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Population Genetics: Estimation of
Distributions Through Systems of

Non-linear Differential Equations
Nacer E. Abrouk and Robert J. Lopez *

Introduction

In stochastic population genetics, the fundamental quantity used for describing the genetic composi-
tion of a Mendelian population is the gene frequency. The process of change in the gene frequency
is generally modeled as a stochastic process [1] satisfying the stochastic differential equation dY; =
a(Y:)dt + o(Y:)dB,. The coefficients involved in this equation (the drift a and the diffusion o) reflect
such mechanisms as mutation, selection, and migration that affect the population. Except in very simple
cases, it is difficult to determine the probability law of the stochastic process of change in gene frequency
Y:. Hence, numerically approximating the probability law of Y3, for ¢ > 0, is an important task. We
shall present a method for obtaining such approximations, enabling us to study models more realistic
than those treated previously. Called the Gauss Galerkin method for its combining of elements of Gauss
quadratures and Galerkin approximation, this method was originally proposed by Dawson [2] and then
refined by HajJafar [3] and by Abrouk [4]. A Maple implementation of this Gauss Galerkin method is
illustrated in this article.

Formulation

Let us assume that a pair of alleles A and a are segregating in a population of large size. By “allele” we
mean a form of a gene to which is ascribed the role of transmitting an inherited characteristic. We shall
assume that the process of change in gene frequency satisfies a stochastic initial value problem of the
form:

dY, = a(¥:)dt+ o(Y;)dBy, (1)
Yo = X, @)

where X is a given random variable, B, is the standard Brownian motion, and the coefficients a and &
satisfy the standard conditions for the existence and uniqueness of the solution. For more details see [5].

We shall assume a(z) = sz(1 — z)(h + (1 — 2h)z) — uz + v(1 — ) and o(z) = /z(1 - 2)/2,
where s, u, v, and h are given parameters. By applying Ito’s formula (see Ethier and Kurtz [5]) to Eq.
(1) we get

1
dd(Y)) = (a(¥)¢'(%:) + 0% (V)¢ (Yo))dt + o(Y:)dBy, ®3)
where ¢ € C?(R). Eq. (3) is equivalent (by the definition of stochastic integrals) to

M) - o%) = [(@r)#E) + jAES mNs + [ oW)iB. @
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We specialize Eq. (4) to the function ¢, (y) = y*, where k € N, to obtain
() - (o) = /0 (YR + %k(k — 1) (Y.)(Ya)*2)ds + /0 ‘o(Y.)dB,. ()
Taking the expected value of both sides of Eq. (5), and then using Fubini’s theorem, we get
B - B = [ BlalRE) + Skt - D)AT)EF s, ©)

where E(f5 o(Y,)dB,) = 0, since f{ o(Y,)dB, is a martingale with respect to the natural filtration. By
differentiating both sides of Eq. (6) with respect to £, we obtain

DB = Bl(a(¥ok(T)*" + Lk(k — Do (X) (X)) Q

Combining Eqgs. (7) and (2) yields the following infinite system of ordinary differential equations

d_f‘%t_) = (vk + ) Mi_y () + (k(sh — u — v) — 6 ) Mi(2)
+8(1 - 3h)kMk+1(t) - 8(1 - 2h)kMk+2(t), (8)
M(0) = E(X), | ©)

where E is the expected value and 8, = k(k—1)/4,fork = 0,1,2,..., etc., and My(¢) is the k** moment
of therandom variable Y;, defined by M (t) = E(Y{*) = [ y*dF,(y), and F, is the distribution function
corresponding to Y;.

When s = 0, Egs. (1) and (2) admit a unique solution given by

t
Mk(t) — [Mk(O) + (kv + 9k)-/0 Mk_l(n)e("“+"”+‘9"+”‘)”dn]e'(k“+k”+9*+‘h)t.

When s # 0, system (1) and (2) form an “open hierarchy” in which the differential equation for
M;, contains terms involving M;; and/or M,,. Various truncation schemes have been proposed to
approximate the solution of system (8) and (9). We shall illustrate the Gauss Galerkin scheme for this
model when s = 2, b = 0.5, and v = v = 0. This corresponds to the case where selection occurs
(s = 2) but there is no mutation or migration (u = v = 0). We fix a positive integer n and then retain
the first 2n equations of system (8) and (9). The resulting finite system is then

dﬂ/gj‘,(t) Ok Mi—1(t) + (k — O ) Mi(t) — kMis1(2), (10
Mi(0) = E(&), (th

fork =0,1,2,...,2n — 1. Note that the system given in (10) and (11) involves the 2n + 1 unknowns
Mg, My, ..., M,,, but has only 2n equations. One possible closure of this system can be achieved by
imposing the condition A,, = 0 where A,, is the Hankel determinant

My My .. M,
A —det| M Mo Mo
M, Muy .. M,
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Figure 1: Gauss Galerkln Approxlimatlon

Homsat e

Set A, = 0, and solve for M»,, in terms of My, My, ..., My, _1, assuming that A,,_; # 0. The mo-
ment Ma, is then a rational function ®(Mpy, My, ..., Mj,_1). In the last equation given in (5), replace
M,,, by & to obtain

M (8) = (6k) Mie-1(2) + (k — 0) Mi(t) — kMie1(2), (0 < k < 20— 2), (12)
Mén—l(t) = oznazMgn_g(t) + (271 -1- 02,,_1)M2n_1(t) - (2n - 1)@. (13)

For example, if n = 3, the function ¢ would be

—M2M5 + 2M3M4M5 - M4 + M1M5 - 2M1M3M5 - 2M1M4M2M5
(My My — MZ = MZM, + 2M, MM, — M3)
2M; My M2 + 2M2M; M
(M; My — M2 — M2M, + 2M; MM, — M3)
MZEM? — 3M M M2 + M%)
(M; My — M2 — MM, + 2M; MM, — M3)

Using the initial conditions M (0) = 7;% fork =0,1,2,...,5, we solve the closed system given
in (12) and (13) using a fourth-order Runge-Kutta numeric integration. The code for this integration
technique was implemented in Maple by Dan Schwalbe and appears in the ODE file in the Maple Share
Library. This uses Maple’s evalhf option to by-pass floating point emulation in favor of direct access
to the computing platform’s own hardware floating point processor. Maple code that effects this strategy
can be found in Appendix A.

Fig. 1 displays Maple graphs of the numerically computed solutions for {Mg,1 < k < 5} (since
Mpy(t) = 1, Vt). From the results on which these graphs are based, the probability law of the random
variable Yy, for ¢ > 0, can then be approximated by a discrete probability measure p,,(t) as follows.

The numerical approximation to the solution of the closed system given in (12) and (13) is denoted
by the 2n functions {m(t), 0 < k < 2n — 1}. Assuming these 2n functions are the first 2n moments
of a discrete measure (with nodes {zx(t), 1 < k < n} and weights {w(t), 1 < k < n}) defined on the
interval [0, 1], then

s L

+

+

m(t) = En:wj(t)(zj(t))k, 0<k<2n-1
i=1
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Since the approximating functions {m(t), 0 < k < 2n — 1} are known (at all mesh points), the
nodes {zx(t), 1 < k < n} and the weights {w(t), 1 < k < n} can be found (at mesh points) using the
numerical algorithm described in the next section.

The Discrete Measure

Our numerical algorithm for finding the nodes and the weights of the Gauss Galerkin measure p,(t) is
based on the relationship between the orthogonal polynomials associated with the approximating mea-
sure p,(t) and its moments. The nodes {z(t), 1 < k < n} and the weights {w(t),1 < k < n} are
related to the following real symmetric tridiagonal matrix

81 72

Jn(t) - T2 62

in such a way that the nodes {z;(n,t),1 < ¢ < n} are the eigenvalues of J,(t) and {w;(n,t),1 < i < n}
are the squares of the first components of the normalized eigenvectors. The coefficients §;, and v;, for
1 < j £ n, are determined by a three-term recurrence for the orthogonal polynomials corresponding
to the discrete measure whose nodes and weights are {zx(t), 1 < k < n} and {wi(t),1 < k < n},
respectively. Thus, we define

pg(z,t) = 1, (14)
zpi(z,t) = 7i(t)piv1(z,t) + 8:i(t)pi(z, t) + Yi-1pi-1(2, ), (15)
(zpiy pi)
6(t) = s 16
®) (PiaPi) (16)
2 = [0 ifi=0, 1
71'( ) - fgi(-tpll‘:pgg:lk if¢ Z 1’ ( 7)

where p_1(z,t) = 0, and (, ) denotes the inner product with respect to ;. For more details see [6]. Note
that po(2,t) = mo(t). Foreachi = 1,...,n, Egs. (16) and (17) are used to obtain §; and 4; before
Eq. (15) is used to obtain p;;,. Although these computations are easily carried out in Maple, there is a
more sophisticated approach which avoids the computation of the orthogonal polynomials themselves.
A careful examination of Egs. (16) and (17) shows that the inner products on the right hand sides can be
expressed in terms of the moments {m(t),0 < k < 2n — 1} computed in (12) and (13). For example,
with pg = 1, we have
(z,1

u(t) = (ng = [ edstt,) =m0

and
T = 0.

For z = 1 we have

82(t) = (zp1p1) Jo 2(z — m1)*dps(t, ) _ ma(t) — 2m(H)ma(t) + mi(t)
(p1,p1) ma(t) — m(t) ma(t) — m3(t)
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and

73(t) = Oa:Il);) B /ol(pl("”t))zdm(t"”) = _/01(” — 61)%dps(t, z) =

./:(a: —my ) dps(t, z) = ‘/:(a:2 ~ 2emy + mi)dps(t, z) = ma(t) — mi(2).

In fact, it can be shown [7] that for j = 1,2,...,n

T;.1 T,
5=t - 3 (18)
and
7,=-———————VZAJ:1 5, (19)
where
mg ™My .. my
Aj=det| ™ T2 TR o001, 0, 20)
m; Mjip1 .. Myj
and
Mo My .. Mjim1 My
Tj=det| ™ ™2 o M M2 s n Q1)
m; Mmjp M2j-1 M2j41

It is enlightening to see that Egs. (18)-(21) do, indeed, reproduce the results of (14)-(17). For ex-
ample,

md — m2 ml
62=——2—m1
m2 — ml

\/m2 m4 — m8% — m1*m4 + 2mi m2 m3 — m23

m2 — ml1?

Y2

Figs. 2a and 2b illustrate the approximate discrete probability measures generated by the matrix
Ja(t) for the case n = 3,¢t = 0 and 2, respectively. Fig. 2c is a display of the approximate discrete
probability measure for n = 3 and ¢t = 5. In fact, the Maple algorithm in Appendix B produces

" 0.5000000000000000 0.2886751345 0 T

0.2886751345
i 0
[ 0.6984717770468650
0.4002726089
0

0.5000000000
0.2581988946
0.4002726089
0.3428786100
0.2028781506

0.2581988946
0.499999935
0

0.2028781506
0.565164891
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Flgure 2a: Probablllty Mass Function, t []
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and

0.7662097131759597 0.4141285269
0.4141285269

0

0.2429148098 0.08808826738

0.08808826738

for the matrices J5(0), J3(2), J3(5), respectively.
This means the nodes {z;(3,t),1 < ¢ < n} are

0

0.580974766

Table 1: APPROXIMATE NODES

t

31(3,t)

$2(3,t)

23(3,t)

0.00
2.00
5.00

0.8872983174
0.9897888905
0.5869400430

0.4999999403
0.5891990080
0.0043482704

0.1127016343
0.0275273214
0.9988105883

and the corresponding weights {w;(3,t),1 < ¢ < n} are, respectively

Table 2: APPROXIMATE WEIGHTS

t

21(3,t)

$2(3,t)

Z3(3,t)

0.00
2.00
5.00

0.2777777419
0.6058389860
0.7521699229

0.2777778045
0.1566197371
0.0237847312

0.4444444545
0.2375412774
0.2240453461

Moreover, we can verify that

mat) = 3 wi(3, £)(z:(3, £))*

=1

holds for each m(t) (k = 0,1,2,...,5) computed via Appendix A.

Figs. 2a, 2b and 2c are plots of the approximating discrete probability measure (with three nodes and
three corresponding weights) at different values of time ¢. Fig. 2a corresponds to t = 0, the initial state.
Note the unimodal shape of the discrete measure. Fig. 2b corresponds to ¢ = 2, an intermediate state of
the dynamical behavior of the gene frequency Y;. This plot indicates that the discrete measure evolved to
abimodal shape. Fig. 2c displays the discrete measure close to steady state att = 5. Approximately 25%
of the mass accumulated at 0 and 75% accumulated at 1. This steady state behavior, which is important in
population genetics research, often cannot be obtained when using classical methods such as numerical
schemes based on a discretization of the Fokker-Planck equation. For this reason the Gauss Galerkin
method is a valuable advance in the analysis of population genetics models.

We have illustrated a method for analyzing a class of genetic population models. In particular, we
have solved one particular model of this family and represented its solution graphically. We close by
relating our computed results to the physical system described by this model. The model contained in the
differential equation (1) tracks the evolution of the alleles A and a in a population assumed to undergo
no migration or mutation (v = v = 0). The parameter s measures “selection,” which is roughly the
propensity for one allele to gain ascendancy over the other. Our choice of s = 2 and h = 1/2 means
that the uniformity encountered in the Mendelian “smooth pea, wrinkled pea” experiments of elementary
biology is not present. Moreover, our model does not track genotypes. It merely tracks the presence of
the alleles wherever they may be found. Consequently, when we find the limiting distribution to have
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the nodes 0 and 1, with corresponding weights .25 and .75, we have discovered that allele A will either
disappear entirely (with probability .25) or completely dominate (with probability .75). We leave it to
the reader to explore the case s = 0 (withu = v = 0) to see that then the uniformity of elementary
biology is recovered.
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APPENDIX A

# access ODE code from Share Library and load linear algebra package
with(share):

readshare (ODE, plots) :

with(linalg):

initializations
:=3:
:=2*%n-1:
0:=1:

define variables for the moments in Egs. 12 and 13
:=seq(M.j,j=1..L):

N #H RS

form the determinant Delta(n) just before Eg. 12
i=matrix(n+l,n+1, (i,3)->M.(i+3j-2)):
dd:=det (d) :

o 2

# obtain M(2n) in terms of M(0), M(1l),..., M(2n-1)
M. (2*n) :=solve(dd, M. (2*n) ) :

VVVVVVVVVVVVVVVYVVVVYVYV

# form five differential equations for the M’s as in Egs. 12 and 13
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for k to L do e.k:=(1/4)*k*(k-1)*(M. (k-1)-M.k)+k* (M.k-M. (k+1)) od:

# convert differential equations to functional form
for k to L do g.k:=unapply(e.k,t,2z) od:

numeric solution by ODE code
:=rungekuttahf ([seq(qg.j,j=1..L)1, [0, seq(l/(j+1),j=1..L)],1/20,151):

# 2o

extract numeric values for plotting
for j to L do sol.j:=makelist(N,1,j+1) od:

# create Fig. 1

with(plots):

fl:=plot({sol.(1..L)}, "t£’=0..151/20,color=black,axes=boxed) :
f2:=textplot ({1, .75, ‘Moments']):

display([f2,£f1],title="Figure 1: Gauss Galerkin Approximation‘);

VVVVVVVVVVVVVVVYV

APPENDIX B

The following code for generating all quantities needed for Figs. 2a, 2b and 2¢ presupposes that the
definitions established in Appendix A are still operative.

# form Delta(k) of Eg. 20
for k from 0 to n+l1 do D.k:=matrix(k+1,k+1, (i,3j)->M. (i+j-2)) od:
for k from 0 to n do Delta.k:=det(D.k) od:

v

# form V(k), the matrices in Eg. 21
for k from 0 to n do V.k:=minoxr(D. (k+1),k+2,k+1) od:

# form the Gamma(k), the determinants in Eq. 21
for k from 0 to n do Gamma.k:=det(V.k) od:
Gamma. (-1) :=0:

Delta.(-1):=1:

Gamma. (0) :=M.1:

# form the delta(k) of Eg. 18
for k to n do delta.k:=(Gamma.(k-1)/Delta.(k-1))-(Gamma. (k-2)/Delta. (k-2))
od:

# form the gamma(k) of Eq. 19
for k to n do gamma.k:=sqrt{Delta. (k-2)*Delta.k)/Delta. (k-1) od:

# so0l(j) was computed in Appendix A

# S(r) are sets of equations of the form m(k)=numeric approximation of M(k)
# at specific times t

for £t from 1 to 151 by 20 do S.t:={seq(M.j=sol.j{t}l[2],j=1..L)} od:

# form the matrices J(n,t) found just before Eg. 14
for t to 151 by 20 do J.t:=subs(S.t,array(l..n,1..n,[[delta.l,gamma.1l,0],
[gamma.l,delta.2,gamma .2}, [0, gamma.2,delta.3]]1)) od:

# compute eigenvalues and eigenvectors of the matrices J(n,t)
# Maple normalizes eigenvectors computed numerically
for t to 151 by 20 do evects.t:=eigenvects(J.t) od:

# form nodes(t), sequences of eigenvalues of the J{(n,t) at fixed t
for t to 151 by 20 do nodes.t:=seg(evects.t[i][1],i=1..n) od:

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYV




Population Genetics

# form weights(t), sequence of squaresgs of the first components
# of the eigenvectors corresponding to nodes(t)
for t to 151 by 20 do weights.t:=seqg(evects.t[i]([3]1[1][1]"2,i=1..n) od:

# form the 5 lists measure(t), each containing a sequence of points of the
# form (node,weight)
for t to 151 by 20 do measure.t:=[seq([nodes.t[i],weights.t[i]],i=1..n)] od:

# generate Fig. 2a, 2b and 2c
for k to 3 do la.k:=[measurellk], [measurel(k][1],0]1;
1b.k:=[measure2l[k], [measure2l([k][1],0]1];
lc.k:=[measurel2l[k], [measurel21[k]([1],0]] od:
f3:=plot({lal,la2, lal3}, color=black):
f5:=plot ({1bl, 1b2, 1b3}, color=black):
£7:=plot({{1lcl,1ec2,1ec3},color=black):
f4:=plot (measurel, style=POINT, symbol=circle, axes=boxed, color=black):
f6:=plot (measure2l, style=POINT, symbol=circle, axes=boxed, color=black) :
f8:=plot (measurel2l, style=POINT, symbol=circle, axes=boxed, color=black):

VVVVVVVVVVVVVVVVVYVVVYV

display([£f3,£f4], title=‘Figure 2a: Probability Mass Function, t = 0');
display([£5,£6], title=‘Figure 2b: Probability Mass Function, t = 2');
display([£f7,£8], title=‘Figure 2c: Probability Mass Function, t = 5');
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