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ABSTRACT

Stochastic models in population genetics leading to diffusion Equations are consid-
ered. When the drift and the square of the diffusion coefficients are polynomials, an
infinite system of ordinary differential Equations for the moments of the diffusion pro-
cess can be derived using the martingale property. An example is provided to show
how the classical Fokker Planck Equation approach may not be appropriate for this
derivation. A Gauss Galerkin method for approximating the laws of the diffusion which
originally proposed by Dawson (1980) is examined. In the few special cases for which
exact solutions are known, comparison shows that the method is accurate and the new
algorithm is efficient. numerical results relating to population genetics models are pre-
sented and discussed. An example where the Gauss Galerkin method fails is provied.

1. Introduction

In stochastic population genetics the fundamental quantity used for describing the
genetic composition of a Mendelian population is the gene frequency. The process of
change in the gene frequency is generally modeled as a stochastic process (see Kimura
and Crow (1970)) satisfying the stochastic differential Equation dY; = a(Y};)dt+o(Y;)dB;.
The coefficients involved in this Equation (the drift a and the diffusion o) reflect the
mechanisms affecting the population, such as mutation, selection, migration, etc. Since,
in general the probability law of the stochastic process of change in gene frequency Y3,
for t > 0, is difficult to determine except in very simple cases, an important task is the
problem of numerically approximating the probability law of Y}, for ¢ > 0. Because most
population genetic models have singularities at the boundaries of the state space of the
process Y = (Y;,t > 0), it is even more difficult to approximate the probability law of Y;
through the Fokker Planck Equation. We shall present a method for solving the problem,
which enables us to approximate more realistic models than those treated previously.
The method was originally proposed by Dawson (1980). This method is called the Gauss
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Galerkin method since it combines elements of the method of Gauss quadratures and
the Galerkin approximation. The method involves the construction of a sequence of
discrete probability measures by solving a non linear system of differential Equations.
These concepts will be introduced and explained in Sections 2 through 5. In Section
6 the theory will be applied to particular genetic models, and numerical computations
will be shown. They will be compared with those exact results which have been found
in special cases by Kimura and Crow (1970).

2. Formulation

Let us assume that a pair of alleles A and a are segregating in a population of large
size. We shall assume that the process of change in gene frequency satisfies a stochastic
differential Equation of the following form

aY; = a(Yy)dt + o(Y,)dB:;, (2.1)
Yo = X, (2.2)

where X is a given random variable, B, is the standard Brownian motion and the coef-
ficients a and o satisfy the standard conditions for the existence and uniqueness of the
solution. Under the following assumption, it is known that the solution of Equations
(2.1) and (2.2) is a Markov process with state space [0, 1], for more details see Ethier
and Kurtz (1986).

Al. a € C0,1], 02 € C?0,1],

A2. o(z) > 0, Vz € (0,1),

A3. X is independent of the o-fields o{B;;t > 0},
A4. a(0) > 0, a(1) < 0 and 0(0) = o(1) = 0.

Let P(t,z,y) denote the probability transition function associated with the process
Y. Since for each t > 0, z € [0,1], P(t,z,.) is a non negative measure on [0, 1], the
Lebesgue decomposition implies

P(t,z,.) = P4(t,z,.) + Ps(t,z,.),

where P4y(t,z,.) < A and Pg(t,z,.) L A, and X is the Lebesgue measure on [0,1]. It
is well known that the Radon Nikodym derivative p(t,:1:,g,/):‘ﬂl&\'-ﬁ!-zl satisfies, Vr,y €
(0,1), the Fokker Planck Equation
opt.n,y) _ g Olalpltzy) | (e, z,y)] (2.3)
at dy Oy?
p(O,x7y) = J(y-x)’ (24)

where 2b = 0% and with the following boundary conditions at y =0 and y = 1,

tim{ 2. [2”“”;5’ 20 ayplt,z,y)} = 0, if a0) £ 0, (25)

y—0
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Lim[b(y)p(t, z,y)] = 0, if a(0) =0, (2:6)

im( PEZD _ (430,240} = 0, if a(1) £0, (27)

lim[b(y)p(t, 2,y)] = 0, if a(1) = 0. (2.8)

y—1

The classification of boundary behavior of the stochastic process Y (based on the defi-
nition given in Karlin and Taylor (1981)) which is in agreement with the classification
given by Feller (1954) is summarized as follows

e 0 is an exit boundary if a(0)=0,

e 1 is an exit boundary if a(1)=0,

e 0 is a regular boundary if 0 < a(0) < ¥/(0),

e 1 is a regular boundary if 5(1)¥(1) < a(1) < 0,
e 0 is an entrance boundary if a(0) > ¥'(0),

e 1 is an entrance boundary if a(1) < ¥(1).

Note that the Fokker Planck Equation is valid only for gene frequencies in the interval
0 < y <1 (unfixed classes). Separate treatments are required to obtain the probability
that the gene frequency is 0 or 1 at time t (terminal classes). When the boundaries {0}
and {1} act as absorbing boundaries it can be shown, see Ethier and Kurtz (1986), that
we have

dPg(t,z,0)

7t = ®(t,z,0), P(0,z,0) =0, (2.9)
flf-s—%’?f’—l—z = &(t,z,1), P(0,z,1) =0, (2.10)

where
®(t,z,i) = {a(y)P(t,z,y) — %3[1’2(11);’;%:0

Let f be the density of the random variable X. Then through a simple integration with
respect to the backward variable x of Equations (2.3) and (2.4) the Radon Nikodym
derivative ¢(.,t) of the absolutely continuous part of the law of Y; satisfies

’-”)]}|y=,-, fori=0,1.

LT ) (211)
#y,0) = f(y) (2.12)

plus possibly boundary conditions depending on the behavior of the process at the
boundaries of the state space [0,1]. Since in general, the law of Y;, for t > 0, is difficult
to determine, an important task is the problem of numerically approximating this prob-
ability law. Because most population genetics models have singularities at the boundary
of the state space of the process Y, it is even more difficult to approximate the law of Y3,
for t > 0, through the Fokker Planck Equation. The traditional deterministic approach
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has been to attempt a numerical approximation of the Fokker Planck Equation. This
Equation is usually very difficult to solve, if not impossible.

Lemma 2.1 Suppose the semigroup (T;,t > 0) associated with the diffusionY is strongly
continuous, and let h € C%[0,1] N D(L), then

dB[WY:)]

—% = E[(Lh)(Y2)], (2.13)
Yo = X, (2.14)
where L is the formal adjoint of L*, and is defined by
8h . 0%h
Lh = a'a—x + b-a—ﬁ, Vh € D(L)

Proof: Equation 2.14 is obvious. To prove Equation 2.13 let ¢ € (0,00) and h €
C?[0,1]n D(L), then by applying Ito’s lemma to Equation (2.1), we have for all 0 < s <
t<oo

h(Y) ~ h(Y) = [ Ta(Va)W (Ya) + BYOR'(Volldu + [ b(Ya)dB,

by taking the expectation of both sides of the above Equation and then by applying
Fubini’s theorem we obtain

t
E[h(Y)] - EIr(Y.)) = | E(L)(Y)ldu. (215)
We note that an alternative way for deriving (2.15) is through the martingale (h(Y;) —

I (Lh)(X,)du,t > 0,0B;,t > 0). Using the strong continuity of (T},t > 0}, the function
t — E[(Lh)(Y:)] can be shown to be continuous as follows

BN = [(ERF)@IPE) = [ (Lh@du()
= [anwl Ptz d)duo()
= /0 [ /0 (Lh)(y)P(t,,dy)]duo(z) (by Fubini's theorem)

by the strong continuity of the semigroup (T;,t > 0), we have

tim ([ EW@PGC, 2, dldio(@) = [l [ EWP( 2, dy)duo(z) =

t-u

/01 [ /ol(Lh)(y)P (u,z,dy)|due(z) = E[(LR)(Y.)):
Therefore, using (2.15) and the continuity of the map t — E[(Lh)(Y;)] we have

dE[A(Y)] _

T = BImw) (216)
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which completes the proof.

3. Moments System of Differential Equation

In this section (and in the remainder of the paper) we shall assume that a and b are
both polynomials, i.e.: a(z) = X5, A;z? and b(z) = E?:o B;x?, where a, § € N. In
order to obtain Equations for the moments of the process the following assumption is

needed

A5. D(L) contains all the monomials, where D(L) represents the domain of the operator
L.

By specializing Equation (2.13) to hx(z) = z*, where k € N U {0}, the following
initial value problem is obtained

« 8

DA - 3" AMagsa O+ 003 By 6
j=0 j=1

Mi(0) = E(X*),Vk e Nu{0}. ‘ (3.2)

where 8, = 571 and Mi(t) = E(YF).

When either @ > 2 or § > 3 system (3.1) forms an “open hierarchy” in which the
differential Equation for the k-th moment may contain terms involving the (k+1)-th or
higher moments. Various truncation schemes have been proposed to approximate the
solution of system (3.1). The simplest and most frequently used is the cumulant neglect
method in which the (k+1)-th and higher cumulants are set Equationl to zero. In this
way the system of moment Equations reduces to a closed system of differential Equa-
tions. Unfortunately, the use of the cumulant neglect (or any of its variants) can give
misleading results.

Remark:

Previous derivations of the Gauss Galerkin method (see HajJafar (1986)) used Equation
2.11 as a starting point and then multiplied both sides of this Equation by y*, and
integrated by parts to obtain

/0 1 ¢y, ) L(y*) + [agy® + yk%ﬁ — ky*10¢]|y=0,1- (3.3)

dfy y*d(y,t) _

dt -

It is only when the boundary term [a¢y* + y"%ﬁ; — ky*~1b¢}|y=0,1 = O that Equation 2.16
and Equation 3.3 are the same (this correspond to the case where Pg = 0). Therefore,
system 3.1 cannot be derived using the Fokker Planck Equation whenever Pg is not
identically 0. In fact, as the following example shows, the behavior of the distribution
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Figure 3.1: Behavior of the Solution of the Fokker Planck Equation

of the process is not totally accounted for (for all t > 0 and also at 0o) if Equation 3.3 is
used to derive a system similar to 3.1 (ie: the dropping of the boundary term may not
be appropriate).

Example:

Consider the model where a(z) = 0 and b(z) = 0.25z(1 — z). Both 0 and 1 are exit
boundaries. The boundary term [agy* + y"%bf — ky*1b4)|y=01 # 0, V¢ > 0. The
exact solution of the Fokker Planck Equation (i.e: the Radon Nikodym derivative of the
absolutely continuous part of the distribution) was first derived by Kimura and Crow
(1970) and is given by

p(t,z,y) =Y z(l — z)i(i + 1)(2i + 1)F(1 — 4, 4+ 2,2, )
=1
XF(1 —i,i+2,2,y)e (+1t, (3.4)

where F is the hypergeometric function. We have evaluated the above series using up
to 100 terms. Figure 3.1 shows the behavior of the solution for t=0.05, 0.10, 0.20, 0.50,
and 10. As t increases from 0 to 10, the solution goes from a unimodal curve to become
identically zero. This behavior is due to the fact that the mass is leaking towards the
boundaries 0 and 1 (exit boundaries). This is an illustration of a case where the tran-
sition is not absolutely continuous with respect to the Lebesgue measure on the state
space [0, 1].

4. Gauss Galerkin Method

Gauss Galerkin methods for approximating the law of Y; were originally proposed by
Dawson (1980). Attempts have been made subsequently by HajJafar (1986) to im-
prove the efficiency of such methods. We shall provide the details of the proofs of some
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results and suggest a new numerical algorithm which reduces the ill-conditioning con-
siderably. We also provide an example of a model from population gebetics where the
Gauss Galerkin method is not applicable. We start by reviewing the Gauss Galerkin
method.

The following preparatory lemmas will be needed

Lemma 4.2 Let pu be a probability measure on [0,1] such that its support does not reduce
to a finite set. Then Vn € N, Vg € C?"[0,1],3¢ € (0,1) such that

1 1 (2n) 1
[ s@iuta) = [ s@)una) + Lo [ (o, t1u(o) (4.1)

where po(.,t) is the n-th member of the family {p:(.,t),% > 0} of orthogonal polynomials
generated by the measure y, and where p, is a discrete probability measure with n distinct
nodes lying in (0,1) and is usually referred to as the Gauss Christoffel measure.

The proof of Lemma 4.2 can be found in Stoer and Bulirsch (1980).

Lemma 4.3 Given a sequence of numbers {m;,i > 0} there ezxist a unique atomic
measure whose support consists of exactly n nodes in (0,1) if and only if

1. A, >0,¥re0,1,..,.n—1,
2.I,>0,Vreq,l1,..,n—1, and
3 A, =T,=0,Vr2>n,

where the Hankel determinants A, and I', are defined as follows, for each r € N U0,

my my v m,
my my cee My
Ar = b
my Megy ... Moy
my Mo cos Mey
meo mg cee Meyo
I =
Mey1 Myy2 ... Mot

The proof of Lemma 4.3 can be found in Shohat and Tamarkin (1943).



Now we turn to the solution of system 3.1. Using Equation 4.1, system 3.1 can be
written in the form, Vk € N U {0}

It bt~ (5 Ayfmggoatym) + exrimatn] + - (82)
=0
B

Ox[Y_ Bj[mesj-2(t, n) + exsj-2(t, 0]}, (43)
j=1

where m;(t,n) = [} z/du,.(z). The Gauss Galerkin method consists in dropping the
error terms involved in system 4.2 and retaining its first 2n Equations, which leads to
the following initial value problem, for 0 < k <2n -1

W) MY At + (44)
¢ por
B
O[> Bjlur+j-2(t, n)],
j=1
u(0,n) = E(X*). (4.5)

Lemma 4.4 Assume the support of the law of X does not reduce to a finite set, then
for each n € N, the initial value problem {.4 and 4.5 has a unique solution (u(t,n),0 <
k < 2n —1) defined on some interval [0, 7,] with the property,

1
u(t,n) = /0 z*dy, o(z), 0<k<2n-1,Vt€[0,m),

where v, is a probability measure defined on [0,1] and having n distinct nodes.

Proof: Fix n € N, and let v, be the Gauss Christoffe] measure associated with X.
The Hankel determinants are defined as follows

uo(t,n) wy(t,n) ... ui(t,n)
H, (t) = u(t,n)  ug(t,n) ... ujn(t,n) ,
ujit.,.n) u_,-+'1it', n) ugj(t, n)
and '
ui(t,n)  we(t,n) ... wujn(t,n)
Gojlt) = ug(t,n) | uz(t,n) ... ujya(t,n)
uj+.1i7;, n) uj+.2i1;, n) ugjd,_'l'(.t, n)



Using Lemma 4.3, we have H, j(0),Gn ;(0) > 0, for 0 < j < n — 1. Thus, by continuity
3 7, > 0, such that H,;(t), Gaj(t) > 0, for 0 < j < n -1, Vt € [0,7,], where Let
U = (uo(t,n), us(t,n),...,uz,—1(t,n)) and consider the initial value problem
U = AU+ (), (4.6)
U(0) = M(0), 4.7
where M(0) = (My(0), M;(0),..., M2,_1(0)), A is a (2n x 2n) matrix such that
k(50 Ajursi—1(t, )]+

(AU = Ok[E_‘?:l Bj[ugsj-2(t,n)] if0<k<2n—a or0<k<2n-(f-1)
0 otherwise

and ® is a rational fraction in terms of ug(.,n),us(.,n),...,uo(.,2n — 1)).

Theorem 4.1 Suppose liminf, .7 = 7 > 0. Then for each t € [0, 7], the sequence
{vt,n,n = 1} converges weakly to p,, as n — oo.
Proof: Using system 4.4, we have
dui(t,n 2 i
124 < k3 1A+ 603 1B = €l ),

i=1
moreover, by the mean value theorem
lue(t,n)|| < 1+ C(k, e, B)r,Vt € [0,7].

Therefore, by Arzela Ascolli a subsequence of {ux(t,n),n > 51,1,'—1} will converge uniformly
on [0, 7] to some limit vi(t), as n — oco. By taking the intersection of theses subsequences
successively it follows that a subsequence {ux(t,1,),%, > 1} satisfies

Jim llur(t, in) — ve(t)]l = 0,Vk € N U {0}.

Now since {vjn,n > 1} is relatively compact (by tightness) it follows that for some
subsequence {i, }, we have Vg € C[0,1],

1 1
| 9@ @ — [ g@)du(a), as in - oo,
which implies .
w(t) = /0 z*dv,(z),Vk € N U {0}.
Moreover, Equation 4.4 implies

t B t
uk+j_1(s, in)ds + 0, Z Bj /0 uk+j-2(3, in)dsa
ij=1

wi(tin) —u(0,ia) = kDA [

j=0 70
N /ot[/ol L(z*)dv,,(z)]ds.
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We let 1, — 00, to get

¢t 1
we(t) — v(0) = / [ / L(z*)dv,(2)]ds, Vk € N U {0}. (4.8)
0 Jo
Using a result from differential inEquationlities (see [?], Chapter 1), it follows that
() = Mi(t), Vk € N U {0}, and since

% M, k
0<y "'r <eVr>0.
k=0 :

k

It follows that Y; and Z; have the same law for all t € [0,T). This completes the proof
of the theorem.

Remark 1:

Dawson (1980) and HajJafar (1986) assumed conditions 1, 2 and 3 of Lemma 4.3. They
then verified these assumptions numerically (a theoretical proof is not available) for
the models they considered. We shall provide two models where these assumptions are
satisfied theoretically (see models 1 and 2 below), one model where they are satisfied
numerically (see model 3 below), and one model where these assumptions do not hold
(see model 4 below) and therefore the Gauss Galerkin method may not be applicable.

Remark 2:

The nodes and weights of the discrete measure p(n,t) resulting from the Gauss Galerkin
method can be found through the usual inversion of the well known Vandermonde matrix,
see Dawson (1980) and HajJafar (1986). However, the determinant of this matrix is
directly proportional to the quantity

n
[T [(@ai®) - zai(®N
ij=1,i#j

where {z,(t),1 < i < n} are the nodes corresponding to the discrete measure p(n, t).
This quantity may become negligible as n increases. As a consequence the involved
Vandermonde matrices may become nearly singular, causing the problem of solving for
the nodes and weights of the measure p(n,t) to become ill-conditioned. An alternative
method which considerably reduces the ill-conditioning when computing the nodes and
weights is the content of the numerical algorithm below.

5. An Improved Numerical Algorithm

Our numerical algorithm for finding the nodes and the weights of the Gauss Galerkin
measure j(n,t) is based on the relationship between the orthogonal polynomials asso-
ciated with u(n,t) and its moments. The nodes {z,:(t),1 < ¢ < n} and the weights
{wni(t),1 £ i < n} of the measure pu(n,t) are related to the following real symmetric
tridiagonal matrix

10



in such a way that the nodes {z,:(t),1 < i < n} are the eigenvalues of J,(t) and
{wn,i(t),1 < i < n} are the squares of the first components of the normalized eigenvec-
tors. The coefficients §;, and f;, forl < j < n, are determined by the following three-
term recurrence for the orthogonal polynomials corresponding to the discrete measure

p(n,t)

po(z,t) = 1, (5.1)

pin(z,t) = ((1‘ = 81 ())pi(, 1) — i (8)*pia(z, 1), (5.2)
_ _ {=pi,pi)

5:+1(t) - @i,pi) ’ (5'3)

2 ®) { 0 ifi =0, (5.4)
Yi = {pi,pi) T3 .
i i—1,Pi—1) ifi>1,

where p_i(z,t) = 0, and (,) denotes the inner product with respect to y,, for more
details see Stoer and Bulirsch (1980).

Our numerical algorithm for finding the nodes and weights of the Gauss Galerkin measure
p(n,t) is based on Equation. 5.1 through 5.4. The relationship between the orthogonal
polynomials associated with p(n,t) and its first 2n moments {m;(t),0 < j < 2n — 1}
" is exploited. The moments of u(n,t) are used to compute the entries of the tridiagonal
matrix J,(¢). We shall now present the detailed derivation of the algorithm.

Given the 2n moments {u;(t),0 < j < 2n — 1}, the inner products involved in the
construction of the matrix J,, can be expressed in terms of the given moments as follows

(Po,Po) = Uy,

(-'EPpr0> =1,

in general, given

2
(pi,pi) = E a§~2‘)u2.-_,~,where0 <i<n-1,
=0

11



and the a§~2") are known. Then

2i )
(zpi,pi) = Z ag'zt)u2i—j+1-
j=0

Through the three term recursion formula we also have the following
(zpi, pi) — Siv1{pi,pi) = 0=

(P.+1,Pa+1> - 05)2 )u2t+2 +...+ 0!(2') Ug — 26; +1(00 U2i+1 +...+ 0(2‘)‘&1) +
(8is1)2 (@S ugi + ... + af 2')u 0) —
(pnmpt—l) + (7:-{-1) (P;—I,P: 1)

We now describe a one step computational algorithm from ¢ = 0 to At¢. This computa-
tional algorithm is used to compute the approximate values of the first 2n moments of
the process at time At using the initial conditions {M(0),0 < k < 2n — 1}.

1. Using {Mi(0),0 < k < 2n — 1} as initial conditions we solved system 4.4 by us-
ing a Runge Kutta method (through the computer algebra system Maple) to obtain
{ur(At),0 <k <2n-—1}.

2. With the new {ux(At),0 < k < 2n — 1} we compute 6;x(At) and 7(A) for 1< k< n
by using Equation 5.3 and 5.4. Then we form the matrix J,(At). The eigenvalues of

Jo(At) and their corresponding eigenvectors are then found (using Maple). This yields
the nodes {z,:(At),i =1,2,...,n} and the weights {w,(At),i =1,2,...,n}.

3. Using the first iterates, we obtain the second and higher iterates from {ux(At),0 <
k < 2n — 1} by repeating step 1.

This numerical algorithm has proved to perform better than the algorithm proposed
by HajJafar (1986) and Dawson (1980) in which several matrix inversions are required
causing the problem of finding the weights and nodes to become ill-conditioned (see
Remark 2 above). Our algorithm does not require any matrix inversion. Therefore, our
numerical algorithm is more suitable when higher values of n need to be considered.

6. Application to Genetic Models

In this section (and in the remainder of the paper) we shall assume the following form
for the drift and the diffusion coefficients, respectively

a(z) = sz(l-z)h+ (1 - 2h)z] —ur +v(l —x),

z(l - x)
o(z) —

12



where s, u, v, and h are given parameters.

-d—Aig;—(-t-)— = ('Uk + Bk)Mk_l(t) + (k(sh -y - v) - Hk)Mk(t) -+
s(1 = 3R)kMps1(£) — s(1 — 2h)kMsalt) (6.1)
M(0) = E(©)". (6.2)

When s = 0, Equations (6.1) and (6.2) admit a unique solution given by
t
Mk(t) = [Mk(O) + k(% + ’U)/ Mk_l(s)e—-k(—%(k—l)—v—u+ah)sds]ek(—%(k—l)—v—u+ah)t.
0

To test the accuracy of our computations, we shall compare them with the exact solu-
tion, whenever possible.

Model 1 (s=u=v=0): This model represents the case of no selection (s=0), no muta-
tion and no migration (u=v=0). Both 0 and 1 are exit boundaries and the exact solution
representing the Radon Nikodym derivative of the transition was derived by Kimura and
Crow (1970) and is given by

o

p(t,z,y) =Y (1 —z)i(i + 1)(2i + 1)F(1 — 4,1 + 2,2, 2)

i=]

XF(1 — 1,5+ 2,2,y)e 0+ (6.3)

where F is the hypergeometric function. We have evaluated the above series for x=0.5
and for several values of t using up to 100 terms. Table 6.1 gives the moments {Mj,1 <
k < T} evaluated at the t values 0, 0.5, 1, ..., 10. Our computations show that the
steady state solution is reached when t is approximately 10. Figure 6.2 is a display of the
moments My, 1 < k < 7 as functions of t. It can be seen from Table 6.1 that the steady
state value for the k-th moment (k > 1) is 3. Figure 6.3 shows the Gauss Galerkin
measures (with 5 nodes) plotted for several values of t (t=0, 1, 2, 3, 6 and 10). The
Gauss Galerkin measures in this case coincide with the Gauss Christoffel measures and
the solution of system 4.4 and 4.5 is valid on any compact interval [0,T], T > 0. Con-
vergence is very fast (n=>5) in this case. Table 6.1 shows that the steady state values of
the moments are exactly Equationl to % This implies that the steady state distribution
measure for the process Y is the atomic measure 1(8 + &;). This is in agreement with
the graph corresponding to ¢t = 10 in Figure 6.3 which shows the steady state discrete
measure.
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Table 6.1: Approximate Moments, Model 1

Model 1, s=u=v=0

my

ma

ms

My

ms

Mg

my

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.333333
0.370199
0.398911
0.421272
0.438687
0.452249
0.462811
0.471037
0.477444
0.482433
0.486319
0.489345
0.491702
0.493537
0.494967
0.496080
0.496947
0.497622
0.498148
0.498558
0.498877

0.250000
0.305299
0.348367
0.381908
0.408030
0.428373
0.444217
0.456556
0.466166
0.473650
0.479478
0.484017
0.487553
0.490306
0.492450
0.494120
0.495421
0.496433
0.497222
0.497836
0.498315

0.200000
0.266359
0.318040
0.358290
0.389636
0.414048
0.433060
0.447867
0.459399
0.468380
0.475374
0.480821
0.485063
0.488367
0.490940
0.492944
0.494505
0.495720
0.496667
0.497404

0.497978

0.166667
0.240398
0.297823
0.342544
0.377374
0.404498
0.425623
0.442075
0.454888
0.464867
0.472637
0.478690
0.483404
0.487074
0.489933
0.492160
0.493894
0.495244
0.496296
0.497115
0.497753

0.142857
0.221855
0.283381
0.331297
0.368615
0.397676
0.420310
0.437937
0.451665
0.462357
0.470683
0.477167
0.482218
0.486151
0.489214
0.491600
0.493458
0.494905
0.496032
0.496909
0.497593

0.125000
0.207948
0.272550
0.322862
0.362045
0.392560
0.416326
0.434834
0.449248
0.460475
0.469217
0.476025
0.481329
0.485459
0.488675
0.491180
0.493131
0.494650
0.495833
0.496755
0.497472

Figure 6.2: Exact Moments, Model 1
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Figure 6.3: Atomic Measures, Model 1
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Table 6.2: Approximate Moments, Model 2

Model 2, s=0, u=v=0.125
t my ma ms my ms me mq
0.0 | 0.5 | 0.333333 | 0.250000 | 0.200000 | 0.166667 | 0.142857 | 0.125000
0.5 | 0.5 | 0.349728 | 0.274591 | 0.229140 | 0.198532 | 0.176428 | 0.159661
1.0 | 0.5 | 0.359672 | 0.289507 { 0.246603 | 0.217329 | 0.195907 | 0.179450
1.5 | 0.5 | 0.365703 | 0.298554 | 0.257166 | 0.228658 | 0.207603 | 0.191288
2.0 | 0.5 | 0.369361 | 0.304041 | 0.263569 | 0.235520 | 0.214682 | 0.198447
2.5 | 0.5 | 0.371580 | 0.307370 | 0.267452 | 0.239681 | 0.218973 | 0.202786
3.0 { 0.5 | 0.372926 | 0.309388 | 0.269807 | 0.242204 | 0.221575 | 0.205417
351050373742 | 0.310613 | 0.271235 | 0.243734 | 0.223153 | 0.207013
401 0.5 | 0.374237 | 0.311355 | 0.272102 | 0.244663 | 0.224110 | 0.207980
4.5 1 0.5 | 0.374537 | 0.311806 | 0.272627 | 0.245226 | 0.224691 | 0.208568
5.0 ] 0.5 | 0.374719 | 0.312079 | 0.272946 | 0.245567 | 0.225043 | 0.208924
551 0.5 | 0.374830 | 0.312244 | 0.273139 | 0.245774 | 0.225256 | 0.209140
6.0 | 0.5 | 0.374897 | 0.312345 | 0.273257 | 0.245900 | 0.225386 | 0.209271
6.5 | 0.5 | 0.374937 | 0.312406 | 0.273328 | 0.245976 | 0.225465 | 0.209350
7.0 | 0.5 | 0.374962 | 0.312443 | 0.273370 | 0.246022 | 0.225512 | 0.209398
7.5 1 0.5 | 0.374976 | 0.312464 | 0.273396 | 0.246049 | 0.225540 | 0.209426
8.0 | 0.5 | 0.374985 | 0.312478 | 0.273412 | 0.246066 | 0.225558 | 0.209444
8.5 1 0.5 | 0.374991 | 0.312487 | 0.273422 | 0.246077 | 0.225569 | 0.209455
9.0 | 0.5 | 0.374995 | 0.312492 | 0.273428 | 0.246084 | 0.225576 | 0.209462
9.5 ] 0.5 | 0.374997 | 0.312495 | 0.273432 | 0.246087 | 0.225579 | 0.209466
10 | 0.5 | 0.374998 | 0.312497 | 0.273434 | 0.246090 | 0.225582 | 0.209468

Model 2 (s=0, u=v=0.125): This model represents the case in which migration and
mutation occur (u,v # 0), but no selection (s=0). The exact solution for this model,
which was obtained by Kimura and Crow (1970) and by Goldberg (1950), has the same
eigenfunction expansion form as 6.3. The theoretical steady state solution is

y4x0.125—1(1 - y)4><0.125—1

B(4 x 0.125,4 x 0.125) ’

where B(.,.) is the beta function. Our computation in Table 6.2 show the moments M,
1 < k < 7 evaluated at the t values 0, 0.5, 1, ..., 10. It can be seen from Table 6.2 that
the steady state solution is reached when t is approximately 10. Figure 6.4 is a display
of the Gauss Galerkin measures (which coincide with the Gauss Christoffel measures, in
this case) and the solution of system 77 is valid on any compact interval [0,T], T > 0.
For the construction of the Gauss Galerkin measures we took n=5 and again convergence
is very fast in this case. According to Figure 6.4 the approximate steady state solution
for the distribution of the process is illustrated in the graph corresponding to t=10. This
is in agreement with the theoretical calculations.

p(00,0.5,y) =
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Figure 6.4: Approximate Atomic Measures, Model 2
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Table 6.3: Exact Steady State Moments, Model 2
Model 2, =0, u=v=0.125
mM1.00 m2,00 ms3,co M4 00 ms, 00 Mg, 00 M7,00
.5000000001 | .3750000000 | .3125000000 | .2734375000 | .2460937500 | .2255859375 | .2094726562

17




Model 3 (s=2, h=0.5, u=v=0): This model represents the case where selection oc-
curs (s=2) but there is no mutation or migration (u=v=0). Our computations show that
the system of ode’s for the moments of the corresponding process is only local. Therefore,
the steady state analysis is not possible through the Gauss Galerkin approach. How-
ever, a local approximation of the moments and therefore of the distribution, is possible.
Figures (a), (b), (c), and (d) below correspond to different values of n. It is clear from
these figures that the solution is valid only locally, approximately in the interval [0, 2.9)].
A steady state approximation is not possible through the Gauss Galerkin method.
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Figure 6.5: Approximate Moments, Model 3.
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Figure 6.6: Model 3, Local Solution [0,2.9].

Model 4 (s=2, h=1, u=v=0): This model is an example of a situation where the
Gauss Galerkin method does not apply. This is due to the fact that the crucial as-
sumption made in Theorem 4.1 is violated, ie: 7, | 0, as n 1. Figure 6.8 (a) shows
an approximate value 74 = 0.045, and Figure 6.8 (b) shows an approximate value of
75 = 0.03. 7, becomes negligible for n > 6.
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Figure 6.7: Atomic Measures, Model 3
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(a) Model 4, n=4
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(b) Model 4, n=5

Figure 6.8: Model 4, as n 1, 7, |{.
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