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of an Automorphism Fixing an Element is Large
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Let G be a finite group and let A be its automorphism group. We are concerned
with the probability, denoted by P4(G), that a random element of A fixes a random
element of G. It is well known [3] that P4(G) = k/|G| where k is the number of
automorphism orbits (For ¢ € G, the automorphism orbit of g is {go|loc € A}.) in G.
Laffey and MacHale [2] have shown that

|G|/ps+1 if G is abelian

|G|/ ps if G is non abelian

where p, is the smallest prime divisor of |G|. Thus

) 1/ps +1/|G} £ 2/ps if G is abelian
(i) P4(G) <

1/ps if G is non-abelian

The purpose of this note is to show that the abelian groups for which P,(G) > 1/p,
are Zy, 724 and Zp @ Z3, if p, =2, and Z,, if p, > 3. We will refer to such groups as
exceptional.

For the remainder of the paper G denotes an abelian group. The following results

concerning P4(G) appear in [3].



(i)
(iif)

(iv)
(v)
(vi)

If G+#Z,, then P4(G) < 3/4.
If G is decomposable, say G = éG;, then, P4(G) < ﬁPAi(Gi)
with equality prevailing if the Gi’si;e the Sylow subgrou1;s=10f G.
If |G| = p¥, then P4(G) < 2-(3/p*)¥/2.
If |G| = p* and G is cyclic, then P4(G) = (k +1)/p*.
If |G| = p* and G is elementary abelian, then P4(G) = 2/p*.
Fact 1. An exceptional group is a p-group or has order 2% - 3.

Proof: If |G| is divisible by primes p and ¢ such that p < ¢ and ¢ > 5 then,

P4(G) <(2/p)-(2/q) < 1/p by (i) and (iii).

Fact 2. The only exceptional p-groups for p > 3 are the cyclic groups of order p.

Proof: Comparing the bounds on P4(G) given in (i) and (iv), one observes that the

bound in (iv) is sharper except for“small” n. Specifically, 1/p < 2-(3/p?)*/? if, and only if

or

or

or

1/3,
(vi).

p=2 and 1<n<9

p=3 and 1<n<3

p=5 and 1<n<2

p>T7 and n =1

But, PA(Z27) = 4/27, PA(ZQ ) Z3) S 2/9, PA(Z3 ) Z3 &7, Zg) = 2/27, P4(Zg) =
Py(Z3s®Z3) = 2/9, Pa(Zys) = 3/25 and Pa(Zs ®Zs) = 2/15 follow from (iii) through

Fact 3. The only exceptional group of order 2° - 3% is Z, @ Z.



Proof: By the multiplicative property of P4(G) and Fact 2 we must have b = 1
and therefore Py(G) = P4(H) - (2/3) where |H| = 2*. Thus P4(G) > (1/2) implies

Ps(H) > (3/4); ie,a=1.

Fact 4. The only exceptional groups of order 2* are Z, and Z,.

Proof: We observed in the proof of Fact 2 that 1 < a < 9. Applying (iii) through

(vi) to G for 1 < a < 4 yields:

a G
1 Z,
2 Z,
Z,97Z,
3 Zg
Z,02Z,
2,92, ®Z,
4 VAT
Zs ® 7o
Z,®7Z,
2y 2y ® 72

Z2EBZ2@Z2€BZ2

P4(G)

=1
= 3/4
=1/2
=1/2
< 3/4
=1/4
= 5/16
<1/2
<9/16
< 3/8
~1/8

Thus Z; and Z4 are exceptional and we need to look more closely at Z4 @ Z, and Z4 D Z,.

Consider G = Z4 P Z,. G contains three elements of order two and four elements of

order four. Notice that B; = ((1,0),(2,1)), B; = ((1,0),(0,1)), B3 =((3,0),(2,1)), By =

((1,1),(2,1)) and Bs = ((3,1),(2,1) are ordered bases of G ([1], page 37). Mapping B, to

B;, 2 <1 <5, component by component uniquely determines an automorphism, o; of G.

Thus the four elements of order four in G form an orbit. Moreover, (2,1)o; = (0,1) so



there are at most two orbits among the three elements of order two. This implies P4(G) <
1/2. Actually P4(G) = 1/2 as one can easily verify by constructing the automorphisms
determined by the remaining three ordered bases of G.

Consider G = Z,® Z4. G contains three elements of order two and twelve elements
of order four. As above the elements of order four form an orbit. To see this let a and ¢ be
elements of order four in G. By examining the five cyclic subgroups of order four in G one
can find elements b and d of order four such that (a) N () = (¢) N {(d) = {(0,0)}; i. e, such
that (a,b) and (¢, d) are ordered bases of G. The automorphism determined by these two
ordered bases places a and ¢ in the same orbit. It follows that P4(G) < 5/16. Actually
P4(G) = 3/16 since the elements of order two also form an orbit as one can check with
CAYLEY.

Suppose 5 < a < 9. If G has an invariant factor of 3 or greater (i.e., Zy, k > 3,
is a direct summand of G), then P4(G) < P4(Zy) < 1/2. If the invariant factors of
G are 2’s or 1’s, there must be at least two 2’s or at least two 1’s. In the first case

Py(G) < Ps(Z4® Z4) < 1/2 and in the second case Ps(G) < Py(Z, ® Z,) = 1/2.
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