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The Link Between Scrambling Numbers and Derangements

Barry Balof, Eric Farmer, Jamie Kawabata *

May 6, 1997

Abstract

The group equation abedef = dabecf can be reduced to the equation zrede = dzec. In
general, we are interested in how many variables are needed to represent group equations in
which the right side is a permutation of the variables on the left side. Scrambling numbers
capture this information about a permutation. In this paper we present several facts about
scrambling numbers, and expose a striking relationship between permutations that cannot be

reduced and derangements.

The group equation

abedef = dabec],

is associated with the permutation (1,2,3,5,4)(6) € S in a natural way:
abedef = abede f(1:2:3:54)(6)

In this case the group structure enables us to simplify the equation by cancelling f from both sides
and replacing the product ab with its own symbol, say, ab = z. Thus the equation abedef = dabecf,

an equation in six variables, becomes

rede = dzrec = $Cde(1’2'4’3)’

*Authors supported by NSF grant DMS-9322338



an equation in four variables with associated permutation (1,2,4,3) € S;. In this example the
equation cannot be simplified any further, i.e., the equation cannot be written using fewer than

four variables.

Definition 1 The scrambling number of a permutation © € S,,, denoted scram(w), 1s the small-
est number of symbols needed to represent the n-variable group equation corresponding to m in the

natural way.

The scrambling number of the identity permutation, scram(id), is defined to be -1 as a matter
of convention.

The number of permutations on n symbols with scrambling number k is denoted by Sp ks 1€,
$nk = |{m € Sp|scram(7) = k}|. As a shorthand notation, we will write s, for s, .

We record the following facts concerning s, x:

Z Spi =nl (1)

Snv—l = 1 (2)
Sn,0 = 8p,1 =0 (3)
n+1
Spk = (k-{— 1>3k,k7 l<k<n (4)

Equations 1, 2, and 3 come directly from the definitions. The recursion formula for s, ; appearing
in (4) was established by L. Smithline ([1]), and suggests that permutations on n symbols with

scrambling number n are special.
Definition 2 A permutation m € S, is a perfect scrambling if scram(7) = n.
THEOREM 1 s, = (n—2)sp—1 +2(n— 1)sp—2 + (n — 1)s,_3, for n > 3.

Proof. Each perfect scrambling on n symbols can be constructed in one way by inserting an nth

symbol, say f, into a permutation 7 on n — 1 symbols. There are three cases we need to consider:
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1. scram(n) = n — 1 (7 is a perfect scrambling). The symbol f can be inserted in any of
n — 2 positions. For example, in baedc, f can be inserted anywhere except at the right end
(which would recult in a cancellation) or immediately after the e (which would result in the
two-symbol block ef). For this case the number of ways to construct perfect scramblings is

(n—2)sp—1.

2. scram(w) = n — 2. There are three ways in which 7 can have scrambling number n — 2.

(a) If the first symbol cancels, as in acedb, then f must be inserted at the left end to prevent
further cancellation. There are s,_9 permutations in which the first symbol cancels, and

for each one we can only insert the nth symbol in one way.

(b) If two symbols act as a block, as in daebe, then f must split the block. There are
(n — 2)s,_92 permutations in which two symbols act as a block because there are n — 2
pairs that can act as a block and then s,_o ways to permute the resulting n — 2 symbols,

and for each such permutation we can only insert the nth symbol in one way.

(c) If the last symbol cancels, as in badce, then f may be inserted anywhere but at the right
end. There are s,_9 permutations in which the last symbol cancels, and for each one

the nth symbol can be inserted in n — 1 positions; anywhere except the right end.

In this case there are

Sn-2+ (n—2)sp_2+ (n—1)s,-2=2(n — 1)sp—2

ways to construct perfect scramblings.

3. scram(m) = n — 3. In this case, we cannot construct a perfect scrambling unless the last
symbol cancels. For example, in aecdb and ecdab it is impossible to eliminate all cancellation

and blocking with the insertion of f. If the last symbol does cancel, as in adche, dbcae,
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and cbade, the nth symbol can be inserted in one way (before the a, between the b and ¢,
and between the d and e, respectively). There are s,_2,-3 permutations in which the last
symbol cancels, and for each one we can insert the nth symbol in one way. From (4) we get

Sp—2,n—-3 = (n — 1)s,_3 additional ways to construct perfect scramblings.

Considering these three cases is sufficient because if the scrambling number of 7 is less then n — 3
there are multiple pairs of symbols together as blocks or multiple symbols cancelling at the ends, so
it is impossible for the insertion of the nth symbol to result in a permutation without any blocking
or cancellation.

The total for these three cases is

sp=(n=2)sp1+2(n—1)sp_2+ (n—1)sp—3. O

We would like to find a closed form formula for s,, and to do this we introduce an equivalent

definition of scram(7) in terms of two new objects that will be helpful in computing s,,.

Definition 3 For a given n, the set of all permutations m € S, such that 7(i) +1 = =n(i + 1) is

called an adjacency preserving set and is denoted A;.

Definition 4 For a given n, the set of all permutations © € S, such that w(i) = i is called a point

stabilizer and is denoted F;.

A permutation’s corresponding equation can be reduced one symbol at a time by, at each step,
grouping a pair of symbols into a block or cancelling a symbol. For example, the permutation abe fcd
can be reduced to abefx, then abyz, then wyz, then yz. A grouping of two symbols into a block
implies # € A; for some 7, and each cancellation implies 7 € F} U F,,. For example, the reduction

of abefcd to abefr implies abefcd € Ajz, the reduction of abefz to abyz implies abefz € As,
4



and so on. The number of steps needed, k, is the number of elements of {F}, A1, Ag, ..., An_1, Fi}

containing w, which is also the difference between n and the scrambling number of the permutation.

Fact 1 The scrambling number of a permutationn € S,, isn—k, where k 1s the number of elements

of {Fi, A1, As, ..., Ay_1, Fp} containing =.

This fact is our rationale for defining scram(id) to be —1. We also note that

1. A perfect scrambling # € S, is a permutation that does not lie in any of the sets F}, 4j,

Ao, ... Ap_q, Oor Fy.

2. J4l=n-Dlfor1<i<n-1

3 |F|=n—-1for1<i<n

4. The cardinality of the intersection of k of the sets Fy, Ay, Ao, ..., Ay—1, Fp is (n — k)L

5. The cardinality of the intersection of k of the sets Fy, Fb, ..., F,_1, F, is also (n — k).

These observations tell us that, among other thigs, the sets F| and F,, act just like the adjacency

preserving sets. On this basis, we define Ag = F} and A, = F,, to simplify our notation.

Facr 2
1 1
o (RT )(n—1>!+ <n;r )<n—2>!—-‘-+<—1)"+1
n+41
1
= Z(—l)’“(”',f )(n—k)! (5)
k=0 ’
This fact is a straight forward application of the inclusion-exclusion principle to Ag, A1, ..., 4,.

Indeed, by recognizing that the derangements of n symbols are just permutations that do not

lie in a ny of F1, Fy, ..., F,, we have a striking similarity between (5) and the closed form for the

[y}



number of derangements, d,, on n symbols:

dy = nl- (T)(n—l)!-{— (Z)(n—2)!—----+(—1)"

f(-—l)k(’;) (n - b )
k=0

Il

THEOREM 2 s, + Sp—1 = dy, forn > 2.
Proof. From Theorem 1 we know
sp=(n—2)sp1+2(n—1)sy_2+ (n—1)s,_3 for n > 3,
and by rearranging, we get
Sp + Sn—1 = (n — 1)((sn-1 + $n—2) + (Sn—2 + 5,—3))
which looks like the well-known recursion relation for d,,
dn = (n — 1)(dn-1 +dn_2).
If sg + sgp—1 = dj for all £ < n then we have
$nt+ Sp—1 = (n = 1)(dpn-1 +dp_2) = d,.

This, together with the fact that s + s; = dy and s3 + s = d3 gives us that s, + s,_; = d,, for

alln>2 0O

Another Proof. To show that s, + 5,1 = d,,, we replace each term with the proper closed-form

formula to get

n n—1 n
Z(—nk(nz 1) (n— k)l + Z(—nk(:) (n—k—1)l= 3 (~1)* (Z) (n— k).
k=0

k=0 k=0



We then subtract Z}::O(—l)k("z]) (n — k)! from both sides of the equation and manipulate the

equation to an identity.
n—1 n n
Z(—nk(@ (n—k-1) = S (-1t (Z) (n—k) =S (-1 (”: 1) (n — k)!
k=0 k=0 k=0

- Eor(O)-() e

= S (-1 ((k " 1) (—1)) (n— k)!

k=0
n—1
= k;l(—l)’“rl ((k) (-1)) (n—k—1)!
n—1
= ST (-t (:) (n—k—1)!
k=—1

n—1
= Z(-—l)k(:) (n—k-1! O
k=0

With the machinery we have developed so far (the recurrence relation and closed form formula)
we know a lot about the distribution of s, j, which is in several ways similar to the distribution of

the number of fixed points in a permutation.

THEOREM 3 lim, e & = 1

S
T

Proof. Obviously s,—1 < (n — 1)}, so lim,_,o 27+ = 0, and

THEOREM 4 For all n, the mean of scram(w) over S, isn —1 — %—

Proof. Define x : S, x {0,1,...,n} — {0,1} by:

1 ifre A
x(m, 1) = for0<i<n

0 otherwise
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Note that for all 7 € S,, scram(w) =n — Y7 x(7,7), so

1 n

E(scram(m)) = N Z (n-—Zx(ﬂ’,i))
n TESy =0
- %—(n-n!— S5 x(m, i)
’ €S, i=0
= n-— 3 Y ximi)
eSS, 1=0
1 & ,
= n—mz Z x(7,1)
" i=0 7€Sa

and since 3, ¢ x(7,¢) = |4;] = (n —1)! for 0 <7 < n, we have

E(scram(7m)) = n~— %zz:(:)(n - 1!

" (n+1)(n-—1)!

n!

1
= n—-1-= 0O
n

2 f

THEOREM 5 For all n, the variance of scram(n) over all m € S, is % — ;12-

Proof. The variance, o2 is the difference between the mean of the squares and the square of the
mean.
o? = E(scram(n)?) — E(scram(r))?
The square of the mean, E(scram(7))2, can be found easily from theorem 4. The mean of the

squares, E(scram(7)?), can be computed as follows.

E(scram(r)?) = ] Z scram(m)?
" mESy
1 n 2
_ L1y (n—Zx(mi))
" wESn 1=0
n n 2
= 7—117 Z (nQ—QnZX(W,i)-}- (Zx(w,i)) >
" wESn i=0 i=(
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i=0

" 7ESa i=0j=0

TESn i=0 1€5, i=0 j=0 €S,

= 1 (n!nz—-?n(n+1)(n— 1)!+ZZ Z X(ﬂ’,i)X(W,j))

i=0 j=0 7€5n

= ;11—, (nln? —2n+ 1)+ (Z Y x(mdx(m i)+ Y x(mi)x(mi)))

i=0 \ j#ireS, TESy
1 n
= n2—2(n+1)+;l—!;) z;(n-Z)!+(n—1)!
1= J71

= n?—2n+1)+ %(n+ Dnn-2)1+ (n—1)!)

1
= n2—2n—2+n+1+n+
n—1 7
1 1
= n2—2n—1+n+ + -
n—1 n

From Theroem 4 we have

1

2
E(s P=(n-1-1/n)2=n"-2n~1+ =+ —.
(scram(m))® = (n /n)=mn n + ~ + —

Putting the two together, we get

n+1

2
= —2n—1
o (n n +(n—1)

1 2 1
)P =2n—14 =4+ =)
n 7 n<

These strong numerical relationships lead us to believe that there is a relatively simple bijection
argument relating the two. The task of finding this bijection would be simpler if we were trying
to find a bijection from the derangements to a single structure of the same size rather than to the
perfect scramblings on n and n — 1 symbols. To accomplish this we introduce two new kinds of

scramblings which have nice combinatorial properties.
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Definition 5 A secondary scrambling is an element of S, in which there are no adjacencies

and the left endpoint is not fized.

The number of secondary scramblings in S, is denoted s, i.e., s), = |S, — AgUA 1 U---U4,_4|.

These permutations may or may not lie in A,,.

Definition 6 A tertiary scrambling is an element of S, in which there are no adjacencies,

though both endpoints may or may not be fized.

The number of tertiary scramblings in S, is denoted s/, i.e., s/l =|S,, — 4, UA, U --UA,_].

These permutations may lie in Ay or A,, or both.

THEOREM 6 s, = s, + s,_1 and s/ = s/ +s_|.

Proof. One can easily construct all secondary scramblings on n symbols from perfect scramblings
on n and n —1 symbols. All perfect scramblings on n symbols are already near-perfect scramblings
on n symbols. The rest of the near-perfect scramblings can be gotten by appending an n-th symbol
to a perfect scrambling on n — 1 symbols.

A similar construction will construct all tertiary scramblings on n symbols from secondary
scramblings on n and n — 1 symbols. The secondary scramblings on n symbols are also tertiary
scramblings on n symbols, and the remaining tertiary scramblings can be constructed by prepending
a zero-th symbol to a near-perfect scramblings on n — 1 symbols and renaming all the symbols so

they range from 1 to n rather than from 0 ton —1. O

With this theorem and Theorem 2 we can look for any of three forms of the bijection.

Sp+sp-1 = dy



A bijective proof of any of these three equations would give us a bijective proof of the other two,
since Theorem 6 uses a bijective argument and the composition of two bijections is a bijection. Of
particular interest is the second equation, s, = d,,, since the bijection we are looking for is one

between two objects of similar structure:
s o= |Sp — A1 U AU --- U Ay
d, = |Sp—FiUFU---UF,]

We will see that indeed, the structure of derangements and secondary scramblings are very similar,
and we will be able to use this structural similarity to find a bijection between them.

We are going to look at the combinatorics behind the recursion relation d,, = (n—1)(dp-1+d,,_2)
to find steps to build any derangement from a derangement on fewer symbols. We will then do
the same thing with the recursion relation s), = (n — 1)(s,—1 + sp—2), finding steps to build any
near-perfect scrambling from near-perfect scramblings on fewer symbols. We will see that there is
a simple correspondence between the derangement construction steps and near-perfect scrambling
construction steps. Our bijection will then consist of decomposing a derangement into a (unique)
sequence of derangement construction steps, translating these steps into a sequence of near-perfect
scrambling construction steps, and then executing the steps to build the corresponding near-perfect
scrambling.

First we consider the combinatorial argument behind the recursion relation d,, = (n—1)(d,_1+
dp—2). We can build a derangement on n symbols from a derangement on n — 1 symbols by
appending an n-th symbol and then swapping it with any of the other n — 1 symbols. This will
yield (n—1)d, | derangements. The rest of the derangements can be constructed from permutations
on n — 1 symbols with one fixed point by simply appending an n-th symbol and swapping it with
the other fixed point. There are exactly (n — 1)d,,—o permutations on n — 1 symbols with one fixed

point, and any permutation with more than one fixed point cannot be used in this way to build a
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derangement.

This gives us the derangement-construction steps we are looking for. We define a function o
to take a derangement on n — 1 symbols, append an n-th symbol, and then swap it with the ¢-th
symbol. So, for example, aa(badc) = bedca. We can also build a derangement on n symbols from a
permutation on n—1 symbols with one fixed point, and the permutation on n—1 symbols with one
fixed point can be in turn built from a derangement on n — 2 fixed points by fixing the i-th point
and applying the derangement on n — 2 symbols to the rest. We define the function f; to take a
derangement on n — 2 symbols, build a permutaion on n — 1 symbols with the i-th point fixed, and
then building from that a derangement on n symbols. So, for example, 33(badc) = bafedc, with
baced as the intermediate permutation with one fixed point.

Now we seek to find a similar combinatorial argument behind s, = (n — 1)(s),_; + s, _,). We
can build a near-perfect scrambling on n symbols by inserting an n-th symbol into a near-perfect
scrambling on n — 1 symbols. We can insert the n-th symbol anywhere (including the right end) as
long as we do not insert it immediately to the right of the n — 1-st symbol. This gives us n—1 places
to insert, and a total of (n — 1)s],_; near-perfect scramblings that can be built in this way. We can
also build near-perfect scramblings from permutations that are not near-perfect scramblings. If the
first symbol cancels, or if two symbols are together in a block, we can insert the n-th symbol before
the first symbol to prevent cancellation, or between the two symbols to break up the block. It is
not hard to see that there are (n — 1)s/,_, permutations of this kind. Each can be built by taking
a near-perfect scrambling on n — 2 symbols and "unreducing” once, where unreducing consists of
inserting a fixed point at the right end or expanding any of the n — 2 symbols into a block of two
symbols. This gives us n — 1 ways to unreduce any near-perfect scrambling on n — 2 symbols,
accounting for the (n — 1)s/,_, term in the recursion relation.

With this reasoning behind the recursion relation, it is easy to see what the near-perfect scram-
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bling construction steps are going to be. We let the function v; take a near-perfect scrambling on
n — 1 symbols and insert an n-th symbol in the i-th legal spot, counting from left to right. So, for
example, y3(bdac) = bdaec. Note that the third legal insertion point is the fourth insertion point
because e cannot be inserted after d. We can also build a near-perfect scrambling on n symbols
from a near-perfect scrambling on n — 2 symbols by unreducing in one of n — 1 ways and then
inserting the n-th symbol in the single legal spot. We define the function §; to do just this. §;
takes a near-perfect scrambling on n — 2 symbols, unreduces it to a permutation on n — 1 symbols,
and then inserts the n-th symbol, where the unreduction depends on 4. For ¢ = 1, a fixed point is
inserted at the left end, and for ¢ > 1, the 7 — 1-st symbol (from left to right) is expanded into a
block of two symbols. So, for example §; (bdac) = facebd, with acebd as the intermediate unreduced
permutation. To see another example, §3(bdac) = bdfeac, with bdeac as the intermediate unreduced
permutation.

By observing the natural correspondence between o and v and between 8 and §, we have the
bijection we are looking for. Simply take a derangement, such as ecdab, decompose it into its unique
sequence of steps, in this case aj(ag(az(ba))), translate the steps into the corresponding steps for
near-perfect scramblings, which are 1 (y3(7y2(ba))), and then execute the near-perfect scrambling
construction steps, which in this case yield the near-perfect scrambling ebadc. The other direction

of the bijection works in exactly the same way.
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