear transformation that preserves Mk(N, χ) and Mk(N). If the power

series expansion of the modular form f(z) =
∞∑

n=0

a(n)qn, then we have the

following.

Definition 3.4

f(z)|Tm =
∞∑

n=0

∑

d|gcd(m,n)

χ(d)dk−1a(
nm

d2
)qn.
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Now we need to give the definition of a special modular form that will be

used extensively in the following proofs. This is Dedekind’s eta function.

Definition 3.5

η(z) = q
1
24

∞∏
n=1

(1− qn),

where q = e2πiz , z ∈ H.

η(z) is a non-vanishing modular form of weight 1
2
.

With these definitions in mind, we will state certain facts, give in [Ei]

about products of eta functions. Let f(z) =
∏

δ|N
ηrδ(δz). If

∑

δ|N
δrδ ≡ 0 (mod 24) (3.4)

and

N
∑

δ|N

rδ

δ
≡ 0 (mod 24), (3.5)

then f(z) is a modular form on Γ0(N) of weight k =
1

2

∑

δ|N
rδ and Nebenty-

phus character χ, where χ(d) =
(

(−1)kw
d

)
. w =

∏
δ|N δrδ . This makes χ a

Dirichlet character mod N . Also, we know that if

∑

δ|N

gcd(d, δ)2rδ

δ
≥ 0 (3.6)

for all d | N then the order of f(z) at the cusps is always positive. Knowing

this will play an important role later.

We must now state a theorem that will be crucial in applying the method

of finite verification.
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Theorem 3.1 (Sturm) If f(z) =
∞∑

n=0

a(n)qn is a holomorphic modular

form of weight k and trivial character with respect to some congruence sub-

group Γ of SL2() with integer coefficients, then f(z) ≡ 0 (mod p), where p

is prime, if and only if min{n | a(n) 6≡ 0 (mod p)} > k
12

[SL2() : Γ].

It is now possible to move onto the use of Eichhorn’s finite verification

method. We will first quote his theorem in order to show that this method

will indeed work with the distinct partition function and to get an upper

bound for our constant.

Theorem 3.2 (Eichhorn) Suppose b(n) is an arithmetical function that

has a generating function expressable in the form

∞∑
n=0

b(n)qn =
M∏

j=1

∞∏
i=1

(1− qij)ej (3.7)

where the ej are integers. Then we can prove that b(An + B) ≡ 0 (mod m)

for all n by making a finite verification.

Now it is quite simple to show from (??) that p2(n) satisfies this condition

with M = 2 and ej = (−1)j. The proof of this in [Ei] gives a constant C

for which the congruence b(An + B) ≡ 0 (mod m) will hold for all n as long

as it holds for n ≤ C. Unfortunately, this value of C = 3057647616A3(M̄)2

where M̄ = lcm{1, 2, . . . , M}. In our conjectured congruence (??), A = 125

and M̄ = 2. This give a value for C of 23887872000000000. This is far too

large to be computationally feasible given modern computing power.

Despite the size of this constant, there is no need to abandon use of

the finite verification process. [Ei] also provides us with several ideas for
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lowering this constant considerably through careful choice of a modular form

f(z). First, the preliminary value of C comes from a modular for that is

constructed on Γ1(N) which inherited the congruence properties of p2. As

the value for the constant is obtained from Theorem ??, we can easily see

that finding a modular form that inherits the supposed congruence, but is

on Γ0(N), will give a significantly lower value of C. We can also do a better

job at keeping the weight and level of the modular form used to a minimum.

First, we know that we would like to find a modular form from which we

can extract the generating function of p2(n). Looking at (??) and Definition??,

we can see that taking a factor of η(2z)
η(z)

will allow us to do precisely this. [Ei]

also shows that multiplying these by factors of ηb(Akz), b, k ∈ , will still

allow us to have our modular form inherit the congruence. We would like to

do this in such a way as to generate a modular form that satisfies not only

the criteria for application of Theorem??, but also allows us to use Hecke

operators to extract the congruence without forcing our modular form onto

Γ1(N). It will be apparent in the final proof that this is accomplished not

only by satisfying conditions (??), (??) and (??), but also by satisfying the

facts that
∑

δ|N
rδ ≡ 0 (mod 4), (3.8)

∏

δ|N
δrδ = x2, (3.9)

for some x ∈ , and finally, that

∑

δ|N
δrδ ≡ −B (mod A). (3.10)
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If we try to satisfy all of these equations with a modular form

f(z) =
η(2z)

η(z)
ηb(125z)

we are quickly able to discover that there is no value of b for which all these

statements will hold true. The solution, as suggested by Eichhorn, is to allow

for another degree of freedom by trying a modular form

f(z) =
η(2z)

η(z)
ηb(125z)ηc(250z). (3.11)

We start with (??), giving

2− 1 + 125b + 250c ≡ 1 + 5b + 10c ≡ 0 (mod 24). (3.12)

As it will later suffice to solve this mod 3 and mod 8, we divide this condition

to give us

1 + 2b + c ≡ 0 (mod 3) (3.13)

and

1 + 5b + 2c ≡ 0 (mod 8). (3.14)

From (??)

1− 1 + b + c ≡ b + c ≡ 0 (mod 4). (3.15)

So, b and c are of the same parity. Looking at (??) though, we see that they

must be odd. Furthermore, if b ≡ 1 mod 4 then c ≡ 3 mod 4. Similarly, if

b ≡ 3 mod 4 then c ≡ 1 mod 4. Now, looking at (??)

21 · 1−1 · 125b · 250c = 2c+1 · 53b+3c = x2 (3.16)
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for some x ∈ . This is always true for b and c odd. Moving onto (??) we

need to choose a level N that is a multiple of 250. As we’d like to keep N

as low as possible, we try 250. Viewing (??) under the sufficient mod 3 and

mod 8 conditions, we get

1 + 2b + c ≡ 0 (mod 3) (3.17)

and

3 + 2b + c ≡ 0 (mod 8). (3.18)

Satisfying all equations given, (made easier by the fact that (??) and (??)

are the same) gives several classes of solutions for b and c. We would like to

keep c as low as possible, so as to satisfy (??) without considerable increase

to the weight. For this reason, we choose b ≡ 13 mod 24 and c ≡ 3 mod 24.

Now, in (??), we see that the left hand side is minimized when d = 1. So it

is sufficient to find b and c so that

−1

2
+

b

125
+

c

250
≥ 0,

or

2b + c ≥ 125. (3.19)

With our previous conditions, this allows us to set b = 61 and c = 3. With

these conditions we do indeed satisfy the final requirement, (??).

Now we offer a proof of our main result.

Theorem 3.3 p2(5
3n + 26) ≡ 0 (mod 5) for all n ∈ .

31



Proof: We will begin with the modular form that we have found fit all the

stated criteria, namely

f(z) =
η(2z)

η(z)
η61(125z)η3(250z) =

∞∑
n=0

a(n)qn. (3.20)

Because we have chosen our f(z) according to the above criteria, we know

that it is a holomorphic modular form with the orders of the cusps all non-

negative. This makes f(z) ∈ M32(250, χ). We notice, though, that since

conditions (??) and (??) are satisfied, χ is just the trivial character χ0.

Now we will define the power series expansions of q
−125·61

24 η61(125z) =
∞∑

n=0

α(125n)q125n and q
−250·3

24 η3(250z) =
∑∞

n=0 β(250n)q250n. From these we

will extract the coefficient of q125n+26+ 125·16+250·3+1
24 from f(z). We can easily see

that this is actually equal to a(125n+26+ 125·61+250·3+1
24

), from the power series

for f(z). Using the two power series constructed above, and the definition

for generating function for p2(n), we can multiply power series, equate terms,

and view modulo 5 to show that

a

(
125n + 26 +

125 · 61 + 250 · 3 + 1

24

)
(3.21)

≡
∞∑
i=0

∞∑
j=0

α(125n)β(250n)p2(125n+26−125i−250j) (mod 5).

From Definition ??, α(0) = β(0) = 1. Thus, we get that the term where

i = j = 0 is just p2(125n + 26). From this, it is a straightforward induction

to see that p2(125n + 26) ≡ 0 (mod 5) for all n if and only if a(125n + 26 +

125·61+250·3+1
24

) ≡ 0 (mod 5) for all n.
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Now, because we have satisfied (??), 26 + 125·61+250·3+1
24

≡ 0 (mod 125).

This enables us to consider a new modular form by applying the Hecke op-

erator T125. As we are on the trivial character, as earlier established, we can

use Definition?? to get that

f1(z) = f(z)|T125 =
∞∑

n=0

a(125n)qn (3.22)

and f1(z) ∈ M32(250, χ0). We can then apply Theorem ?? to show that

f1(z) ≡ 0 (mod 5) if and only if a(125n) ≡ 0 (mod 5) for all n ≤ 32
12

[SL2() :

Γ0(250)]. From (??) this is equal to 32
12
· 250 · 3

2
· 6

5
= 1200. Therefore,

p2(125n + 26) ≡ 0 (mod 5) for all n ∈ if and only if the congruence holds

for every n ≤ 1200. This is readily verified by a computer check. 2

In addition to this, several other results have been conjectured about con-

gruences modulo powers of 5. These are all supported by empirical evidence

from the computer algorithm that generated our chart (Appendix A) .

Conjecture 3.1 For all n ∈

p2(5
3n + 76) ≡ 0 (mod 5)

and

p2(5
3n + 101) ≡ 0 (mod 5).

It can be quite readily seen that the method employed in the proof of our

theorem fails in these cases. We are unable to satisfy (??) while satisfying
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the other criteria. This forces us to use techniques that keep the constant

much higher, and thus out of range of a computer check.

A final, and much more interesting, conjecture is as follows.

Conjecture 3.2 For all n,m ∈

p2(5
2m+1n + B) ≡ 0 (mod 5m)

where B · 24 ≡ −1 (mod 52m+1).

Clearly this is trivially true for m = 0, and our theorem shows it for

m = 1. Empirical checks for m = 2 verify the conjecture for n ≤ 20 and do

the same in the case m = 3 for n ≤ 10. Further computation has proved

impossible due to such large arguments for the p2 function. A proof of this

would be most interesting, as it would truly resemble the results of Ramanu-

jan in his congruences for moduli that are powers of 5. It would also show

that p2(n) assumes an infinite number of values that are multiples of ar-

bitrary powers of 5. These results correspond well to the those in [Ono],

where it is shown that the p(n) function does this for any prime greater than

3. Hopefully this will provide further analogies between these two partition

functions.
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Appendix A: Chart of Congruences

This chart gives the greatest common divisor of {p2(An + B) | 1 ≤ n ≤
200}. The values of A run down the horizontal axis and the values of B

run across the vertical axis. This information was the source of our original

conjectures concerning linear congruences in the restricted partition function.
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Appendix B: The Franklin Transformation

In [Fr], Franklin presents a combinatorial proof of Euler’s Pentagonal

Number Theorem. The proof involves transformations of Ferrers graphs. A

Ferrers graph is a way of representing a partition as an array of nodes. Each

row corresponds to one part in the partition. All rows are aligned left in

non-increasing order for uniformity sake.

• • • • • 5

• • • • 4+1

•

• • • 3+2

• •
Figure 1: Ferrers graphs for the distinct partitions of 5

The version of Euler’s Pentagonal Number Theorem that Franklin proves

is as follows:
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Theorem .1

E(n)−O(n) =

{
(−1)k when n = 3k2+k

2
, k ∈

0 otherwise.

The proof involves a mapping between Ferrers graphs of partitions of each

type. We follow the exposition given in [HW]. First, some terminology:

• The base of a partition is made up of the nodes on its bottom row.

• The slope of a partition is made up of the nodes that fall on a line with

slope -1 drawn from the upper-rightmost node. (See Figure 1)

• • • • • • ◦
• • • • • ◦ slope
• • • • ◦
• • •
? ?
base

Figure 2: Base and Slope of a Ferrers Graph

We now describe a method of finding a 1-1 correspondence between the

partitions counted by E(n) and O(n). (See Figure 2) We perform a trans-

formation on any distinct partition by using one of two operations.

(1) Move the base to the position to the right and parallel to the slope – the

base then becomes the new slope. We will call this operation O.

(2) Move the slope to a position underneath the base – the slope then be-

comes the new base. We will call this operation Ω.
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• • • • • • • • • • • • • • ◦
• • • • • • O→ • • • • • • ◦
• • • • • • • • • •
• • • Ω← • • •
◦ ◦

Figure 3: The Two Franklin Transformations

Note that both O and Ω change the parity of a partition by adding or sub-

tracting a row. Therefore, each is an operation that carries a distinct par-

tition of one type to one of the other type. In fact, the two operations are

inverses of one another, so we can use our operations to form pairs of parti-

tions, one of which has an even number of parts and the other an odd number

of parts. We now show that at most one of O and Ω can be used on a given

partition.

Below is the method we use to decide which of O and Ω to perform.

• If the slope is longer than the base, then the transformation O is possible

but Ω is not.

• If the slope and base are the same length then O is possible unless the

slope extends to the base of the partition (see Figure 3), in which case it is

impossible. In either case, Ω is impossible.

• If the base is longer than the slope, then Ω is always possible unless the

slope extends to the base of the partition and there is exactly one more node
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k+2 = 2k-1 • • • • • • • • • • ◦
k+1 • • • •

O

6→ • • • • ◦
k ◦ ◦ ◦ ◦

Figure 4: A Failed Franklin Transformation (base = slope)

k+3 = 2k • • • • • ◦ • • • • •
k+2 • • • • ◦

Ω

6→ • • • •
k+1 • • • ◦ • • •

◦ ◦ ◦
Figure 5: A Failed Franklin Transformation (base = slope + 1)

in the slope than in the base. The transformation fails in this case because

the resulting partition does not have distinct parts. (See Figure 4) In this

case, O is always impossible.

The only cases in which our 1-1 correspondance fails occur when the

slope and base are the same length, or when the base is longer by one node.

We can characterize the values of n that we are partitioning for which the

transformation fails. Let k be the number of nodes along the slope. Then

either we have

n = k + (k + 1) + (k + 2) + . . . + (2k − 1) =
3k2 − k

2
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or

n = (k + 1) + (k + 2) + . . . + 2k =
3k2 + k

2

Clearly we can express any number n in at most one of these ways, and for

only one value of k. In either case, the parity of the extra partition is simply

the parity of k, so

E(n)−O(n) = (−1)k

when n = 3k2+k
2

, k ∈ . In all other cases,

E(n)−O(n) = 0. 2
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