Rose-Hulman Institute of Technology

Rose-Hulman Scholar

Mathematical Sciences Technical Reports (MSTR)

Mathematics

8-5-2014

Calculation of the Killing Form of a Simple Lie Group

Sean A. Broughton Rose-Hulman Institute of Technology, brought@rose-hulman.edu

Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr

Part of the Algebra Commons

Recommended Citation

Broughton, Sean A., "Calculation of the Killing Form of a Simple Lie Group" (2014). Mathematical Sciences Technical Reports (MSTR). 38.

https://scholar.rose-hulman.edu/math_mstr/38

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu.

Calculation of the Killing Form of a Simple Lie Group

S. Allen Broughton

Mathematical Sciences Technical Report Series MSTR 14-01

August 5, 2014

Department of Mathematics Rose-Hulman Institute of Technology http://www.rose-hulman.edu/math.aspx Author's note on Calculation of the Killing Form of a Simple Lie Group

The following article was article was written as an unpublished note as a companion to the authors 1987 paper *Volumes of subgroups of compact Lie groups*. The note was include included in the Rose MSTR series to make it available on the internet.

S. Allen Broughton 5 Aug 14

CALCULATION OF THE KILLING FORM OF SIMPLE LIE ALGEBRA

S. A. Broughton

Cleveland State University

Let L be a simple, complex Lie algebra, H a Cartan subalgebra $\Delta \subseteq \text{H}^* \quad \text{the root system. Let } \kappa \quad \text{be the restriction of the Killing form of } L \quad \text{to H} \quad \text{and } \kappa^* \quad \text{dualized form on H}^*. \quad \text{These forms satisfy:}$

$$\kappa^*(x^*, y^*) = x^*(y) = \kappa(x, y), \quad x, y \in H,$$

where $x \in H$ is the element defined by

$$x^*(y) = \kappa(x,y) \quad y \in H.$$

The invariant form on H^* (which is unique up to multiplication by a scalar) is frequently normalized by requiring short roots to have length 1. If (\cdot, \cdot) denotes this normalized form then

$$\kappa^*(\lambda, \mu) = \varepsilon(\lambda, \mu)$$

where $\varepsilon = \kappa^*(\alpha, \alpha)$, α a short root. The Killing form is determined once ε is known.

A list of the values of ε is given in Table A, p. 527 of Freudenthal & de Vries monograph [F-V].

Before calculating ε below we need to establish some notation. For λ , $\mu \in \operatorname{H}^*$ let $\langle \lambda, \mu \rangle = 2\kappa^*(\lambda, \mu)/\kappa^*(\mu, \mu) = 2(\lambda, \mu)/(\mu, \mu)$. Let $\alpha_1, \dots, \alpha_r$ be a basis of simple roots of Δ . There is a unique long root α^k and a unique short root α^s such that $\langle \alpha^k, \alpha_i \rangle \leq 0$, $\langle \alpha^s, \alpha_i \rangle \leq 0$ ($\alpha^s = \alpha^k$ if there is only one root length). Let $\alpha_0 = \alpha^k$ then there are unique integers m_0^k, \dots, m_r^k with $m_0^k = 1$ such that $\sum_{i=0}^r m_i^k \alpha_i = 0$. Let m_0^s, \dots, m_r^s be similarly defined. That $h^k = \sum_{i=0}^r m_i^k$ equals the Coxeter number is well-known.

By analogy let us call $h^s = \sum_{i=0}^r m_i^s$ the <u>short Coxeter number</u>. The number of roots in Δ is given by

$$|\Delta| = r \cdot h^{\ell}$$

Set $\alpha_0 = \alpha^\ell$ and construct an extended Dynkin diagram as follows. Adjoin a node, α_0 , to the ordinary diagram. For each α_i , $i \ge 1$ join α_0 to α_i by a bond of strength $\langle \alpha_0, \alpha_i \rangle \langle \alpha_i, \alpha_0 \rangle$, draw an arrow from a longer to a shorter root, and write m_i^ℓ above the node α_i . For the root α^S we get a similar diagram. The extended diagrams are recorded in Table 1 where the node α_0 is blackened. They can be constructed using Table 2, p. 66 of [H]. We denote the extended diagrams corresponding to long (short) roots of A_r , B_r , C_r , D_r , E_r ,

<u>Proposition</u>. Let L be a simple Lie algebra over $\mathfrak C$ of rank r, H a CSA, $\Delta \subseteq \operatorname{H}^*$ the root system and κ^* the dualized Killing form on H^* . Let $\alpha^S, \alpha^L \in \Delta$ be as above and let $\operatorname{h}^S(\Delta^V)$ be the short Coxeter number of the dual root system. Then

$$\kappa^*(\alpha^S, \alpha^S) = ((\alpha^\ell, \alpha^\ell)h_S(\Delta^V))^{-1}$$

In Table 2 we give the values of $h^{S}(\Delta^{V})$, $(\alpha^{\ell}, \alpha^{\ell})$ and ϵ^{-1} for each algebra.

<u>Proof.</u> Using the notation of [H], let, for $\lambda \in H^*$, $t_{\lambda} \in H$ be the element such that $\lambda(h) = \kappa(t_{\lambda}, h)$, $h \in H$, i.e. $\lambda = (t_{\lambda})^*$. Let $h_{\alpha} = 2t^{\alpha}/\kappa(t_{\alpha}, t_{\alpha})$ then $\kappa^*(\alpha, \alpha) = \kappa(t_{\alpha}, t_{\alpha}) = 4/\kappa(h_{\alpha}, h_{\alpha})$, and $\beta(h_{\alpha}) = 2\kappa(t_{\beta}, t_{\alpha})/\kappa(t_{\alpha}, t_{\alpha}) = 2\kappa^*(\beta, \alpha)/\kappa^*(\alpha, \alpha) = (\beta, \alpha)$. If α is a long root then $(\alpha^{\ell}, \alpha^{\ell}) \in (\alpha, \alpha) \in A/\kappa(h_{\alpha}, h_{\alpha})$. Thus it suffices to show that, letting $h^S = h^S(\Delta^V)$,

(2)
$$\kappa(h_{\alpha}, h_{\alpha}) = 4h^{S}$$
.

Table 1.

Extended Dynkin Diagrams

Type A ₁	Long Root	Short Root same
A _r r≽2		same
B ₂	1→8←1	} ← b → b
B _r r>3	\$88≠8	1 ≠ 1 − 1 · · · 1 − 1 2 + 1
C _r r≽3	₹\$—88—8≠4	1 3-33≠3
⊅ _r r>4	\$ -3 8 8 - 8 - 8 - 8 - 8 - 8 - 8 -	same
e 6	1-8-3-8-1 1-8-3-8-1	same
E ₇	1	same
E ₈	3-3-3-5-5-5-3	same
r ₄	1-8-3-4-8	3-8-3-3-3
^G 2	3	1 → 3 → 3

Table 2.

Algebra	(a ^l ,a ^l)	$h^s(\Delta^v)$	ε-1
A_r $\ell \geq 1$	1	r + 1	r + 1
$B_{r} \qquad \ell \geq 2$	2	2r - 1	4r - 2
$C_r \qquad \ell \geq 3$	2	r + 1	2r + 2
$D_{r} \qquad \ell \geq 4$	1	2r - 2	2r - 2
^E 6	1	12	12
E ₇	1	18	18
E ₈	1	30	30
F ₄	2	9	18
$^{\rm G}_2$	3	4	12

Table 3.

Δ	4	R	R
$A_r r \geq 1$	r(r + 1)	A _{r-2}	(r - 2)(r - 1)
$B_r r \ge 2$	2r ²	$^{\mathrm{A}}$ 1 $^{\mathrm{B}}$ r-2	$2 + 2(r - 2)^2$
$C_r r \geq 3$	2r ²	C _{r-1}	$2(r - 1)^2$
$D_r r \geq 4$	2r(r - 1)	$A_1 \times D_{r-2}$	2 + 2(r - 2)(r - 3)
^E 6	72	A ₅	30
E ₇	126	D ₆	60
E ₈	240	E ₇	126
F ₄	48	C ₃	18
$^{\rm G}_2$	12	A ₁	2

Since h_{α} acts diagonally with respect to a basis of root vectors with eigenvalues $\langle \beta, \alpha \rangle = \beta(h_{\alpha}), \ \beta \in \Delta$, then $\kappa(h_{\alpha}, h_{\alpha}) = \sum_{\beta \in \Delta} \beta(h_{\alpha})^2 = \sum_{\beta \in \Delta} \langle \beta, \alpha \rangle^2$. Since α is long then $\langle \beta, \alpha \rangle = \pm 1$ if $\beta \neq \pm \alpha$ and $\langle \beta, \alpha \rangle \neq 0$.

Let b be the cardinality of $\{\beta | \langle \beta, \alpha \rangle \neq 0 \}$. As $\langle \alpha, \alpha \rangle^2 + \langle -\alpha, \alpha \rangle^2 = 8$ and there are b - 2 roots β with $\langle \beta, \alpha \rangle^2 = 1$, then

$$\kappa(h_{\alpha}, h_{\alpha}) = 6 + b.$$

Therefore, it suffices to show that

(3)
$$b = 4h^{S} - 6$$
.

We need to compute the number of roots orthogonal to α . Since roots of the same length are conjugate under the Weyl group, the number $|\{\beta \in \Delta \mid (\alpha,\beta) = 0\}|$ depends only on the length of α .

Let $\alpha_0 = \alpha^{\ell}$. Remove from the extended Dynkin diagram, corresponding to a long root, α_0 and all nodes connected to it, as well as bonds connected to removed nodes. This leaves us with a union of ordinary Dynkin diagrams. Let N denote the subset of $\{\alpha_1, \dots, \alpha_r\}$ so determined and denote by R the subroot system generated by N.

Claim: $R = \{\beta \in \Delta : (\alpha, \beta) = 0 \}$.

Assuming the claim, we have $b = |\Delta| - |R|$. It then suffices by (3) to prove:

(4)
$$|\Delta| - |R| + 6 = 4h^{S}$$
.

The proof of (4) follows immediately from Table 3 above. In turn, Table 3 is easily constructed from Table 1 and (1) by means of the claim.

Now to prove the claim: Let $\beta = \sum_{i=1}^{r} n_i \alpha_i$ be perpendicular to α_0 . Then $\sum_{i=0}^{r} n_i \langle \alpha_i, \alpha_0 \rangle = 0$. Since $\langle \alpha_i, \alpha_0 \rangle \leq 0$ and either all $n_i \geq 0$ or all $n_i \leq 0$, then all terms above are zero. Thus $n_i = 0$ if $\langle \alpha_i, \alpha_0 \rangle \neq 0$.

This implies that the support of β , supp $(\beta) = \{\alpha_i | n_i \neq 0\}$, lies in N.

Since the support of a root is always connected we may assume that $\sup_{\alpha \in M} (\beta) \subseteq M \quad \text{the set of nodes of some connected component of the diagram determined by N. Assume β is negative, $\beta = \sum_{\alpha \in M} n_{\alpha} \alpha, n_{\alpha} \leq 0$ and let <math display="block"> ht(\beta) = \sum_{\alpha \in M} n_{\alpha}. \quad \text{If } \langle \beta, \alpha_{i} \rangle > 0 \quad \text{for some } \alpha_{i} \in M \quad \text{then } \sigma_{\alpha_{i}}(\beta) = \beta - \langle \beta, \alpha_{i} \rangle \alpha_{i} \text{ is a negative root, perpendicular to } \alpha_{0}, \text{ with support in } M \quad \text{and such that } ht(\sigma_{\alpha_{i}}(\beta)) < ht(\beta). \quad \text{Iterating this process we arrive at } \gamma \quad \text{with } \langle \gamma, \alpha_{0} \rangle = 0, \quad \langle \gamma, \alpha \rangle \leq 0 \quad \alpha \in M. \quad \text{It cannot happen that } \langle \gamma, \alpha \rangle = 0 \quad \text{for all } \alpha \in M.$

Form an extended Dynkin diagram from γ and M. The resulting diagram is connected and must be one of the diagrams in Table 1. Let $\delta \in M \cup \{\gamma\}$ correspond to the blackened node, then $M \cup \{\gamma\} \setminus \{\delta\}$ is a basis for the root system generated by γ and M. Thus the diagram for M must be obtained by removing a non-disconnecting node, i.e. γ , from one of the diagrams in Table 1. Moreover the root γ , and hence β , belongs to the root system generated by M if and only if the removed node is a blackened node or one equivalent to it by an extended diagram symmetry. By inspection of Table 1, if γ is not in the root system generated by M, then the only possibilities for $M \cup \{\gamma\}$ and M are:

<u>Μ U {γ}</u>	<u>M</u>
$\tilde{B}_{\mathbf{r}}^{k}$ $\mathbf{r} \geq 3$	$^{ extsf{D}}_{ extsf{r}}$
$\widetilde{\mathtt{C}}_{\mathtt{r}}^{\mathtt{s}}$	$^{ extsf{D}}_{ extbf{r}}$
$\widetilde{\mathtt{E}}_7$	A ₇
$\widetilde{\mathtt{E}}_{8}$	A ₈ , D ₈
F4	В ₄
Fs	c ₄
ã₂° ã₂°	A ₂
⁸	A ₂

If there is a counterexample to the claim then one of the M's listed above is a component of some N, and Δ will contain a subroot system generated by M U $\{\gamma\}$. If M = A_2 , A_7 or A_8 then $\Delta = A_4$, A_9 or A_{10} by Table 3. (We are using the symbols A_r , B_r , ... to denote a root system and the corresponding diagram.) It follows then that $G_2 \subseteq A_4$, $E_7 \subseteq A_9$, $E_8 \subseteq A_{10}$. The first is false since A_4 has only one root length while G_2 has 2. The last two fail because of order considerations. If M = B_4 then $F_4 \subseteq B_6$, an impossibility since the short roots of B_6 form an $A_1 \times A_1 \times A_1 \times A_1 \times A_1 \times A_1$ and the short roots of F_4 form a F_4 . For similar reasons we eliminate F_4 . If M = F_4 then we get F_4 form a F_4 for similar reasons and the fifth by order condiserations. All is now proven.

References

- [F-V] Freudenthal, H. & de Vries, R., Linear Lie Groups, Academic Press, (1969).
- [H] Humphreys, J., Introduction to Lie Algebras and Representation Theory,
 Graduate Texts in Math #9, Springer-Verlag, (1970).