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UNDERGRADUATES, THE RIGHT QUESTIONS
AND CAYLEY PRODUCE RESULTS

Gary J. Sherman*
Department of Mathematics
Rose-Hulman Institute of Technology
Terre Haute, IN 47803 USA
SHERMAN@ROSEVC.ROSE-HULMAN.EDU

ABSTRACT: During the summers of 1989, 1990 and 1991 eighteen undergraduates
participated in a National Science Foundation Research Experiences for
Undergraduates program at Rose-Hulman for which the author was the principal
investigator. This paper provides some examples of the mathematics discovered

during these three summers and discusses the philosophy, environment and process
which made these discoveries possible.

Introduction

Can the computer revolutionize the teaching of undergraduate mathematics? Some
say yes. Others say no. The question is broad, the data is soft and the protagonists are
emotional - so who knows? I have taken either position depending on whom I'm trying to
antagonize.

Can the computer enable bright, well-prepared, motivated undergraduates to do
research in finite group theory? Some say "Finite group theory, are you kidding?"
Others say "Finite group theory, are you kidding?" I say yes — proof by example is the
point of this paper.

Many of my analyst friends are from the ‘The only examples we ever saw in graduate
school were S3, D4 and Z)' school of group theory. They are analysts, so maybe that's

not so bad — or maybe it's one of the reasons they are analysts. I'm am algebraist, so I
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was more sophisticated: I could also wheel and deal with the quaternion group of order
eight and I had memorized just about every proof in Marshall Hall's book [11]. But, if
somebody would have asked me a specific question about one of the nonabelian groups
of order 32, I would have fainted or been on the way to my grandmother's funeral. Not so
with the students who participate in my National Science Foundation Research
Experiences for Undergraduates (NSF-REU) program at Rose-Hulman. Each summer,
less than a week into the progam, they know more gritty facts about specific groups than I
knew after five years in a PhD program. Indeed, the group-theoretic banter in our work-
room crackles with the energy, the enthusiasm and the detail students usually reserve for
discussions of sports or sex. What generates this mathematical energy, enthusiasm and
detail? Bright, motivated undergraduates, the ‘right’ questions and the computer algebra

system CAYLEY [13].

The students

Each summer six students participate in Rose-Hulman’s NSF-REU program for
which the author is the principal investigator. The participants are selected from among
applicants (70 for 1991) who meet the National Science Foundation’s eligibility
requirements

-US citizenship-
-Fulltime undergraduate status in the fall of the succeeding year-
and the academic prerequisites that I set.
-A rigorous modern algebra course to include the Sylow theorems-
-Experience with a high level programming language-

Given that an applicant satisfies these prerequisties, I use data from an application

form, a transcript and two letters of recommendation to select a subset of the applicants to

call on the phone. The six participants are selected after the phone conversations. Not



only do I want bright, motivated students but I want students who are capable of
collaborating (willingly and productively) with me and with their fellow participants.
And, to guarantee that the group (no pun intended) has enough social spice to keep it
alive for seven weeks, I want women and men from small liberal arts colleges and major
research universitys with varied non-mathematical interests. Thus far six women (Sarah
Marie Belcastro, Cheryl Grood, Sharon Kineke, Judy Leavitt, Jeanne Nielsen, and
Catherine Sugar) and twelve men (Joel Atkins, Stewart Burns, Jordan Ellenberg, Steve
Knox, John O’Bryan, Kevin O’Bryant, David Patrick, Lawren Smithline, Tom Tucker,
Mark Walker, Marty Wattenberg and Eric Wepsic) have represented Brown University,
Carnegie-Mellon University, the College of Wooster, Duke University, Harvard
University, Haverford College, New Mexico State University, Pomona College, Rose-
Hulman Institute of Technology, the University of Chicago and the University of
Michigan in the program. Of the participants who have graduated, all are in Ph.D.

programs in mathematics (Berkeley, Duke, Illinois, Michigan and Stanford).

Some ‘right’ questions (and answers)

The fundamental theorem for finite abelian groups (each is a direct product of cyclic
groups of prime-power order) and the basic classification scheme for groups (labeling a
group as abelian, nilpotent, supersolvable, solvable or simple indicates, at least in a
qualitative sense, the degree of commutativity the group enjoys) reflects the importance
of the notion of commutativity in understanding group structure. How does one get
beginning abstract algebra students (xy = yx as far as they are concerned) to deal with the
subtleties of the commutativity issue? I do it directly and quantitativley by asking them

What is the probablility that two elements of a finite group commute? 1)
A sample of our NSF-REU results ([1], [2], [7],.[10], [14], [15], [19], [20], [23].),

consisting of three theorems each having its roots in mathematics motivated by this



question, follows.

The formal answer to (1),

Pry(G) = I{ (x,y) I xy = yx }I/IGI2,
raises another question:
How many ordered pairs of elements of a finite group commute? 2)

The answer to (2), orginally due to Erdos and Turan [8], is kiGl, where k is the number of
conjugacy classes in G.

Thus, the useful answer to (1) is

Pry(G) =k/IGl.

Fortunately, Pro(G) = 1 if, and only if, G is abelian . Surprizingly, Pry(G) < 5/8 [9] if,
and only if, G is nonabelian; i.e., there is a probablility 'gap’' between nonabelian groups
and abelian groups. Moreover, Pry(G) = 5/8 if, and only if, G/Z = Z, ® Z,; i.e.,
‘abelianess' has a threshold and we know which groups occupy the threshold.

Rewriteabililty. Commutativity is a special case of rewriteability [3]. An n-tuple of
a finite group G is n-rewriteable if

X1%2" %0 = Xo(1)*0(2) " *o(n)

for some nontrivial permutation ¢ € S,,, the symmetric group on n symbols. The
proportion of n-tuples from G which are n-rewriteable is denoted by Pr,(G) and G is said
to be n-rewriteable if Pr,(G) = 1. The 2-rewriteable groups are precisely the abelian
groups. Both 4-rewriteable groups [16] and 3-rewriteable groups [6] have been
characterized. The characterization of 4-rewriteable groups is long and technical,
encompassing eight subclasses of groups. The Cliff’s Notes version might go something
like G is 4-rewriteable if (just about), and only if (just about), G has an abelian subgroup
of index two or a derived group of order at most eight. The characterization of 3-
rewriteable groups is much sharper. Each of the following conditions is equivalent to 3-

rewriteability.



i) The order of the derived group of G is at most 2 [6]. Recall that the derived
group of is the subgroup of G generated by commutators: < x-ly-lIxy I x,ye G >.

ii) Each conjugacy class is of order one or two [6]. Recall that the conjugacy class
of xis { y'lxylye G }.

iii) The probabililty of two elements commuting is greater than 1/2; i.e., Prp(G) > 1/2
[15].

Have you anticipated the question?

Does there exit a ‘5/8-like bound’ for n-rewriteability? 3)
For general n, we think the answer is yes [15]. For n = 4, we ‘know’ the answer is yes
and we will soon prove it. For n=3, the answer is yes — and the bound is 17/18. This
result was first conjectured in [15], a paper which grew out of our work in the 1989 NSF-
REU. Walker, who participated in the 1989 NSF-REU between his junior and senior
years, proved (in his senior thesis for a degree in mathematics at New Mexico State
University) that if G is not 3-rewriteable, then Pr3(G) < 971/972. Ellenberg, who
participated in the 1990 NSF-REU between his freshman and sophmore years at Harvard,
finished it off with the following theorem.

Theorem 1 [7]. A finite group G is not 3-rewriteable if, and only if, Pr3(G) < 17/18.
Pr3(G) = 17/18, if and only if, G modulo its center is isomorphic to the symmetric group
on three symbols.

The proof is elementary — but hard and subtle — and makes use of a classic technique
(assume there is a counter example and derive a contradiction about a minimal counter
example) in conjunction with i), ii) and iii) above.

Centralizers. Another measure of commutativity for a finte group is the number of
distinct centralizers the group possesses. Recall that the centralizer of x in G, denoted by
C(x), is the subgroup of G consisting of all elements which commute with x; i.e., C(x) =
{y € G Ixy = yx}. Let Cent(G) denote the number of distinct centralizers in G; i.e.,

Cent(G) =1{ C(x) I x € G}



Clearly, G is abelian if, and only if, Cent(G) = 1.
What can we say about Cent(G) for nonabelian groups? 4)
It turns out that there is a centralizer 'gap’ for nonabelian groups anlagous to the
probability 'gap' between 1 and 5/8: if Cent(G) # 1, then Cent(G) is at least 4. The fact
that Cent(Q) is neither two nor three follows from an old Putnam problem [18].
Show that a finite group can not be the union of two of its proper
subgroups. Does the statement remain true if "two" is replaced by
"three"?
The statement does not remain true if "two" is replaced by "three”. The dihedral group on
four symbols and the quaternion group of order eight can each be written as the union of
three proper subgroups. But, in a sense, these are the only such groups because a group is
the union of three proper subgroups if, and only if, G/N = Z, & Z,, where N in the
intersection of these three subgroups [4]. It turns out that if G has only four centralizers,
then N is the center, Z, of G (i.e., the intersection of all of the centralizers of G). Thus,
Cent(G) = 4 if, and only if, G/Z = Z, ® Z;. Now, S3 has five centralizers and S3 is a
very special group, so here is a result that just has to be true: Cent(G) = 5 if, and only if,
G = Sj. Sarah Marie Belcastro, who participated in the 1990 REU between her junior
and senior years at Haverford, used the following theorem to say, “Well, not quite.”
Theorem 2 [2]. Cent(G) =S5 if,andonly if, GIZ=S;0r GIZ=Z3;® Z;3.
The proof is elementary and makes incessant use of Lagrange's theorem, the fact that
[ABI2IAIIBI/IANBI
for subgroups and spirit of the Putnam problem.
Normality. Each subgroup of an abelian group is normal; i. e., Hx = xH for each
element of G and each subgroup of G. However, this ‘commutativity’ condition does not
characterize the class of abelian groups: The quaternion group of order eight, Q, is a

nonabelian group in which each subgroup is normal. But, in a sense it is the only such



group.

Each subgroup of G is normal if, and only if, G is abelian or G is

the direct product of Q, an abelian group in which each element

of order two and an abelian group in which each element has odd

order (see [11], pages 190-192).
Such groups are said to be Dedekind. The nonabelian Dedekind groups are referred to as
Hamiltonian groups.

There are several ways to measure ‘Dedekindness’[23]. Here's one. Let D(G) denote
the proportion of subgroups of G which are normal. Clearly, G is Dedekind if, and only
if, D(G) = 1.

How Dedekind can a finite group be?

At one time I thought there was a ‘5/8-like’ bound for measures such as D(G) [22]. In
the spring of 1988, Mark Leonard, Scott Krutsch (students in my abstract algebra course
at the time) and I began to suspect that I was wrong. In the summer of 1989, Walker,
Tucker, who participated in the 1989 NSF-REU between his sophomore and junior years
at Harvard, and I proved that I was wrong — very wrong.

Theorem 3 [23]. For eachr e [0,1] there exists a sequence of groups {G,} such
that D(G) — rasn — oo,

Indeed, there are three other natural measures of ‘Dedekindness’ for which this result
holds. And, for each of the four measures the proof of the theorem is constructive; i.e.,
the proof constructs a group such that | D(G) - r | < € where r is your favorite number

between zero and one and epsilon is as small as you like.

CAYLEY
CAYLEY is a high level programming language (which can be used interactively or

in batch mode), designed around the algebraic concepts of structure, set and mapping



containing a large run-time library (of algebraic, geometric and combinatorial
algorithms), an extensive data base (group theoretic and geometric knowledge) and a
deduction engine. What distinguishes CAYLEY from other computer algebra packages
is that it allows the user to define the structure in which he or she wishes to compute and
to extract global information about the structure (in addition, of course, to information
about individual elements). For example, if G is a ‘small’ (order less than 20,000)
finitely presented group then one can compute complete structural information for G
(conjugacy classes, subgroup lattice, normal subgroups and automorphism group). Some
CAYLEY commands are provided below (in context) to illustrate how easy CAYLEY is

to use and to hint at its power. For more information on CAYLEY see [13].

Roles

The student's role is to ‘do’ mathematics. My role includes providing the ‘right’
questions — easy for me to say, but hardest of my roles to fulfill. The examples I have
given exhibit the spirit of my approach: view the major theorems and concepts of
elementary group theory from a quantitative point of view. This approach generates
questions that lend themselves to an empirical analysis of example after example. Enter
CAYLEY: CAYLEY enables undergraduates (or analysts or me), who might otherwise
by restricted to S3, D4 and Z,,, to make and test interesting, significant conjectures by
providing a (virtually) boundless inventory of examples and the facility to compute in
those examples. Fortunately, good students working on the ‘right’ question with
CAYLEY tend to suggest more ‘right’ questions ([1], [2], [10], [14], [15], [19], [23],
[24]).

Here’s how CAYLEY played its role in the development of the theorems mentioned
above.

Theorem 1. If one views rewriteability as a generalization of commutativity and if

one is familiar with the 5/8 bound for commutativity and other ‘5/8-like’ bounds ([17],



[21], [22]), then one is compelled to ask if there is a ‘5/8-like’ bound for rewriteability.
My intuition told me the bound existed and I told my REU students to find it for 3-
rewriteability. Their response — direct, computational and impossible without CAYLEY
— was to pass group after group to the following CAYLEY procedure that counts the

number of rewriteable 3-tuples in a group G. (CAYLEY commands are capitalized

throughout the paper.)
COUNT =0;
FOR EACH X IN G DO
FOR EACHY ING DO
FOR EACHZIN G DO
IF X*Y*Z EQ X*Z*Y THEN GOTO 1;
IF X*Y*Z EQ Y*X*Z THEN GOTO 1;
IF X*Y*Z EQ Y*Z*X THEN GOTO 1; (5)
IF X*Y*Z EQ Z*X*Y THEN GOTO 1;
IF X*Y*Z EQ Z*Y*X THEN GOTO 1;
LOOP;
1: COUNT = COUNT + 1;
END;
END;
END;
PRINT COUNT;

How does one get groups into the machine? Some are already there. For example,
symmetric groups: G = SYMMETRIC(26); ,
alternating groups: G = ALTERNATING(48); ,



dihedral groups: G = DIHEDRAL(10); .

Others can be defined using a permutation representation or generators and relations. For

example,
G: PERMUTATION GROUP(9);
G. GENERATORS: A =(1,2,3,4,5,6,7,8,9),
B =(2,8,5)(3,6,9);
and

G: FREE(A,B);
G. RELATIONS: AT9 = BT3 = B¥*A*(BT2)*(AT4) = 1;
both give access to the same group nonabelian group of order 27:
G=<abla%=b3=eandbab-l =a% > (6)

The ‘direct, computational and impossible without CAYLEY’ approach and IGl
interact to slow the computation of Pr3(G) as Gl increases. Our solution was statistical:
obtain a confidence interval for Pr3(G) by sampling G x G x G (yes, RANELT(G) selects
a random element of G). This technique, which proves useful accross the whole genre of
problems we consider, quickly ‘established’ the 3-rewriteability bound as 17/18 and
motivated Walker and Ellenberg to go after the proof with a vengeance.

Theorem 2. As I noted earlier my intuition on the centralizer problem was wrong.
How did Belcastro know it was wrong? She wrote a CAYLEY procedure that counts the
centralizers in a group (yes, CENTRALIZER(G, x) will give you the centralizer of x in
G). Passing this procedure each non-ableian group of order up to 100 (yes, they are all
available in CAYLEY) produced the case I overlooked in my original conjecture. Our
proof of the theorem simply reflects the understanding we gleaned from examining
examples using CAYLEY.

Theorem 3. Once upon a time I claimed a ‘5/8-like’ bound existed for D(G) [22].

Then, I got realistic: even if I ‘knew’ the bound I could not ‘prove’ the bound because, in

10



general, very little is known, or is likely to be known, about the denominator of D(G);
i.e., the number of subgroups of G. On the other hand, if the ‘5/8-like’ bound for D(G)
doesn't exist, proving it doesn't exist might require control of the denominator of D(G)
only for some ‘tractable’ class of groups. A year in industy doing operations research
finally pays off: look for a solution where, given that a solution exists, the probability of
finding it is not zero.

My role also includes knowing where ‘where’ might be. I suggested that Tucker and

Walker look at metacyclic groups like the group appearing in (6):
ph-1 p-2+1
Gpn)=<abla®P =bP=candbabl=a >, €))

where p is a prime and n is a positive interger. They used CAYLEY to determine the
number of normal subgroups (yes, NORMAL SUBGROUPS(G) will provide a list of all
the normal subgroups of G) for lots of G(p,n)’s. The data they compiled and a formula,

in terms of p and n, for the number of subgroups of G(p,n) [5] suggested that

DG)— } @-2/(n-1asp > oo.
1 as n — oo,

Where did Theorem 3 come from? CAYLEY-play. Tucker and Walker, after
convincing themselves that the bound didn't exist (no proof yet of course) began looking
at direct products of G(p,n)’s with CAYLEY and noticed that they could push D(G)
around at will. The construction, which comprises the proof of Theorem 3, is a
mathematical summary of this CAYLEY-play.

If you have access to CAYLEY and would like to see CAYLEY-play in action, take
another look at (5). If CAYLEY can count the number of 3-tuples which are rewriteable

(in at least one nontrivial way), then it can certainly count the number, r;, of 3-tuples
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which are rewriteable in exactly i (0 <1< 5) nontrivial ways. Have it do this for various
groups and record the counts, (rg, ry, Iy, I3, I'4, I's), until you ‘know’ a theorem.

The monster (and I don’t mean a sporadic simple group) will appear while you are
doing the exercise in the previous paragraph. I have seen it at bicycle races. It always
tries to hide behind weak legs which are clad in $150 riding shorts and wrapped around a
$3000 hi-tech bicycle. It came to my home in the form of an electric nail-gun when we
were adding a room to our house. My wife had to pull the plug early the first morning I
had the gun because I was driving nails into any thing that didn't move - just because I
could do it. The monster appears whenever a new tool is available for an old job. Its
name is Falling-in-love-with-the-tool-and-forgetting-the-job.

Computers and mathematics are especially attractive to the Monster. If your
department is implementing or considering the implementation of compter algebra
systems, say in calculus, differential equations or discrete mathematics, you have met, or
will soon meet, the monster. It manifests itself in the form of faculty and students
becoming emotionally involved with Maple or Mathematica or whatever and forgetting
that the point is mathematics, not pulling the trigger on their software package. As Paul
Halmos said in a recent article [12],

“You push buttons, and things happen instantaneously and spectacularly,
and if that's not what you wanted to know, you can make it go away and
push another button. The reason cats and little children like to play with
ping pong balls is that a tiny effort instantaneously produces a large
result — very satisfying.”

Another of my roles is to stand in the middle of the workroom, early and often in the
program, point at the monster and scream — much in the fashion of an extra in a 50’s
horror movie. I’m proud to say that this summer’s NSF-REU students refer to their

workstations and CAYLEY as their nail-guns.
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Why does it work?

I'm assuming, of course, that this interaction of students, questions and CAYLEY
does work. My definition of ‘work’ is that the mix produces mathematics — examples,
constructions and theorems — not just computer printout. The hard evidence includes five
refereed publication, four papers that are currently being refereed, five papers that are in
preparation, and eighteen talks at local, regional and national meetings.

So, why does it work? In my opinion, it is some complicated interaction among the
following factors.

1. The students are bright and they find the questions inherently interesting.

2. The students work with me not for me.

3. Mathematical calisthenics are eliminated: there is no short course to prepare for
the research problems - the stated prerequisites are for real. The last thing a bright
undergradaute needs is another course which uses mathematical revelation to reinforce
mathematical passivity. Indeed, the Sunday the participants arrive they upack and come
to my house for dinner, thus completing the orientation. After dinner we go to the
workroom where they are introduced to their workstations, our mainframe and CAYLEY.
Within an hour of these introductions they are using CAYLEY as a tool on open
questions - which they met by mail three months earlier.

4. The program is intense: we eat, sleep and breath mathematics for seven weeks.

5. Interaction and collaboration, interaction and collaboration and interaction and
collaboration. A common workroom makes it easy, a research theme encourages and
rewards it and I insist on it. Here is a comment from a participant’s evaluation of the
1990 REU: "I just didn't know that you could actually talk mathematics with people."
This is from a student who was described as “the best we have seen at ‘Prestigious

University’ in the past five years.” That mathematics can be an exciting social activity

13



comes as an appealing, and motivating, revelation to most students. This makes it easier

for me to discourage the me-and-the-problem syndrome, under which most

undergraduates labor, and to encourage an us-and-the-problems attitude, under which

most undergraduates flourish.

6. CAYLEY-play (always as a means and never as an end) converts students into

aggressively adventurous mathematicians.

10.

11.
12.

7. We keep the monster at bay.
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