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PIGEON-HOLING MONODROMY GROUPS

NILES G. JOHNSON

ABSTRACT. A simple tiling on a sphere can be used to construct a tiling on a d-fold

branched cover of the sphere. By lifting a so-called equatorial tiling on the sphere, the

lifted tiling is locally kaleidoscopic, yielding an attractive tiling on the surface. This con-

struction is via a correspondence between loops around vertices on the sphere and paths

across tiles on the cover. The branched cover and lifted tiling give rise to an associated

monodromy group in the symmetric group on d symbols. This monodromy group pro-

vides a beautiful connection between the cover and its base space. Our investigation of

will focus on consideration of all possible low genus branched covers for a sphere, and

therefore all locally kaleidoscopic tilings of low genus surfaces. It will be carried out

through the classification of their associated monodromy groups. To this end, the relation-

ship between classifications of branched covers and classifications of monodromy groups

will be stressed.
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1. INTRODUCTION

1.1. Covering spaces. The idea of a covering space is that one topological space ‘folds

up nicely’ onto another. To speak of a covering space, then, involves two spaces and a

surjective map from one to the other. To say that the map is ‘nice’ means that in addition to

being surjective, it is locally a homeomorphism for every point in its domain (the covering

space). To be precise:

Definition. A map p from a space S to a space X is a homeomorphism if

(1) p is 1-1

(2) p is onto

(3) p is continuous

(4) p−1 is continuous

Definition. A space S is a cover of a space X if there exists a continuous and surjective

map

p : S → X

such that for all x ∈X , there is an open set, V , containing x such that p−1 (V ) is a disjoint

union:

p−1 (V ) =
n∐
i=1

Ui,

and p is a homeomorphism of Ui onto V for each i.

In this case, we say that S covers X and that p is the covering map. More specifically,

for each point x ∈X , we speak of its pre-image, p−1(x) ⊂ S, as the fiber of x and say that

V is evenly covered by p−1 (V ). Our interests will be focused on path-connected covers.

For such spaces each sufficiently small open set in the covered space has the same number

of disjoint sets in its pre-image [3]. The cardinality of the fiber of x is then the same for all

x ∈ X , and is called the degree of the cover S over X .

An important example of a covering space is the covering of a circle by the real line.

One can imagine coiling the real line around a circle of radius 1
2π (whose circumference

will be 1) so that two points on the line will be identified if and only if the distance between

them on the line (their difference) is exactly an integer. Explicitly, the covering map is:

p : R → X = {x ∈ C : |x| = 1
2π
}

where p(t) =
1
2π

e2πit =
1
2π

(cos 2πt+ i sin 2πt).

We notice that p is both continuous and onto, and, for example, given any x ∈ X , the

open set

Vx = {v∈X : |x− v| < 1
2π
}

is evenly covered by a disjoint union of homeomorphic images in R. Thus, the map p is

indeed a covering map. The degree of this cover is the cardinality of the integers, since R

is path-connected and the fiber of each point in X is isomorphic to Z.

One may note, however, that not all spaces cover our circle in this ‘even’ way. A good

example of this is to consider a ‘figure eight’ shape. The figure eight consists of two circles

meeting at a point, and certainly each circle will cover our circle, but the point they share

causes trouble. To see why, let us suppose that there is a cover of the circle, X , by the

figure eight, F8, and call the shared point f0. Let z ∈ X denote p(f0), where p is the
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covering map in question. Now as a point of X , z has a fiber in F8. Unfortunately, every

neighborhood of f0 is path-connected. Even worse, however, is the realization that no

neighborhood of f0 is homeomorphic to a circle or to a line, but that all the connected

neighborhoods of z are homeomorphic to one of them. Any potential covering map breaks

down at f0. The reason for this is clear; the circles that make up F8 need to be disjoint for

a cover to ‘work’, but they are not.

1.2. Branched covers. Though such a situation does look bleak, it is still of some in-

terest. Such ‘almost-coverings’ are called branched covers, and will be our main focus.

From here on we will apply our study almost exclusively to Riemann surfaces, defined as

follows:

Definition. A Riemann surface X is a topological space in which each point has a

neighborhood which maps onto the open unit disk in the complex plane via an analytic

homeomorphism. More precisely, for each x ∈ X there is a coordinate homeomorphism

φx : Ux → Vx from an open neighborhood Ux of x to an open set Vx in C such that

compositions, φx ◦ φ−1
y : φy(Ux ∩ Uy) → φx(Ux ∩ Uy) are analytic, i.e., are infinitely

differentiable with respect to a complex variable in C.

When one Riemann surface analytically covers another, p : X̃ → X , then at each

point x̃ ∈ X̃ we require that the covering map induce an analytic map from an open

disk centered at 0 to a like disk, fixing 0, as follows. We may assume that the coordinate

homeomorphisms ψx̃, x̃ ∈ X̃ and φx, x ∈ X satisfy ψx̃(x̃) = 0 and φx(x) = 0. Then,

setting x = p(x̃), the map φx ◦ p ◦ ψ−1
x̃ : Vx̃ → Vx maps 0 to 0. We want this map to be

analytic when restricted to a small disc about 0. The situation is pictured in the diagram

below.
Ux̃

p−−−−→ Ux

ψx̃

⏐⏐� φx

⏐⏐�
Vx̃

φx◦p◦ψ−1
x̃−−−−−−→ Vx

A critical property of this induced map, φx ◦ p ◦ψ−1
x̃ , is its automatic analyticity. It allows

a power series expansion of the map and a local approximation of the map as a power map

z �→ ze, where e is a positive integer,

(see [2]). When this integer is greater than one, we have a situation similar to that of the

figure eight covering the circle. At almost every point the induced map is a degree e cover

of the disk by the disk, with the sole exception being the origin. There is only one point

in the fiber of the origin, whereas there are e points in the fiber of every other point on the

disk.

Definitions. The inverse image of the origin of the covered disk lies on the covering Rie-

mann surface and is called a ramification point. The origin of the covered disk lies on the

covered Riemann surface and is called a branch point.

Definition. A Riemann surface S is a branched cover of a Riemann surface X if there is

an analytic map

p : S → X

and a discrete set of branch points B ⊂ X such that the restricted map

p : (S −R) → (X −B), where R = p−1(B)

is a covering map.
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Remark. Even though there may be points ofR which are not ramification points, we need

to remove the full inverse image of the branch points to get a covering space.

1.3. The tiling on S. As suggested by the title, we will limit our investigation to branched

covers of a sphere. On the sphere, we will consider the branch points all to be arranged

along a great circle and connected along the great circle by edges so that the sphere is

divided into an upper hemisphere, Xu, and a lower hemisphere, Xl, each tiled by a single

polygon. One can imagine for convenience that the polygons are regular. We will call this

an equatorial tiling.

Since the branch points are all on the equator, and since Xu is simply connected, then

the inverse image of the interior of Xu is a disjoint union of open discs in S. It may be

shown that the closure of each of these open sets is mapped homeomorphically onto the

upper half plane and so is homeomorphic to a closed disc or polygon. Call these closures

upper tiles or tiles of type Xu. Likewise we construct from Xl lower tiles or tiles of type

Xl in S. If we consider the interior of the arcs along the equator, determined by the branch

points, we see that the inverse image of each of these is a disjoint union of open arcs, each

of whose closures maps homeomorphically onto a closed arc on the equator. Call these

closed arcs in S edges. The inverse image of the branch points will be called vertices.

Thus we can construct a tiling on S by taking the upper and lower tiles as our polygons.

An upper tile and a lower tile will meet along exactly one edge, unless the ramification

index is 1 where their boundary edges meet. At a given vertex the number of tiles is 2e,
where e is the degree of ramification at the vertex. As one circles a vertex, the tiles alternate

between upper and lower tiles.

Definition. In general, given a set A ⊂ X , a set Ã of type A in S is a set such that

p : Ã → A is a homeomorphism, where p is the branched covering map of the spaces in

question.

1.4. Lifting loops to paths. When considering branched covers, it is often convenient

to remove the ramification points (full inverse image of the branch points) from the cover

and the branch points from the covered space in order to work with an unbranched cover.

For our purposes, for a branched cover p : S → X , we will denote by X −B, the surface

with punctures at the branch points, by X◦ and S − R = S − p−1(B) by S◦ so that

p : S◦ → X◦ is a connected covering space. We still have tiles on X◦ and S◦ except that

all vertices have been removed and we can only get from one tile to another by crossing an

edge.

Fact. Given a loop, γ in X◦, based at an interior point x0 ∈ Xu, and a point x̃i ∈ p−1(x0),
there is a unique path γ̃ in S◦ based at x̃i that covers γ, i.e., γ̃(0) = x̃i and p(γ̃(t)) = γ(t)
(see [3]).

When we consider liftings of loops, we will not be so concerned with their mid-sections

as with their endpoints. Since homotopic loops lift to paths that are homotopic with fixed

endpoints [3], we need only consider homotopy classes of loops and their liftings. The

lifting of a representative element γ is constructed by considering the edges that γ crosses

and their order, and then by constructing a path γ̃i in S◦ which begins at x̃i and crosses

the appropriate edge types of tiles on S◦. One might believe that this constructed path is

in fact unique up to homotopy because on any given tile there is a unique edge of a given

type.
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2. THE MONODROMY REPRESENTATION

The importance of the endpoints of lifted loops is seen in the monodromy representation

of the fundamental group π1(X◦, x0) of the covered surface, X◦. The endpoints carry

information about how tiles on the covering surface, S◦ are connected to each other and

how ramification points can be added to S◦ to form a branched cover of the sphere p : S →
X .

2.1. Construction of the monodromy group. The monodromy group of a branched

cover, of degree d,

p : S → X

is a representation of the fundamental group of X◦, π1(X◦, x0), in the symmetric group

on d elements, Σd, where d is the degree of the cover S over X . It is denoted M
(
S/X

)
.

Constructing the monodromy representation consists of identifying, via a homomor-

phism, each element of the fundamental group with an element of the symmetric group.

For a given homotopy class in the fundamental group, then, we must find some elements

and a way to permute them. The elements will be the points in the fiber of the base point,

x0, and the permutation will be via a lifting of a representative element.

Let I = {x̃1, . . . , x̃d} = p−1(x0) denote the fiber of x0. Given a class [γ] ∈ π1(X◦, x0),
let γ̃i denote the lifting of the representative element γ to a path in S beginning at x̃i. Each

such path has an endpoint; let it be denoted by γ̃i(1). Now we are in a position to construct

a permutation of the points in I as follows:

x̃1 �→ γ̃1(1)
...

x̃i �→ γ̃i(1)
...

x̃d �→ γ̃d(1)

Because loops ending at the same point must begin at the same point, the above map is bi-

jective. Because homotopic loops have liftings with common endpoints, a different choice

of representative will have no effect on this permutation. Let σγ denote the permutation

assigned to γ as above.

Remark. Where permutations are involved, there is the possibility of confusion as to the

order of multiplication. In this document we will always use the ‘left to right’ convention.

The symbol στ will mean “first apply the permutation σ, then apply the permutation τ .”

For example:

(1, 2, 3) ∗ (1, 4) = (1, 2, 3, 4)

(1, 4) ∗ (1, 2, 3) = (1, 4, 2, 3)

Now the map μ : π1(X◦, x0) → Σd defined by

[γ] �→ σγ
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is a homomorphism since a composition of two loops lifts to a composition of their two

individual liftings, and so does indeed give a representation of π1(X◦, x0) in Σd. Re-

membering the tiling on X◦, we note (see next section) that the generators of π1(X◦, x0)
are single loops (in a specific direction—call it ‘counterclockwise’) around single vertices.

Furthermore, since each tile is simply connected, the exact position of the base point inXu

can be ignored, and we can consider the symbols permuted by M
(
S/X

)
to be the tiles of

type Xu on S.

2.2. Properties of the monodromy group.

Proposition 2.1. The monodromy group of a covering is unique up to conjugation in Σd.
For, if we relabel the vertices in the base fibre I by means of a permutation ρ ∈ Σd, i.e.,
order the points of I by x̃′i = x̃ρi, then the monodromy representation, with respect to
the new labelling, is given by γ → ρσγρ

−1. The corresponding monodromy groups are
conjugate by ρ.

Pick a point x0 in the open upper hemisphere and order the branch points yi, 1 ≤ i ≤
t in counter clockwise order, looking from above. Draw a system of loops γ1, . . . , γt,
intersecting only at x0, so that γi moves in a straight path from x0 almost to yi, encircles yi
once in a counter clockwise direction and then retraces it path back to x0. It is well known

that the γi generate π1(X◦, x0) and have one relation. The product of the generators of

π1(X◦, x0), in the order that their associated vertices appear when travelling along the

boundary of the tile Xu , is homotopic to the identity loop, i.e., γ1γ2 · · · γt = 1. Likewise,

the product of their monodromic representations in order yields the identity permutation.

Proposition 2.2. Let the notation be as immediately above. Then,

γ1γ2 · · · γt = 1,
σγ1σγ2 · · ·σγt

= 1.

Also we have:

π(X◦, x0) = 〈γ1, γ2, . . . , γt : γ1γ2 · · · γt = 1〉,
M

(
S/X

)
= 〈σγ1 , σγ2 , . . . , σγt

〉.
If the cover, S, is path-connected, then given any two tiles on S, there must be a permu-

tation of M
(
S/X

)
permuting the point x̃i of type x0 in the first tile to the corresponding

point x̃j in the second tile. For, we may draw a path δ from the x̃i to x̃j in S◦ avoiding

the branch points. Then the lift of the projection p∗(δ) in X◦, starting at x̃i is just δ. Thus

μ(p∗(δ)) · i = j and so M
(
S/X

)
is a transitive subgroup of Σd.

Proposition 2.3. Let S → X be a connected branched covering space. Then, M
(
S/X

)
is

a transitive subgroup of Σd.

Definition. Let M ⊆ Σd be a subgroup. Let (σ1, σ2, . . . , σt) be a t-tuple of elements of

M . Then (σ1, σ2, . . . , σt) is called a t-generating vector for M if and only if

σ1σ2 · · ·σt = 1, (1)

M = 〈σ1, σ2, . . . , σt〉. (2)

A key theorem proved in the last century is the Riemann existence theorem which spec-

ifies whether a cover exists with a specified monodromy. Slimmed down for our purposes

we have:
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Proposition 2.4. Let X be the Riemann sphere and let B = {y1, . . . , yt} ⊂ X be a set
of t distinct points in X . Let M be a transitive subgroup of Σd with a t-generating vector
(σ1, σ2, . . . , σt). Then there is a branched cover p : S → X , of degree d, with branch set
lying in B, such that in the monodromy representation π(X◦, x0) → Σd, γ → σγ we get

σγi
= σi.

2.3. Generators of the monodromy group. The generators of M
(
S/X

)
contain all the

information needed to determine the covering space S. Our question of what branched

covers of the sphere are possible can be translated now to a question of group theory: what

generating vectors are possible. To answer this question, one simply has to consider each

symmetric group in turn and ask about all the possible ordered sets of permutations. A

given set will be a generating vector if the product of the permutations in order is the iden-

tity and they generate a transitive subgroup of the symmetric group. Now as simple as this

process is, it has no real way of being finished and it is a bit redundant. The redundancy

comes because some pair of generating vectors may generate essentially the same surface.

The search can be shortened by determining an equivalence relation on the generating

vectors based on an equivalence of their associated covering spaces.

We begin this task by considering how a generating vector determines a cover. In partic-

ular, let us consider a single permutation, that is, a single component of a generating vector.

This component is a permutation corresponding to a generator of π1(X◦, x0), which is a

single loop around a single vertex, v, of X◦. We can write any such permutation as a prod-

uct of disjoint cycles. If we recall that the symbols being permuted correspond to tiles of

type Xu, and that the order of a cycle is its length, we conclude that the number of disjoint

cycles in the product must correspond to the number of distinct vertices of type v. The

tiles meeting at each such distinct vertex are determined by the symbols permuted by the

corresponding disjoint cycle. In other words, the ramification index of this vertex is given

by the cycle length of the corresponding cycle. The degree of the cover, d, is given by

the number of elements on which the generating vector acts. The number of vertices on

X (that is, the number of removed branch points) is t, the number of components of the

generating vector.

We have defined the vertices of X and of S so that they only occur at branch points

and ramification points, respectively (or rather, at the holes created by the removal of such

points). For each edge and tile on X , there are exactly d edges and tiles of that type

on S. Since we are considering X to consist of two tiles with the edges and vertices

situated along a great circle, the Euler characteristic of S is completely determined by the

generating vector. The number of faces (tiles) is 2 × d, the number of edges is t × d, and

the number of vertices is given by the total number of disjoint cycles of the generators.

Note that when we consider the Euler characteristic or genus of these surfaces, we mean

their completions to a sphere with branch points and a branched cover, not X◦ and S◦.
The Riemann-Hurwitz formula is:

χ
S

= dχ
X
−

∑
r∈R

(er − 1)

where R is the set of ramification points and er is the ramification index of r ∈ R. Note

the formula is correct if we add unramified points to R since er − 1 is zero for unramified

points.
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We can write this formula in a different way. For a branch point yi let (e1, . . . , esi
) be

the cycle structure of σγi , where si is the number of points in p−1(yi). Then

si∑
j=1

(ej − 1) =

⎛⎝ si∑
j=1

ej

⎞⎠− si = d− si.

It follows that

χ
S

= dχ
X
− td+

t∑
i=1

si = d(χ
X
− t) +

t∑
i=1

si

Since a surface of genus g has Euler characteristic

χ = 2− 2g

and a sphere has genus zero, we can solve for the genus of the branched cover determined

by a given generating vector (‘branching data’)

g
S

= 1− d+
1
2

∑
r∈R

(er − 1) = 1 +
1
2

(
d(t− 2)−

t∑
i=1

si

)
.

For a given degree and number of branch points, t, we have an upper bound on g
S

:

g
S max

= 1− d+ t
d− 1

2
=

(d− 1)(t− 2)
2

(3)

The maximum possible genus is the greatest integer less than or equal to g
S max

. Likewise,

there is a lower bound for the minimum genus:

g
S min

= 1− d+
t

2
(4)

The minimum possible genus is either zero or the smallest integer greater than or equal to

g
S min

, which ever is larger.

3. THE EQUIVALENCE RELATION ON GENERATING VECTORS

3.1. Introduction and motivation. Having discussed how the generating vector of a

monodromy group determines a branched cover of the sphere, we can examine how top-

ological conjugacy of the branched covers translates to equivalence of generating vectors.

To say that two surfaces S, S′ are topologically conjugate means that they have the same

arrangement of tiles and vertices; they differ only by the names associated to those tiles

and vertices. Specifically there should be a homeomorphism h : S → S′ mapping tiles to

tiles, edges to edges, and vertices to vertices.

3.2. Preparing the pigeon holes. Recall that the monodromy representation assigns a

label to each tile of the cover and that generators of π1(X◦, x0) are represented as permuta-

tions of those tiles. If two covers differ only by a relabelling of the tiles for the monodromy

representation, then they are topologically conjugate. To relabel the tiles corresponds to

conjugating the monodromy group by some element of the symmetric group.

Another simple homeomorphism of the surface is to rotate each tile of type Xu in the

‘counterclockwise’ direction and rotate each tile of type Xl in the opposite direction by

a cyclic permutation of the vertices of each tile. This corresponds to a rotation of the

sphere through the axis perpendicular to the plane separating the upper and lower tiles.

The permutation is a cyclic permutation of the components of the generating vector of

M
(
S/X

)
.
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Remark. Though it will not be a part of our equivalence relation, a more subtle homeo-

morphism of the cover is through a braid automorphism, which interchanges two vertices

of the cover in a way compatible with the projection to the covered surface. Given a gener-

ating vector, a braid automorphism interchanges two adjacent coordinates and conjugates

one by the other—leaving the overall product unaffected. This type of homeomorphism is

the only one keeping our equivalence relation from full-blown topological equivalence [1].

(σ1, . . . , σa, σb, . . . , σt) �→ (σ1, . . . , σb, σ
−1
b σaσt, . . . , σt)

The equivalence relation we will impose is as follows: two generating vectors,

GV1 = (σ1, . . . , σa, σb, . . . , σt)

and

GV2 = (τ1, . . . , τa, τb, . . . , τt)
are equivalent if one of the following conditions is met any nonzero number of times

(1) They differ by a cyclic permutation of components:

GV2 = (σ2, . . . , σa, σb, . . . , σb, σ1)

(2) They (and, consequently, their generated monodromy groups) are conjugate:

there exists ρ ∈Σd such that

GV2 = ρ−1GV1ρ

3.3. Implementation. The search for representative generating vectors for every possible

class was performed by a MAGMA program in a fairly straightforward manner. Given a

degree of the cover, d, and a number of branch points, t, MAGMA rolled through all

the possible ordered subsets of Σd with t − 1 elements like an odometer rolls through

all the numbers between 0 and 999. . . 99. The last element is calculated by MAGMA

to be the inverse of the product of the first t − 1 elements. The remainder of the program

consisted of checking that the generated group was transitive and checking for equivalences

of monodromy groups.

A lexicographic ordering was imposed on Σd based on the cycle structure of each per-

mutation, and then generating vectors were considered only if their elements were in as-

cending order. The permutations of Σd were also divided into conjugacy classes and the

first elements were selected from the set of representatives of those classes. These re-

quirements did not eliminate any equivalences fully, but were used to severely limit the

generating vectors under consideration.

The cyclic permutations of each candidate were then checked against a list of represen-

tatives for conjugacy. This involved representing each cyclic permutation of the candidate

as an element of the t-fold direct product of Σd and using MAGMA’s ‘IsConjugate’ com-

mand to test conjugacy to each element from the list of representatives.

If no cyclic permutation of the candidate was conjugate to a vector already on the list,

MAGMA’s ‘IsTransitive’ command was used to test whether the generated group was in-

deed transitive on Σd. If so, the candidate was added to the list as a generating vector not

equivalent to any other vector on the list.

The program takes as input the degree of the cover and has the number of branch points

built in. A separate program is required for each number of branch points, T , and is in the

MAGMA script “GenClassesT .mgm” and supporting scripts. GenClasses3.mgm through

GenClasses6.mgm currently exist; a few lines of code can be added to GenClassesT .mgm
to make GenClasses(T + 1).mgm.
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For a number of branch points T , the program in “GenSetsT .mgm” and supporting

scripts classifies all generating vectors of the same cycle structure and generating the same

transitive subgroup of Σd as equivalent. This equivalence relation is somewhat less fine

than that imposed by topological equivalence. The GenSets programs work similarly to

the GenClasses programs.

A third program has been written as a step toward classifying the generating vectors by

topological equivalence of their corresponding branched covers. The program identifies

some of the duplicate representatives in the output of the GenClasses scripts [4]. It is in

the MAGMA script “Unbraid.mgm” and supporting scripts. If two generating vectors are

equivalent (in the sense of topological conjugacy) after elimination of a single element

from each, then they must differ by a braid automorphism moving one component through

the vector, as below:

(σ1, . . . , σa, σb, σc, . . . , σt)
↓

(σ1, . . . , σb, σ
−1
b σaσb, σc, . . . , σt)
↓

(σ1, . . . , σb, σc, σ
−1
c σ−1

b σaσbσc, . . . , σt)

The Unbraid script uses this method to identify some pairs that are equivalent through an

automorphism:

if (σ1, . . . , σ̂a, σb, σc, . . . , σt) = (σ1, . . . , σb, σc, σ̂′a, . . . , σt), then

σ′a = σ−1
c σ−1

b σaσbσc

since σ1 . . . σaσbσc . . . σd = 1 = σ1 . . . σbσcσ
′
a . . . σd

Data from this program is in the Dups (for duplicates) series of text files.

4. QUESTIONS AND CONJECTURES

Given a number of branch points and degree of a branched cover, is the genus maximum

as calculated in (3) always attained by some cover? We conjecture that it will be, but a good

reason why is not obvious. One must ensure that there is a list of the required length made

up of permutations from the required symmetric group and all having the longest cycle

length possible.

How can one identify (fully) when two generating vectors differ by a braid automor-

phism? This is possible by running the Unbraid MAGMA script on the set of all possible

generating vectors, but it will be a costly calculation as far as time and computer memory

are concerned.
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5. DATA

5.1. Detailed data. This data was generated with the GenClasses scripts and reflects the

number of generating vectors up to topological conjugacy for a given number of branch

points, degree of cover, genus of cover, genus of Galois Cover, and monodromy group.

A Galois Cover is an extension of a branched cover, S, to a regular cover of both the

branched cover, S, and it’s covered space, X . We will not discuss it further except to

say that it’s genus is given by a formula similar to the Riemann-Hurwitz equation and is

dependent entirely on the cycle structure of the generating vector for the branched cover.

The genus of the Galois Cover (abbreviated G.C. Genus) has been included in the table to

distinguish between generating vectors of differing cycle structures.

The monodromy groups are identified as MAGMA identifies them, “TransitiveGroup(d,n)”
is the MAGMA command for the nth transitive subgroup of the symmetric group on d let-

ters (abbreviated “TrnGp(d,n)”). A list of MAGMA’s descriptions of the relevant groups

is provided in the appendix.

No. Branch Pts. Degree Genus G.C. Genus Monodromy Group, Order No. Classes

3 3 0 0 TrnGp( 3 , 2 ) , 6 1

3 3 1 1 TrnGp( 3 , 1 ) , 3 1

3 4 0 0 TrnGp( 4 , 2 ) , 4 1

3 4 0 0 TrnGp( 4 , 3 ) , 8 1

3 4 0 0 TrnGp( 4 , 4 ) , 12 1

3 4 0 0 TrnGp( 4 , 5 ) , 24 1

3 4 0 1 TrnGp( 4 , 4 ) , 12 1

3 4 1 1 TrnGp( 4 , 1 ) , 4 1

3 4 1 3 TrnGp( 4 , 5 ) , 24 1

3 5 0 0 TrnGp( 5 , 2 ) , 10 1

3 5 0 0 TrnGp( 5 , 4 ) , 60 1

3 5 0 1 TrnGp( 5 , 3 ) , 20 2

3 5 0 4 TrnGp( 5 , 5 ) , 120 1

3 5 0 21 TrnGp( 5 , 5 ) , 120 1

3 5 0 5 TrnGp( 5 , 4 ) , 60 1

3 5 0 6 TrnGp( 5 , 5 ) , 120 1

3 5 0 9 TrnGp( 5 , 5 ) , 120 1

3 5 0 11 TrnGp( 5 , 5 ) , 120 2

3 5 0 16 TrnGp( 5 , 5 ) , 120 2

3 5 1 19 TrnGp( 5 , 5 ) , 120 1

3 5 1 4 TrnGp( 5 , 3 ) , 20 2

3 5 1 4 TrnGp( 5 , 4 ) , 60 1

3 5 1 24 TrnGp( 5 , 5 ) , 120 2

3 5 1 9 TrnGp( 5 , 4 ) , 60 2

3 5 1 29 TrnGp( 5 , 5 ) , 120 1

3 5 2 2 TrnGp( 5 , 1 ) , 5 1

3 5 2 13 TrnGp( 5 , 4 ) , 60 1



12 NILES G. JOHNSON

No. Branch Pts. Degree Genus G.C. Genus Monodromy Group, Order No. Classes

3 6 0 0 TrnGp( 6 , 2 ) , 6 1

3 6 0 0 TrnGp( 6 , 3 ) , 12 1

3 6 0 0 TrnGp( 6 , 4 ) , 12 1

3 6 0 0 TrnGp( 6 , 7 ) , 24 1

3 6 0 0 TrnGp( 6 , 8 ) , 24 1

3 6 0 0 TrnGp( 6 , 12 ) , 60 1

3 6 0 1 TrnGp( 6 , 5 ) , 18 1

3 6 0 1 TrnGp( 6 , 6 ) , 24 1

3 6 0 1 TrnGp( 6 , 10 ) , 36 2

3 6 0 3 TrnGp( 6 , 8 ) , 24 1

3 6 0 3 TrnGp( 6 , 11 ) , 48 1

3 6 0 4 TrnGp( 6 , 10 ) , 36 1

3 6 0 4 TrnGp( 6 , 12 ) , 60 1

3 6 0 4 TrnGp( 6 , 13 ) , 72 2

3 6 0 4 TrnGp( 6 , 14 ) , 120 1

3 6 0 91 TrnGp( 6 , 16 ) , 720 4

3 6 0 6 TrnGp( 6 , 14 ) , 120 1

3 6 0 49 TrnGp( 6 , 15 ) , 360 1

3 6 0 49 TrnGp( 6 , 16 ) , 720 2

3 6 0 10 TrnGp( 6 , 15 ) , 360 2

3 6 0 139 TrnGp( 6 , 16 ) , 720 4

3 6 0 11 TrnGp( 6 , 14 ) , 120 1

3 6 0 16 TrnGp( 6 , 15 ) , 360 1

3 6 0 61 TrnGp( 6 , 16 ) , 720 3

3 6 0 19 TrnGp( 6 , 14 ) , 120 1

3 6 0 19 TrnGp( 6 , 15 ) , 360 2

3 6 0 151 TrnGp( 6 , 16 ) , 720 4

3 6 0 25 TrnGp( 6 , 15 ) , 360 1

3 6 0 121 TrnGp( 6 , 16 ) , 720 9

3 6 0 40 TrnGp( 6 , 15 ) , 360 2

3 6 0 169 TrnGp( 6 , 16 ) , 720 7

3 6 1 1 TrnGp( 6 , 1 ) , 6 1

3 6 1 1 TrnGp( 6 , 4 ) , 12 1

3 6 1 3 TrnGp( 6 , 6 ) , 24 1

3 6 1 3 TrnGp( 6 , 7 ) , 24 1

3 6 1 3 TrnGp( 6 , 11 ) , 48 1

3 6 1 46 TrnGp( 6 , 15 ) , 360 2

3 6 1 4 TrnGp( 6 , 5 ) , 18 1

3 6 1 4 TrnGp( 6 , 9 ) , 36 1

3 6 1 4 TrnGp( 6 , 10 ) , 36 1

3 6 1 5 TrnGp( 6 , 12 ) , 60 1

3 6 1 49 TrnGp( 6 , 15 ) , 360 1

3 6 1 9 TrnGp( 6 , 11 ) , 48 1

3 6 1 9 TrnGp( 6 , 12 ) , 60 2

3 6 1 9 TrnGp( 6 , 14 ) , 120 1

3 6 1 139 TrnGp( 6 , 16 ) , 720 4

3 6 1 11 TrnGp( 6 , 14 ) , 120 1

3 6 1 55 TrnGp( 6 , 15 ) , 360 4

3 6 1 13 TrnGp( 6 , 12 ) , 60 1

3 6 1 16 TrnGp( 6 , 13 ) , 72 2
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No. Branch Pts. Degree Genus G.C. Genus Monodromy Group, Order No. Classes

3 6 1 16 TrnGp( 6 , 14 ) , 120 2

3 6 1 64 TrnGp( 6 , 15 ) , 360 8

3 6 1 151 TrnGp( 6 , 16 ) , 720 3

3 6 1 24 TrnGp( 6 , 14 ) , 120 2

3 6 1 73 TrnGp( 6 , 15 ) , 360 4

3 6 1 121 TrnGp( 6 , 16 ) , 720 9

3 6 1 40 TrnGp( 6 , 15 ) , 360 2

3 6 1 169 TrnGp( 6 , 16 ) , 720 8

3 6 2 2 TrnGp( 6 , 1 ) , 6 1

3 6 2 4 TrnGp( 6 , 5 ) , 18 1

3 6 2 5 TrnGp( 6 , 6 ) , 24 1

3 6 2 21 TrnGp( 6 , 14 ) , 120 1

3 6 2 151 TrnGp( 6 , 16 ) , 720 4

3 6 2 29 TrnGp( 6 , 14 ) , 120 1

3 6 2 169 TrnGp( 6 , 16 ) , 720 7

3 7 0 0 TrnGp( 7 , 2 ) , 14 1

3 7 0 1 TrnGp( 7 , 3 ) , 21 2

3 7 0 1 TrnGp( 7 , 4 ) , 42 2

3 7 0 3 TrnGp( 7 , 5 ) , 168 2

3 7 0 8 TrnGp( 7 , 5 ) , 168 4

3 7 0 136 TrnGp( 7 , 6 ) , 2520 2

3 7 0 10 TrnGp( 7 , 5 ) , 168 2

3 7 0 901 TrnGp( 7 , 7 ) , 5040 1

3 7 0 649 TrnGp( 7 , 7 ) , 5040 1

3 7 0 15 TrnGp( 7 , 5 ) , 168 2

3 7 0 271 TrnGp( 7 , 7 ) , 5040 1

3 7 0 526 TrnGp( 7 , 6 ) , 2520 2

3 7 0 274 TrnGp( 7 , 6 ) , 2520 5

3 7 0 22 TrnGp( 7 , 5 ) , 168 4

3 7 0 409 TrnGp( 7 , 6 ) , 2520 1

3 7 0 1429 TrnGp( 7 , 7 ) , 5040 4

3 7 0 1177 TrnGp( 7 , 7 ) , 5040 10

3 7 0 1051 TrnGp( 7 , 7 ) , 5040 25

3 7 0 799 TrnGp( 7 , 7 ) , 5040 5

3 7 0 547 TrnGp( 7 , 6 ) , 2520 4

3 7 0 547 TrnGp( 7 , 7 ) , 5040 2

3 7 0 421 TrnGp( 7 , 6 ) , 2520 7

3 7 0 421 TrnGp( 7 , 7 ) , 5040 7

3 7 0 169 TrnGp( 7 , 6 ) , 2520 1

3 7 0 169 TrnGp( 7 , 7 ) , 5040 1

3 7 0 1321 TrnGp( 7 , 7 ) , 5040 9

3 7 0 691 TrnGp( 7 , 7 ) , 5040 1

3 7 0 442 TrnGp( 7 , 6 ) , 2520 4

3 7 0 316 TrnGp( 7 , 6 ) , 2520 7

3 7 0 451 TrnGp( 7 , 6 ) , 2520 1

3 7 0 199 TrnGp( 7 , 6 ) , 2520 2

3 7 0 1471 TrnGp( 7 , 7 ) , 5040 3

3 7 0 1345 TrnGp( 7 , 7 ) , 5040 7

3 7 0 1219 TrnGp( 7 , 7 ) , 5040 12
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No. Branch Pts. Degree Genus G.C. Genus Monodromy Group, Order No. Classes

3 7 0 967 TrnGp( 7 , 7 ) , 5040 1

3 7 0 841 TrnGp( 7 , 7 ) , 5040 14

3 7 0 589 TrnGp( 7 , 6 ) , 2520 1

3 7 0 589 TrnGp( 7 , 7 ) , 5040 4

3 7 0 337 TrnGp( 7 , 6 ) , 2520 3

3 7 0 337 TrnGp( 7 , 7 ) , 5040 3

3 7 0 211 TrnGp( 7 , 6 ) , 2520 5

3 7 0 211 TrnGp( 7 , 7 ) , 5040 5

3 7 0 346 TrnGp( 7 , 6 ) , 2520 2

3 7 0 1111 TrnGp( 7 , 7 ) , 5040 3

3 7 0 481 TrnGp( 7 , 7 ) , 5040 4

3 7 0 484 TrnGp( 7 , 6 ) , 2520 4

3 7 0 241 TrnGp( 7 , 6 ) , 2520 3

3 7 0 1387 TrnGp( 7 , 7 ) , 5040 5

3 7 0 1261 TrnGp( 7 , 7 ) , 5040 18

3 7 0 1135 TrnGp( 7 , 7 ) , 5040 2

3 7 0 1009 TrnGp( 7 , 7 ) , 5040 10

3 7 0 757 TrnGp( 7 , 7 ) , 5040 3

3 7 0 631 TrnGp( 7 , 6 ) , 2520 1

3 7 0 631 TrnGp( 7 , 7 ) , 5040 6

3 7 0 505 TrnGp( 7 , 6 ) , 2520 1

3 7 0 505 TrnGp( 7 , 7 ) , 5040 1

3 7 0 379 TrnGp( 7 , 6 ) , 2520 14

3 7 0 379 TrnGp( 7 , 7 ) , 5040 3

3 7 1 3 TrnGp( 7 , 3 ) , 21 2

3 7 1 514 TrnGp( 7 , 6 ) , 2520 18

3 7 1 1531 TrnGp( 7 , 7 ) , 5040 11

3 7 1 8 TrnGp( 7 , 4 ) , 42 2

3 7 1 1279 TrnGp( 7 , 7 ) , 5040 8

3 7 1 649 TrnGp( 7 , 7 ) , 5040 3

3 7 1 271 TrnGp( 7 , 6 ) , 2520 3

3 7 1 17 TrnGp( 7 , 5 ) , 168 2

3 7 1 19 TrnGp( 7 , 5 ) , 168 2

3 7 1 24 TrnGp( 7 , 5 ) , 168 4

3 7 1 661 TrnGp( 7 , 6 ) , 2520 2

3 7 1 409 TrnGp( 7 , 6 ) , 2520 8

3 7 1 1681 TrnGp( 7 , 7 ) , 5040 2

3 7 1 1555 TrnGp( 7 , 7 ) , 5040 10

3 7 1 31 TrnGp( 7 , 5 ) , 168 2

3 7 1 1429 TrnGp( 7 , 7 ) , 5040 17

3 7 1 1177 TrnGp( 7 , 7 ) , 5040 24

3 7 1 1051 TrnGp( 7 , 7 ) , 5040 40

3 7 1 556 TrnGp( 7 , 6 ) , 2520 8

3 7 1 1321 TrnGp( 7 , 7 ) , 5040 27

3 7 1 691 TrnGp( 7 , 7 ) , 5040 2

3 7 1 577 TrnGp( 7 , 6 ) , 2520 12

3 7 1 451 TrnGp( 7 , 6 ) , 2520 25

3 7 1 1597 TrnGp( 7 , 7 ) , 5040 12

3 7 1 1471 TrnGp( 7 , 7 ) , 5040 14

3 7 1 1345 TrnGp( 7 , 7 ) , 5040 18
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No. Branch Pts. Degree Genus G.C. Genus Monodromy Group, Order No. Classes

3 7 1 1219 TrnGp( 7 , 7 ) , 5040 25

3 7 1 841 TrnGp( 7 , 7 ) , 5040 10

3 7 1 346 TrnGp( 7 , 6 ) , 2520 6

3 7 1 1489 TrnGp( 7 , 7 ) , 5040 14

3 7 1 1111 TrnGp( 7 , 7 ) , 5040 10

3 7 1 481 TrnGp( 7 , 6 ) , 2520 5

3 7 1 481 TrnGp( 7 , 7 ) , 5040 5

3 7 1 619 TrnGp( 7 , 6 ) , 2520 7

3 7 1 1639 TrnGp( 7 , 7 ) , 5040 3

3 7 1 1513 TrnGp( 7 , 7 ) , 5040 10

3 7 1 1387 TrnGp( 7 , 7 ) , 5040 26

3 7 1 1261 TrnGp( 7 , 7 ) , 5040 34

3 7 1 1009 TrnGp( 7 , 7 ) , 5040 10

3 7 2 1657 TrnGp( 7 , 7 ) , 5040 12

3 7 2 1531 TrnGp( 7 , 7 ) , 5040 20

3 7 2 12 TrnGp( 7 , 4 ) , 42 2

3 7 2 649 TrnGp( 7 , 6 ) , 2520 24

3 7 2 33 TrnGp( 7 , 5 ) , 168 4

3 7 2 40 TrnGp( 7 , 5 ) , 168 4

3 7 2 1699 TrnGp( 7 , 7 ) , 5040 10

3 7 2 1321 TrnGp( 7 , 7 ) , 5040 38

3 7 2 691 TrnGp( 7 , 6 ) , 2520 7

3 7 2 586 TrnGp( 7 , 6 ) , 2520 20

3 7 2 1741 TrnGp( 7 , 7 ) , 5040 9

3 7 2 1489 TrnGp( 7 , 7 ) , 5040 24

3 7 2 481 TrnGp( 7 , 6 ) , 2520 8

3 7 3 3 TrnGp( 7 , 1 ) , 7 3

3 7 3 49 TrnGp( 7 , 5 ) , 168 2

3 7 3 721 TrnGp( 7 , 6 ) , 2520 9

4 3 0 1 TrnGp( 3 , 2 ) , 6 2

4 3 1 2 TrnGp( 3 , 2 ) , 6 2

4 3 2 2 TrnGp( 3 , 1 ) , 3 2

4 4 0 1 TrnGp( 4 , 3 ) , 8 2

4 4 0 3 TrnGp( 4 , 5 ) , 24 3

4 4 0 4 TrnGp( 4 , 5 ) , 24 4

4 4 0 5 TrnGp( 4 , 5 ) , 24 6

4 4 1 1 TrnGp( 4 , 2 ) , 4 2

4 4 1 2 TrnGp( 4 , 3 ) , 8 2

4 4 1 3 TrnGp( 4 , 3 ) , 8 2

4 4 1 3 TrnGp( 4 , 4 ) , 12 3

4 4 1 4 TrnGp( 4 , 4 ) , 12 4

4 4 1 5 TrnGp( 4 , 4 ) , 12 8

4 4 1 6 TrnGp( 4 , 5 ) , 24 3

4 4 1 7 TrnGp( 4 , 5 ) , 24 4

4 4 1 8 TrnGp( 4 , 5 ) , 24 8

4 4 2 11 TrnGp( 4 , 5 ) , 24 8

4 4 2 2 TrnGp( 4 , 1 ) , 4 1

4 4 2 3 TrnGp( 4 , 3 ) , 8 2
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No. Branch Pts. Degree Genus G.C. Genus Monodromy Group, Order No. Classes

4 4 2 9 TrnGp( 4 , 5 ) , 24 3

4 4 2 10 TrnGp( 4 , 5 ) , 24 4

4 4 3 13 TrnGp( 4 , 5 ) , 24 2

4 4 3 3 TrnGp( 4 , 1 ) , 4 3

4 5 0 1 TrnGp( 5 , 2 ) , 10 4

4 5 0 6 TrnGp( 5 , 4 ) , 60 9

4 5 0 11 TrnGp( 5 , 4 ) , 60 9

4 5 0 16 TrnGp( 5 , 4 ) , 60 12

4 5 0 16 TrnGp( 5 , 5 ) , 120 8

4 5 0 19 TrnGp( 5 , 5 ) , 120 5

4 5 0 21 TrnGp( 5 , 4 ) , 60 5

4 5 0 21 TrnGp( 5 , 5 ) , 120 6

4 5 0 26 TrnGp( 5 , 5 ) , 120 10

4 5 0 29 TrnGp( 5 , 5 ) , 120 5

4 5 0 31 TrnGp( 5 , 5 ) , 120 15

4 5 0 36 TrnGp( 5 , 5 ) , 120 16

4 5 0 41 TrnGp( 5 , 5 ) , 120 16

4 5 1 6 TrnGp( 5 , 3 ) , 20 12

4 5 1 10 TrnGp( 5 , 4 ) , 60 10

4 5 1 15 TrnGp( 5 , 4 ) , 60 15

4 5 1 20 TrnGp( 5 , 4 ) , 60 20

4 5 1 25 TrnGp( 5 , 4 ) , 60 25

4 5 1 31 TrnGp( 5 , 5 ) , 120 16

4 5 1 34 TrnGp( 5 , 5 ) , 120 15

4 5 1 36 TrnGp( 5 , 5 ) , 120 18

4 5 1 37 TrnGp( 5 , 5 ) , 120 10

4 5 1 39 TrnGp( 5 , 5 ) , 120 10

4 5 1 41 TrnGp( 5 , 5 ) , 120 45

4 5 1 44 TrnGp( 5 , 5 ) , 120 20

4 5 1 46 TrnGp( 5 , 5 ) , 120 58

4 5 1 49 TrnGp( 5 , 5 ) , 120 15

4 5 1 51 TrnGp( 5 , 5 ) , 120 86

4 5 1 56 TrnGp( 5 , 5 ) , 120 48

4 5 1 61 TrnGp( 5 , 5 ) , 120 34

4 5 2 69 TrnGp( 5 , 5 ) , 120 25

4 5 2 4 TrnGp( 5 , 2 ) , 10 4

4 5 2 71 TrnGp( 5 , 5 ) , 120 52

4 5 2 9 TrnGp( 5 , 3 ) , 20 10

4 5 2 76 TrnGp( 5 , 5 ) , 120 32

4 5 2 11 TrnGp( 5 , 3 ) , 20 18

4 5 2 81 TrnGp( 5 , 5 ) , 120 12

4 5 2 19 TrnGp( 5 , 4 ) , 60 15

4 5 2 24 TrnGp( 5 , 4 ) , 60 24

4 5 2 29 TrnGp( 5 , 4 ) , 60 34

4 5 2 49 TrnGp( 5 , 5 ) , 120 35

4 5 2 52 TrnGp( 5 , 5 ) , 120 24

4 5 2 54 TrnGp( 5 , 5 ) , 120 30

4 5 2 57 TrnGp( 5 , 5 ) , 120 14

4 5 2 59 TrnGp( 5 , 5 ) , 120 80
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No. Branch Pts. Degree Genus G.C. Genus Monodromy Group, Order No. Classes

4 5 2 61 TrnGp( 5 , 5 ) , 120 22

4 5 2 64 TrnGp( 5 , 5 ) , 120 40

4 5 2 66 TrnGp( 5 , 5 ) , 120 72

4 5 3 67 TrnGp( 5 , 5 ) , 120 64

4 5 3 72 TrnGp( 5 , 5 ) , 120 48

4 5 3 77 TrnGp( 5 , 5 ) , 120 34

4 5 3 12 TrnGp( 5 , 3 ) , 20 8

4 5 3 28 TrnGp( 5 , 4 ) , 60 28

4 5 3 33 TrnGp( 5 , 4 ) , 60 36

4 5 4 4 TrnGp( 5 , 1 ) , 5 6

4 5 4 37 TrnGp( 5 , 4 ) , 60 20

5 3 1 3 TrnGp( 3 , 2 ) , 6 9

5 3 2 4 TrnGp( 3 , 2 ) , 6 4

5 3 3 3 TrnGp( 3 , 1 ) , 3 1

5 4 0 7 TrnGp( 4 , 5 ) , 24 12

5 4 0 9 TrnGp( 4 , 5 ) , 24 27

5 4 1 3 TrnGp( 4 , 3 ) , 8 6

5 4 1 4 TrnGp( 4 , 3 ) , 8 4

5 4 1 9 TrnGp( 4 , 5 ) , 24 9

5 4 1 10 TrnGp( 4 , 5 ) , 24 12

5 4 1 11 TrnGp( 4 , 5 ) , 24 24

5 4 1 12 TrnGp( 4 , 5 ) , 24 36

5 4 1 13 TrnGp( 4 , 5 ) , 24 60

5 4 2 2 TrnGp( 4 , 2 ) , 4 2

5 4 2 4 TrnGp( 4 , 3 ) , 8 7

5 4 2 5 TrnGp( 4 , 3 ) , 8 2

5 4 2 6 TrnGp( 4 , 4 ) , 12 9

5 4 2 7 TrnGp( 4 , 4 ) , 12 12

5 4 2 8 TrnGp( 4 , 4 ) , 12 48

5 4 2 9 TrnGp( 4 , 4 ) , 12 21

5 4 2 12 TrnGp( 4 , 5 ) , 24 9

5 4 2 13 TrnGp( 4 , 5 ) , 24 12

5 4 2 14 TrnGp( 4 , 5 ) , 24 24

5 4 2 15 TrnGp( 4 , 5 ) , 24 36

5 4 2 16 TrnGp( 4 , 5 ) , 24 64

5 4 3 17 TrnGp( 4 , 5 ) , 24 24

5 4 3 18 TrnGp( 4 , 5 ) , 24 36

5 4 3 19 TrnGp( 4 , 5 ) , 24 64

5 4 3 3 TrnGp( 4 , 1 ) , 4 1

5 4 3 5 TrnGp( 4 , 3 ) , 8 6

5 4 3 6 TrnGp( 4 , 3 ) , 8 4

5 4 3 15 TrnGp( 4 , 5 ) , 24 9

5 4 3 16 TrnGp( 4 , 5 ) , 24 12

5 4 4 19 TrnGp( 4 , 5 ) , 24 12

5 4 4 4 TrnGp( 4 , 1 ) , 4 4

5 4 4 21 TrnGp( 4 , 5 ) , 24 36

6 3 1 4 TrnGp( 3 , 2 ) , 6 10

6 3 2 5 TrnGp( 3 , 2 ) , 6 18

6 3 3 6 TrnGp( 3 , 2 ) , 6 8

6 3 4 4 TrnGp( 3 , 1 ) , 3 4
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5.2. Summary data. The ‘Some Unbraid’ column gives the number of inequivalent rep-

resentatives as identified by applying Unbraid to the representatives identified by Gen-
Classes.

No. Branch Pts. Degree No. Classes Some Unbraid

3 3 2 2

3 4 7 7

3 5 24 24

3 6 139 139

3 7 899 885

4 3 6 4

4 4 74 46

4 5 1364 775

5 3 14 5

5 4 644 225

6 3 40 11

APPENDIX A

Magma’s descriptions of the transitive subgroups of each symmetric group are as fol-

lows:

TransitiveGroup( 3 , 1 ):
Permutation group acting on a set of cardinality 3

(1, 2, 3)
C(3) = A(3) = 3

TransitiveGroup( 3 , 2 ):
Permutation group acting on a set of cardinality 3

(1, 3)
(2, 3)

S(3)

TransitiveGroup( 4 , 1 ):
Permutation group acting on a set of cardinality 4

(1, 2, 3, 4)
C(4) = 4

TransitiveGroup( 4 , 2 ):
Permutation group acting on a set of cardinality 4

(1, 4)(2, 3)
(1, 2)(3, 4)

E(4) = 2[x]2

TransitiveGroup( 4 , 3 ):
Permutation group acting on a set of cardinality 4

(1, 2, 3, 4)
(1, 3)

D(4)

TransitiveGroup( 4 , 4 ):
Permutation group acting on a set of cardinality 4

(1, 2, 4)
(2, 3, 4)

A(4)

TransitiveGroup( 4 , 5 ):
Permutation group acting on a set of cardinality 4

(1, 2, 3, 4)
(1, 2)

S(4)

TransitiveGroup( 5 , 1 ):
Permutation group acting on a set of cardinality 5

(1, 2, 3, 4, 5)
C(5) = 5

TransitiveGroup( 5 , 2 ):

Permutation group acting on a set of cardinality 5
(1, 2, 3, 4, 5)
(1, 4)(2, 3)

D(5) = 5:2

TransitiveGroup( 5 , 3 ):
Permutation group acting on a set of cardinality 5

(1, 2, 3, 4, 5)
(1, 2, 4, 3)

F(5) = 5:4

TransitiveGroup( 5 , 4 ):
Permutation group acting on a set of cardinality 5

(3, 4, 5)
(1, 2, 3)

A(5)

TransitiveGroup( 5 , 5 ):
Permutation group acting on a set of cardinality 5

(1, 2, 3, 4, 5)
(1, 2)

S(5)

TransitiveGroup( 6 , 1 ):
Permutation group acting on a set of cardinality 6

(1, 2, 3, 4, 5, 6)
C(6) = 6 = 3[x]2

TransitiveGroup( 6 , 2 ):
Permutation group acting on a set of cardinality 6

(1, 3, 5)(2, 4, 6)
(1, 4)(2, 3)(5, 6)

D_6(6) = [3]2

TransitiveGroup( 6 , 3 ):
Permutation group acting on a set of cardinality 6

(1, 2, 3, 4, 5, 6)
(1, 4)(2, 3)(5, 6)

D(6) = S(3)[x]2

TransitiveGroup( 6 , 4 ):
Permutation group acting on a set of cardinality 6

(1, 4)(2, 5)
(1, 3, 5)(2, 4, 6)

A_4(6) = [2ˆ2]3
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TransitiveGroup( 6 , 5 ):
Permutation group acting on a set of cardinality 6

(2, 4, 6)
(1, 4)(2, 5)(3, 6)

F_18(6) = [3ˆ2]2 = 3 wr 2

TransitiveGroup( 6 , 6 ):
Permutation group acting on a set of cardinality 6

(3, 6)
(1, 3, 5)(2, 4, 6)

2A_4(6) = [2ˆ3]3 = 2 wr 3

TransitiveGroup( 6 , 7 ):
Permutation group acting on a set of cardinality 6

(1, 4)(2, 5)
(1, 3, 5)(2, 4, 6)
(1, 5)(2, 4)

S_4(6d) = [2ˆ2]S(3)

TransitiveGroup( 6 , 8 ):
Permutation group acting on a set of cardinality 6

(1, 4)(2, 5)
(1, 3, 5)(2, 4, 6)
(1, 5)(2, 4)(3, 6)

S_4(6c) = 1/2[2ˆ3]S(3)

TransitiveGroup( 6 , 9 ):
Permutation group acting on a set of cardinality 6

(2, 4, 6)
(1, 5)(2, 4)
(1, 4)(2, 5)(3, 6)

F_18(6):2 = [1/2.S(3)ˆ2]2

TransitiveGroup( 6 , 10 ):
Permutation group acting on a set of cardinality 6

(2, 4, 6)
(1, 5)(2, 4)
(1, 4, 5, 2)(3, 6)

F_36(6) = 1/2[S(3)ˆ2]2

TransitiveGroup( 6 , 11 ):
Permutation group acting on a set of cardinality 6

(3, 6)
(1, 3, 5)(2, 4, 6)
(1, 5)(2, 4)

2S_4(6) = [2ˆ3]S(3) = 2 wr S(3)

TransitiveGroup( 6 , 12 ):
Permutation group acting on a set of cardinality 6

(1, 2, 3, 4, 6)
(1, 4)(5, 6)

L(6) = PSL(2,5) = A_5(6)

TransitiveGroup( 6 , 13 ):
Permutation group acting on a set of cardinality 6

(2, 4, 6)
(2, 4)
(1, 4)(2, 5)(3, 6)

F_36(6):2 = [S(3)ˆ2]2 = S(3) wr 2

TransitiveGroup( 6 , 14 ):
Permutation group acting on a set of cardinality 6

(1, 2, 3, 4, 6)
(1, 2)(3, 4)(5, 6)

L(6):2 = PGL(2,5) = S_5(6)

TransitiveGroup( 6 , 15 ):
Permutation group acting on a set of cardinality 6

(1, 2)(3, 4, 5, 6)
(1, 2, 3)

A(6)

TransitiveGroup( 6 , 16 ):
Permutation group acting on a set of cardinality 6

(1, 2, 3, 4, 5, 6)
(1, 2)

S(6)
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