The Link between Scrambling Numbers and Derangements

Barry Balof
Rose-Hulman Institute of Technology
Eric Farmer
Rose-Hulman Institute of Technology
Jamie Kawabata
Rose-Hulman Institute of Technology

Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Balof, Barry; Farmer, Eric; and Kawabata, Jamie, "The Link between Scrambling Numbers and Derangements" (1997). Mathematical Sciences Technical Reports (MSTR). 70.
https://scholar.rose-hulman.edu/math_mstr/70

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu.

THE LINK BETWEEN SCRAMBLING NUMBERS AND DERANGEMENTS

Barry Balof, Eric Farmer, Jamie Kawabata

MS TR 97-02

May 1997

Department of Mathematics
Rose-Hulman Institute of Technology
Terre Haute, IN 47803

The Link Between Scrambling Numbers and Derangements

Barry Balof, Eric Farmer, Jamie Kawabata *

May 6, 1997

Abstract

The group equation $a b c d e f=d a b e c f$ can be reduced to the equation $x c d e=d x e c$. In general, we are interested in how many variables are needed to represent group equations in which the right side is a permutation of the variables on the left side. Scrambling numbers capture this information about a permutation. In this paper we present several facts about scrambling numbers, and expose a striking relationship between permutations that cannot be reduced and derangements.

The group equation

$$
a b c d e f=d a b e c f
$$

is associated with the permutation $(1,2,3,5,4)(6) \in S_{6}$ in a natural way:

$$
a b c d e f=a b c d e f^{(1,2,3,5,4)(6)} .
$$

In this case the group structure enables us to simplify the equation by cancelling f from both sides and replacing the product $a b$ with its own symbol, say, $a b=x$. Thus the equation $a b c d e f=d a b e c f$, an equation in six variables, becomes

$$
x c d e=d x e c=x c d e^{(1,2,4,3)},
$$

[^0]an equation in four variables with associated permutation $(1,2,4,3) \in S_{4}$. In this example the equation cannot be simplified any further, i.e., the equation cannot be written using fewer than four variables.

Definition 1 The scrambling number of a permutation $\pi \in S_{n}$, denoted $\operatorname{scram}(\pi)$, is the smallest number of symbols needed to represent the n-variable group equation corresponding to π in the natural way.

The scrambling number of the identity permutation, scram(id), is defined to be -1 as a matter of convention.

The number of permutations on n symbols with scrambling number k is denoted by $s_{n, k}$, i.e., $s_{n, k}=\left|\left\{\pi \in S_{n} \mid \operatorname{scram}(\pi)=k\right\}\right|$. As a shorthand notation, we will write s_{n} for $s_{n, n}$.

We record the following facts concerning $s_{n, k}$:

$$
\begin{gather*}
\sum_{i=-1}^{n} s_{n, i}=n! \tag{1}\\
s_{n,-1}=1 \tag{2}\\
s_{n, 0}=s_{n, 1}=0 \tag{3}\\
s_{n, k}=\binom{n+1}{k+1} s_{k, k}, \quad 1<k<n \tag{4}
\end{gather*}
$$

Equations 1, 2, and 3 come directly from the definitions. The recursion formula for $s_{n, k}$ appearing in (4) was established by L. Smithline ([1]), and suggests that permutations on n symbols with scrambling number n are special.

Definition 2 A permutation $\pi \in S_{n}$ is a perfect scrambling if $\operatorname{scram}(\pi)=n$.

Theorem $1 s_{n}=(n-2) s_{n-1}+2(n-1) s_{n-2}+(n-1) s_{n-3}$, for $n \geq 3$.

Proof. Each perfect scrambling on n symbols can be constructed in one way by inserting an nth symbol, say f, into a permutation π on $n-1$ symbols. There are three cases we need to consider:

1. $\operatorname{scram}(\pi)=n-1$ (π is a perfect scrambling). The symbol f can be inserted in any of $n-2$ positions. For example, in baedc, f can be inserted anywhere except at the right end (which would recult in a cancellation) or immediately after the e (which would result in the two-symbol block ef). For this case the number of ways to construct perfect scramblings is $(n-2) s_{n-1}$.
2. $\operatorname{scram}(\pi)=n-2$. There are three ways in which π can have scrambling number $n-2$.
(a) If the first symbol cancels, as in accdb, then f must be inserted at the left end to prevent further cancellation. There are s_{n-2} permutations in which the first symbol cancels, and for each one we can only insert the nth symbol in one way.
(b) If two symbols act as a block, as in daebc, then f must split the block. There are $(n-2) s_{n-2}$ permutations in which two symbols act as a block because there are $n-2$ pairs that can act as a block and then s_{n-2} ways to permute the resulting $n-2$ symbols, and for each such permutation we can only insert the nth symbol in one way.
(c) If the last symbol cancels, as in badce, then f may be inserted anywhere but at the right end. There are s_{n-2} permutations in which the last symbol cancels, and for each one the nth symbol can be inserted in $n-1$ positions; anywhere except the right end.

In this case there are

$$
s_{n-2}+(n-2) s_{n-2}+(n-1) s_{n-2}=2(n-1) s_{n-2}
$$

ways to construct perfect scramblings.
3. $\operatorname{scram}(\pi)=n-3$. In this case, we cannot construct a perfect scrambling unless the last symbol cancels. For example, in $a e c d b$ and ecdab it is impossible to eliminate all cancellation and blocking with the insertion of f. If the last symbol does cancel, as in $\underline{a} d c b e$, dbcae,
and cbade, the nth symbol can be inserted in one way (before the a, between the b and c, and between the d and e, respectively). There are $s_{n-2, n-3}$ permutations in which the last symbol cancels, and for each one we can insert the nth symbol in one way. From (4) we get $s_{n-2, n-3}=(n-1) s_{n-3}$ additional ways to construct perfect scramblings.

Considering these three cases is sufficient because if the scrambling number of π is less then $n-3$ there are multiple pairs of symbols together as blocks or multiple symbols cancelling at the ends, so it is impossible for the insertion of the nth symbol to result in a permutation without any blocking or cancellation.

The total for these three cases is

$$
s_{n}=(n-2) s_{n-1}+2(n-1) s_{n-2}+(n-1) s_{n-3}
$$

We would like to find a closed form formula for s_{n}, and to do this we introduce an equivalent definition of $\operatorname{scram}(\pi)$ in terms of two new objects that will be helpful in computing s_{n}.

Definition 3 For a given n, the set of all permutations $\pi \in S_{n}$ such that $\pi(i)+1=\pi(i+1)$ is called an adjacency preserving set and is denoted A_{i}.

Definition 4 For a given n, the set of all permutations $\pi \in S_{n}$ such that $\pi(i)=i$ is called a point stabilizer and is denoted F_{i}.

A permutation's corresponding equation can be reduced one symbol at a time by, at each step, grouping a pair of symbols into a block or cancelling a symbol. For example, the permutation abe $f c d$ can be reduced to abefx, then abyx, then $w y x$, then $y x$. A grouping of two symbols into a block implies $\pi \in A_{i}$ for some i, and each cancellation implies $\pi \in F_{1} \cup F_{n}$. For example, the reduction of abefcd to abefx implies abefcd $\in A_{3}$, the reduction of abefx to abyx implies abefx $\in A_{5}$,
and so on. The number of steps needed, k, is the number of elements of $\left\{F_{1}, A_{1}, A_{2}, \ldots, A_{n-1}, F_{n}\right\}$ containing π, which is also the difference between n and the scrambling number of the permutation.

FACT 1 The scrambling number of a permutation $\pi \in S_{n}$ is $n-k$, where k is the number of elements of $\left\{F_{1}, A_{1}, A_{2}, \ldots, A_{n-1}, F_{n}\right\}$ containing π.

This fact is our rationale for defining $\operatorname{scram}(i d)$ to be -1 . We also note that

1. A perfect scrambling $\pi \in S_{n}$ is a permutation that does not lie in any of the sets F_{1}, A_{1}, A_{2}, \ldots, A_{n-1}, or F_{n}.
2. $\left|A_{i}\right|=(n-1)$! for $1 \leq i \leq n-1$
3. $\left|F_{i}\right|=(n-1)!$ for $1 \leq i \leq n$
4. The cardinality of the intersection of k of the sets $F_{1}, A_{1}, A_{2}, \ldots, A_{n-1}, F_{n}$ is $(n-k)!$.
5. The cardinality of the intersection of k of the sets $F_{1}, F_{2}, \ldots, F_{n-1}, F_{n}$ is also $(n-k)$!.

These observations tell us that, among other thigs, the sets F_{1} and F_{n} act just like the adjacency preserving sets. On this basis, we define $A_{0}=F_{1}$ and $A_{n}=F_{n}$ to simplify our notation.

FACT 2

$$
\begin{align*}
s_{n} & =n!-\binom{n+1}{1}(n-1)!+\binom{n+1}{2}(n-2)!-\cdots+(-1)^{n+1} \\
& =\sum_{k=0}^{n+1}(-1)^{k}\binom{n+1}{k}(n-k)! \tag{5}
\end{align*}
$$

This fact is a straight forward application of the inclusion-exclusion principle to $A_{0}, A_{1}, \ldots, A_{n}$.
Indeed, by recognizing that the derangements of n symbols are just permutations that do not lie in a ny of $F_{1}, F_{2}, \ldots, F_{n}$, we have a striking similarity between (5) and the closed form for the
number of derangements, d_{n}, on n symbols:

$$
\begin{align*}
d_{n} & =n!-\binom{n}{1}(n-1)!+\binom{n}{2}(n-2)!-\cdots+(-1)^{n} \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \tag{6}
\end{align*}
$$

Theorem $2 s_{n}+s_{n-1}=d_{n}$, for $n>2$.

Proof. From Theorem 1 we know

$$
s_{n}=(n-2) s_{n-1}+2(n-1) s_{n-2}+(n-1) s_{n-3} \text { for } n \geq 3
$$

and by rearranging, we get

$$
s_{n}+s_{n-1}=(n-1)\left(\left(s_{n-1}+s_{n-2}\right)+\left(s_{n-2}+s_{n-3}\right)\right)
$$

which looks like the well-known recursion relation for d_{n},

$$
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right) .
$$

If $s_{k}+s_{k-1}=d_{k}$ for all $k<n$ then we have

$$
s_{n}+s_{n-1}=(n-1)\left(d_{n-1}+d_{n-2}\right)=d_{n} .
$$

This, together with the fact that $s_{2}+s_{1}=d_{2}$ and $s_{3}+s_{2}=d_{3}$ gives us that $s_{n}+s_{n-1}=d_{n}$ for all $n>2$

Another Proof. To show that $s_{n}+s_{n-1}=d_{n}$, we replace each term with the proper closed-form formula to get

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n+1}{k}(n-k)!+\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k}(n-k-1)!=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!.
$$

We then subtract $\sum_{k=0}^{n}(-1)^{k}\binom{n+1}{k}(n-k)$! from both sides of the equation and manipulate the equation to an identity.

$$
\begin{aligned}
\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k}(n-k-1)! & =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!-\sum_{k=0}^{n}(-1)^{k}\binom{n+1}{k}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k}\left(\binom{n}{k}-\binom{n+1}{k}\right)(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k}\left(\binom{n}{k-1}(-1)\right)(n-k)! \\
& =\sum_{k=-1}^{n-1}(-1)^{k+1}\left(\binom{n}{k}(-1)\right)(n-k-1)! \\
& =\sum_{k=-1}^{n-1}(-1)^{k}\binom{n}{k}(n-k-1)! \\
& =\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k}(n-k-1)!
\end{aligned}
$$

With the machinery we have developed so far (the recurrence relation and closed form formula) we know a lot about the distribution of $s_{n, k}$, which is in several ways similar to the distribution of the number of fixed points in a permutation.

Theorem $3 \lim _{n \rightarrow \infty} \frac{s_{n}}{n!}=\frac{1}{e}$

Proof. Obviously $s_{n-1} \leq(n-1)$!, so $\lim _{n \rightarrow \infty} \frac{s_{n-1}}{n!}=0$, and

$$
\lim _{n \rightarrow \infty} \frac{s_{n}}{n!}=\lim _{n \rightarrow \infty} \frac{d_{n}}{n!}-\lim _{n \rightarrow \infty} \frac{s_{n-1}}{n!}=\frac{1}{e}
$$

Theorem 4 For all n, the mean of $\operatorname{scram}(\pi)$ over S_{n} is $n-1-\frac{1}{n}$.

Proof. Define $\chi: S_{n} \times\{0,1, \ldots, n\} \longrightarrow\{0,1\}$ by:

$$
\chi(\pi, i)=\left\{\begin{array}{ll}
1 & \text { if } \pi \in A_{i} \\
0 & \text { otherwise }
\end{array} \text { for } 0 \leq i \leq n\right.
$$

Note that for all $\pi \in S_{n}, \operatorname{scram}(\pi)=n-\sum_{i=0}^{n} \chi(\pi, i)$, so

$$
\begin{aligned}
E(\operatorname{scram}(\pi)) & =\frac{1}{\left|S_{n}\right|} \sum_{\pi \in S_{n}}\left(n-\sum_{i=0}^{n} \chi(\pi, i)\right) \\
& =\frac{1}{n!}\left(n \cdot n!-\sum_{\pi \in S_{n}} \sum_{i=0}^{n} \chi(\pi, i)\right) \\
& =n-\frac{1}{n!} \sum_{\pi \in S_{n}} \sum_{i=0}^{n} \chi(\pi, i) \\
& =n-\frac{1}{n!} \sum_{i=0}^{n} \sum_{\pi \in S_{n}} \chi(\pi, i)
\end{aligned}
$$

and since $\sum_{\pi \in S_{n}} \chi(\pi, i)=\left|A_{i}\right|=(n-1)!$ for $0 \leq i \leq n$, we have

$$
\begin{aligned}
E(\operatorname{scram}(\pi)) & =n-\frac{1}{n!} \sum_{i=0}^{n}(n-1)! \\
& =n-\frac{(n+1)(n-1)!}{n!} \\
& =n-1-\frac{1}{n}
\end{aligned}
$$

Theorem 5 For all n, the variance of $\operatorname{scram}(\pi)$ over all $\pi \in S_{n}$ is $\frac{n+1}{n-1}-\frac{1}{n}-\frac{1}{n^{2}}$

Proof. The variance, σ^{2} is the difference between the mean of the squares and the square of the mean.

$$
\sigma^{2}=\mathrm{E}\left(\operatorname{scram}(\pi)^{2}\right)-\mathrm{E}(\operatorname{scram}(\pi))^{2}
$$

The square of the mean, $\mathrm{E}(\operatorname{scram}(\pi))^{2}$, can be found easily from theorem 4. The mean of the squares, $\mathrm{E}\left(\operatorname{scram}(\pi)^{2}\right)$, can be computed as follows.

$$
\begin{aligned}
\mathrm{E}\left(\operatorname{scram}(\pi)^{2}\right) & =\frac{1}{n!} \sum_{\pi \in S_{n}} \operatorname{scram}(\pi)^{2} \\
& =\frac{1}{n!} \sum_{\pi \in S_{n}}\left(n-\sum_{i=0}^{n} \chi(\pi, i)\right)^{2} \\
& =\frac{1}{n!} \sum_{\pi \in S_{n}}\left(n^{2}-2 n \sum_{i=0}^{n} \chi(\pi, i)+\left(\sum_{i=0}^{n} \chi(\pi, i)\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n!} \sum_{\pi \in S_{n}}\left(n^{2}-2 n \sum_{i=0}^{n} \chi(\pi, i)+\sum_{i=0}^{n} \sum_{j=0}^{n} \chi(\pi, i) \chi(\pi, j)\right) \\
& =\frac{1}{n!}\left(\sum_{\pi \in S_{n}} n^{2}-2 n \sum_{i=0}^{n} \sum_{\pi \in S_{n}} \chi(\pi, i)+\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{\pi \in S_{n}} \chi(\pi, i) \chi(\pi, j)\right) \\
& =\frac{1}{n!}\left(n!n^{2}-2 n(n+1)(n-1)!+\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{\pi \in S_{n}} \chi(\pi, i) \chi(\pi, j)\right) \\
& =\frac{1}{n!}\left(n!n^{2}-2(n+1)!+\sum_{i=0}^{n}\left(\sum_{j \neq i} \sum_{\pi \in S_{n}} \chi(\pi, i) \chi(\pi, j)+\sum_{\pi \in S_{n}} \chi(\pi, i) \chi(\pi, i)\right)\right) \\
& =n^{2}-2(n+1)+\frac{1}{n!} \sum_{i=0}^{n}\left(\sum_{j \neq i}(n-2)!+(n-1)!\right) \\
& =n^{2}-2(n+1)+\frac{1}{n!}(n+1)(n(n-2)!+(n-1)!) \\
& =n^{2}-2 n-2+\frac{n+1}{n-1}+\frac{n+1}{n} \\
& =n^{2}-2 n-1+\frac{n+1}{n-1}+\frac{1}{n}
\end{aligned}
$$

From Theroem 4 we have

$$
\mathrm{E}(\operatorname{scram}(\pi))^{2}=(n-1-1 / n)^{2}=n^{2}-2 n-1+\frac{2}{n}+\frac{1}{n^{2}} .
$$

Putting the two together, we get

$$
\begin{aligned}
\sigma^{2} & =\left(n^{2}-2 n-1+\frac{n+1}{(n-1)}+\frac{1}{n}\right)-\left(n^{2}-2 n-1+\frac{2}{n}+\frac{1}{n^{2}}\right) \\
& =\frac{n+1}{n-1}-\frac{1}{n}-\frac{1}{n^{2}}
\end{aligned}
$$

These strong numerical relationships lead us to believe that there is a relatively simple bijection argument relating the two. The task of finding this bijection would be simpler if we were trying to find a bijection from the derangements to a single structure of the same size rather than to the perfect scramblings on n and $n-1$ symbols. To accomplish this we introduce two new kinds of scramblings which have nice combinatorial properties.

Definition $5 A$ secondary scrambling is an element of S_{n} in which there are no adjacencies and the left endpoint is not fixed.

The number of secondary scramblings in S_{n} is denoted s_{n}^{\prime}, i.e., $s_{n}^{\prime}=\left|S_{n}-A_{0} \cup A_{1} \cup \cdots \cup A_{n-1}\right|$. These permutations may or may not lie in A_{n}.

Definition $6 A$ tertiary scrambling is an element of S_{n} in which there are no adjacencies, though both endpoints may or may not be fixed.

The number of tertiary scramblings in S_{n} is denoted $s_{n}^{\prime \prime}$, i.e., $s_{n}^{\prime \prime}=\left|S_{n}-A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}\right|$. These permutations may lie in A_{0} or A_{n} or both.

Theorem $6 s_{n}^{\prime}=s_{n}+s_{n-1}$ and $s_{n}^{\prime \prime}=s_{n}^{\prime}+s_{n-1}^{\prime}$.

Proof. One can easily construct all secondary scramblings on n symbols from perfect scramblings on n and $n-1$ symbols. All perfect scramblings on n symbols are already near-perfect scramblings on n symbols. The rest of the near-perfect scramblings can be gotten by appending an n-th symbol to a perfect scrambling on $n-1$ symbols.

A similar construction will construct all tertiary scramblings on n symbols from secondary scramblings on n and $n-1$ symbols. The secondary scramblings on n symbols are also tertiary scramblings on n symbols, and the remaining tertiary scramblings can be constructed by prepending a zero-th symbol to a near-perfect scramblings on $n-1$ symbols and renaming all the symbols so they range from 1 to n rather than from 0 to $n-1$.

With this theorem and Theorem 2 we can look for any of three forms of the bijection.

$$
\begin{aligned}
s_{n}+s_{n-1} & =d_{n} \\
s_{n}^{\prime} & =d_{n} \\
s_{n}^{\prime \prime} & =d_{n}+d_{n-1}
\end{aligned}
$$

A bijective proof of any of these three equations would give us a bijective proof of the other two, since Theorem 6 uses a bijective argument and the composition of two bijections is a bijection. Of particular interest is the second equation, $s_{n}^{\prime}=d_{n}$, since the bijection we are looking for is one between two objects of similar structure:

$$
\begin{aligned}
s_{n}^{\prime} & =\left|S_{n}-A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right| \\
d_{n} & =\left|S_{n}-F_{1} \cup F_{2} \cup \cdots \cup F_{n}\right|
\end{aligned}
$$

We will see that indeed, the structure of derangements and secondary scramblings are very similar, and we will be able to use this structural similarity to find a bijection between them.

We are going to look at the combinatorics behind the recursion relation $d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right)$ to find steps to build any derangement from a derangement on fewer symbols. We will then do the same thing with the recursion relation $s_{n}^{\prime}=(n-1)\left(s_{n-1}+s_{n-2}\right)$, finding steps to build any near-perfect scrambling from near-perfect scramblings on fewer symbols. We will see that there is a simple correspondence between the derangement construction steps and near-perfect scrambling construction steps. Our bijection will then consist of decomposing a derangement into a (unique) sequence of derangement construction steps, translating these steps into a sequence of near-perfect scrambling construction steps, and then executing the steps to build the corresponding near-perfect scrambling.

First we consider the combinatorial argument behind the recursion relation $d_{n}=(n-1)\left(d_{n-1}+\right.$ d_{n-2}). We can build a derangement on n symbols from a derangement on $n-1$ symbols by appending an n-th symbol and then swapping it with any of the other $n-1$ symbols. This will yield $(n-1) d_{n-1}$ derangements. The rest of the derangements can be constructed from permutations on $n-1$ symbols with one fixed point by simply appending an n-th symbol and swapping it with the other fixed point. There are exactly $(n-1) d_{n-2}$ permutations on $n-1$ symbols with one fixed point, and any permutation with more than one fixed point cannot be used in this way to build a
derangement.
This gives us the derangement-construction steps we are looking for. We define a function α_{i} to take a derangement on $n-1$ symbols, append an n-th symbol, and then swap it with the i-th symbol. So, for example, $\alpha_{2}(b a d c)=b e d c a$. We can also build a derangement on n symbols from a permutation on $n-1$ symbols with one fixed point, and the permutation on $n-1$ symbols with one fixed point can be in turn built from a derangement on $n-2$ fixed points by fixing the i-th point and applying the derangement on $n-2$ symbols to the rest. We define the function β_{i} to take a derangement on $n-2$ symbols, build a permutaion on $n-1$ symbols with the i-th point fixed, and then building from that a derangement on n symbols. So, for example, $\beta_{3}(b a d c)=b a f e d c$, with baced as the intermediate permutation with one fixed point.

Now we seek to find a similar combinatorial argument behind $s_{n}^{\prime}=(n-1)\left(s_{n-1}^{\prime}+s_{n-2}^{\prime}\right)$. We can build a near-perfect scrambling on n symbols by inserting an n-th symbol into a near-perfect scrambling on $n-1$ symbols. We can insert the n-th symbol anywhere (including the right end) as long as we do not insert it immediately to the right of the $n-1$-st symbol. This gives us $n-1$ places to insert, and a total of $(n-1) s_{n-1}^{\prime}$ near-perfect scramblings that can be built in this way. We can also build near-perfect scramblings from permutations that are not near-perfect scramblings. If the first symbol cancels, or if two symbols are together in a block, we can insert the n-th symbol before the first symbol to prevent cancellation, or between the two symbols to break up the block. It is not hard to see that there are $(n-1) s_{n-2}^{\prime}$ permutations of this kind. Each can be built by taking a near-perfect scrambling on $n-2$ symbols and "unreducing" once, where unreducing consists of inserting a fixed point at the right end or expanding any of the $n-2$ symbols into a block of two symbols. This gives us $n-1$ ways to unreduce any near-perfect scrambling on $n-2$ symbols, accounting for the $(n-1) s_{n-2}^{\prime}$ term in the recursion relation.

With this reasoning behind the recursion relation, it is easy to see what the near-perfect scram-
bling construction steps are going to be. We let the function γ_{i} take a near-perfect scrambling on $n-1$ symbols and insert an n-th symbol in the i-th legal spot, counting from left to right. So, for example, $\gamma_{3}(b d a c)=b d a e c$. Note that the third legal insertion point is the fourth insertion point because e cannot be inserted after d. We can also build a near-perfect scrambling on n symbols from a near-perfect scrambling on $n-2$ symbols by unreducing in one of $n-1$ ways and then inserting the n-th symbol in the single legal spot. We define the function δ_{i} to do just this. δ_{i} takes a near-perfect scrambling on $n-2$ symbols, unreduces it to a permutation on $n-1$ symbols, and then inserts the n-th symbol, where the unreduction depends on i. For $i=1$, a fixed point is inserted at the left end, and for $i>1$, the $i-1$-st symbol (from left to right) is expanded into a block of two symbols. So, for example $\delta_{1}(b d a c)=f a c e b d$, with acebd as the intermediate unreduced permutation. To see another example, $\delta_{3}(b d a c)=b d f e a c$, with $b d e a c$ as the intermediate unreduced permutation.

By observing the natural correspondence between α and γ and between β and δ, we have the bijection we are looking for. Simply take a derangement, such as ecdab, decompose it into its unique sequence of steps, in this case $\alpha_{1}\left(\alpha_{3}\left(\alpha_{2}(b a)\right)\right)$, translate the steps into the corresponding steps for near-perfect scramblings, which are $\gamma_{1}\left(\gamma_{3}\left(\gamma_{2}(b a)\right)\right)$, and then execute the near-perfect scrambling construction steps, which in this case yield the near-perfect scrambling ebadc. The other direction of the bijection works in exactly the same way.

References

[1] L. Smithline Rewritability, Commutators, and Fundamental n-rewritings.

[^0]: *Authors supported by NSF grant DMS-9322338

