
Rose-Hulman Institute of Technology Rose-Hulman Institute of Technology

Rose-Hulman Scholar Rose-Hulman Scholar

Mathematical Sciences Technical Reports
(MSTR) Mathematics

5-21-2008

A Statistical Look at Maps of the Discrete Logarithm A Statistical Look at Maps of the Discrete Logarithm

Nathan Lindle
Rose-Hulman Institute of Technology

Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr

 Part of the Number Theory Commons

Recommended Citation Recommended Citation
Lindle, Nathan, "A Statistical Look at Maps of the Discrete Logarithm" (2008). Mathematical Sciences
Technical Reports (MSTR). 35.
https://scholar.rose-hulman.edu/math_mstr/35

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been
accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of
Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu.

https://scholar.rose-hulman.edu/
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math
https://scholar.rose-hulman.edu/math_mstr?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/183?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/math_mstr/35?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:weir1@rose-hulman.edu

A Statistical Look at Maps of the Discrete Logarithm

Nathan Lindle

Adviser: Joshua Holden

Mathematical Sciences Technical Report Series
MSTR 08-06

May 21, 2008

Department of Mathematics
Rose-Hulman Institute of Technology

http://www.rose-hulman.edu/math

Fax (812)-877-8333 Phone (812)-877-8193

A Statistical Look at Maps of the Discrete Logarithm

Nathan Lindle
Rose-Hulman Institute of Technology

Terre Haute, IN 47803
lindlenw@rose-hulman.edu

May 21, 2008

1 Introduction

Cryptography is being used today more than it ever has in the past. Millions of transactions are being
conducted every hour using encrypted channels, most of which use the Internet as their medium. It is
taken for granted by the average user that these transaction are secure, but mathematicians and computer
scientists alike are constantly testing the algorithms being used. Several of these cryptosystems use the
transformation

gx ≡ y (mod n) (1)

The appeal of this transformation is that it is quite simple to calculate gx mod n; exponentiation by
squaring is fairly simple and quick even using very large numbers. However there is no known algorithm
to compute the inverse of the transformation (that is given y, g, and n, find x) in a comparable amount of
time. This is called the discrete log problem, and Diffie-Hellman key exchange, RSA and the Blum-Micali
pseudorandom bit generator all rely on its inherent difficulty. This paper explores the maps generated
by this transformation with the hope of gaining some insight into its structure and similarity to random
mappings.

2 Functional Graphs

2.1 Terminology

A directed functional graph is a set of nodes S and a set of directed edges where (a, b) denotes an
edge from node a to node b on the graph. Also, every node must have exactly one edge coming out of
it (this is where the “functional” part of the name comes from). Using the transformation from (1),
define a transition function ϕ where ϕ(x) = gx (mod p). Given any prime modulus p and some base
g, construct a functional graph using ϕ where S = {1, 2, ..., p − 1} and the directed edges are (a, ϕ(a))
for every a ∈ S.

Now take any random starting node u0, construct the sequence u1 = ϕ(u0), u2 = ϕ(u1), ..., and note
that there are p − 1 nodes in the graph. After at most p iterations, it must be the case that ui = uj
where i < j. j is called the rho length of u0 (because when you graph the sequence it looks like a ρ), i

1

Figure 1: A graph constructed using ϕ(x)→ 9x mod 11

is the tail length of u0 and j − i is the cycle length of u0. Note that it is possible for u0 to be part of a
cycle, so the tail length could be 0. For example, nodes 3 and 8 in Figure 1 have a cycle length of 1, and
the rest of the nodes have a cycle length of 3. Nodes 2 and 7 both have a tail length of 2, and nodes 10,
6, 4 and 8 have tail length 1, and the rest have a length of 0. The average tail length of a graph is the
sum of the tail lengths of each node divided by the number of nodes. Similarly, the average cycle length
is the sum of the cycle lengths of each node divided by the number of nodes. Figure 1 has an average
tail length of 0.8 and an average cycle length of 2.6, for instance.

A node x is an image node if there is a transition (a, x) for some a ∈ S. Otherwise x is called a
terminal node. A cycle and all the nodes included in tails which lead to that cycle is called a connected
component. Since the out-degree of every node is exactly one, no component is connected to any other,
and each component has exactly 1 cycle.

The maximum cycle length for a graph is the size of the largest cycle (which may or may not be a
part of the largest component). The maximum tail length is the maximum number of transitions any
node is from its cycle, or equivalently the maximum tail length of any node.

The in-degree of a node b is the number of edges of the form (a, b) for some node a in the graph.
A functional graph is said to be m-ary if the in-degree of each node is either 0 or m. 1-ary graphs are
referred to as permutations, and 2-ary graphs are referred to as binary functional graphs. Therefore the
graph in Figure 1 can be more specifically labeled as a binary functional graph.

2.2 Previous work

Daniel Cloutier did a lot of work analyzing functional graphs using this transition function in [2]. The-
orem 1 from his paper proves an important result needed to practically analyze these graphs, and it is

2

restated here:

Theorem 1 (Theorem 1 of [2]) Let p be fixed and let m be any positive integer that divides p−1. Then
as g ranges over all integers, there are φ(p−1

m) different functional graphs which are m-ary produced by
maps of the form f : x 7→ gx mod p. Furthermore, if r is any primitive root modulo p, and g ≡ ra mod p,
then the values of g that produce an m-ary graph are precisely those for which gcd(a, p− 1) = m.

This theorem allows a person to not only know how many m-ary graphs can be generated from a given
prime p, but allows them to figure out which bases (values of g) will generate such graphs. A generator
r is an element of the residue class of p such that any element g can be written as ra ≡ g mod p. One
only needs to pick a generator and do a simple check on each possible a to see if gcd(a, p− 1) = m, and
use ra as the base if this is the case.

This result should also make it evident that it makes sense to separate our analysis of the graphs
based on what type of m-ary graph it is. The author of [2] showed that this is indeed the case; considering
all possible graphs for a given p does not produce results similar to a random functional graph, even
if there are many possible types of graph (a result that arises when p − 1 is very composite). When
permutations and binary functional graphs, which correspond to m = 1 and m = 2, were considered
separately however, a more satisfying analysis could be performed.

The author of [2] extended a technique from [5] which uses generating functions to determine the
expected values for some parameters of interest in random binary functional graphs. The techniques used
will be explored more in depth in the Theoretical Values section, but the parameters analyzed in each
graph were number of components, number of cyclic nodes, number of tail nodes, number of terminal
nodes, average cycle length, average tail length, maximum cycle length and maximum tail length. For
a given prime p, the author of [2] generated as many binary functional graphs as possible and collected
data on these parameters for each one. Since each graph had the same number of nodes, these results
could then be combined and compared to the theoretical parameter values random binary functional
graphs have. The results for the 3 primes he collected data on indicated that these graphs indeed had a
similar structure to random binary functional graphs.

The work on binary functional graphs in [2] has been extended further to take an even closer look
at the graphs generated. Principally, this paper seeks to analyze the variance in each of the parameters
mentioned before, as well as the maximum tail length, and also seeks an exact value for many of the
theoretical parameters instead of an asymptotic one. Many more tests have also been run over a much
wider range of primes in order to increase the confidence in the accuracy of the results.

3 Theoretical Values

3.1 Techniques

The first step to creating the generating functions needed is to describe the structure of the graphs, as in
[5]. A binary functional graph will be a set of components, each of which is made up of a cycle of nodes
with a binary tree attached to each node. A binary tree is a node with up to 2 binary trees attached to
it. Converting this English description to the same notation as [5] yields

BinFunGraph = set(Components)
Component = cycle(Node*BinaryTree)
BinaryTree = Node + Node*set(BinaryTree, cardinality = 2)
Node = Atomic Unit

3

Using the techniques of [5], this can then be converted to the following generating functions:

f(z) = ec(z) =
1

1− zb(z)
(2)

c(z) = log
1

1− zb(z)
(3)

b(z) = z +
1

2
zb2(z) (4)

f here generates functional graphs, so the coefficient of zn in the Taylor expansion of f(z) will be fn
n!

where fn is the number of binary functional graphs of size n. Similarly, the coefficients of zn in c(z) and
b(z) will tell us about the number of components and the number of binary trees. Solving the quadratic
equation for b(z), and using the only answer that makes sense, gives a simpler representation of f and c:

f∗(z) =
1√

1− 2z2
(5)

c∗(z) = log
1√

1− 2z2
(6)

In [2], the author uses singularity analysis on these generating functions to get an asymptotic form
for the coefficients. This paper takes a different route, seeking to solve for the coefficient directly where
possible. The first step is to create a differential equation y(z) with a set of initial conditions which is
satisfied by the function. Applying this process to f∗ yields

y(0) = 1

2zy(z) + (−1 + 2z2)

(
d

dz
y(z)

)
= 0

One can then find the power series solution to this differential equation and use it to create the
recurrence u(n), which will give the nth Taylor coefficient for the generating function around 0. The
initial condition for the differential equation is used to create the base case for the recurrence. In this
case, solving for this recurrence gives

u(0) = 1

u(1) = 0

(2n+ 2)u(n)− (n+ 2)u(n+ 2) = 0

After studying this result briefly, one can see that u(2n + 1) will be 0 for any positive n. This
follows directly from the description of binary functional graphs, since such a graph cannot be created
with an odd number of nodes. Both the conversion to a differential equation and the conversion to a
recurrence relation were done using functions from [6]; more documentation can be found there. Solving
this recurrence yields

g(n) =
2

n
2 Γ(n/2 + 1/2)√
πΓ(n/2 + 1)

(7)

where Γ(n) =
∫∞
t=0

e−ttn−1. g(n) therefore will be the number of possible binary functional graphs of
size n divided by n!. In the following sections, a similar technique will be used to get functions for
parameters of interest.

4

3.2 Means

Theorem 2 The expected number of components, number of cyclic nodes, average cycle length and
average tail length in a random binary functional graph of size n are

Number of Components

(
1

2

)
Ψ

(
n

2
+

1

2

)
+

(
1

2

)
γ + ln(2) (8)

Number of Cyclic Nodes

√
πΓ(n

2 + 1)− Γ(n
2 + 1

2)

Γ(n
2 + 1

2)
(9)

Average Cycle Length
(1

2)
√
πΓ(n

2 + 1)

Γ(n
2 + 1

2)
(10)

Average Tail Length

√
πΓ(2 + n

2)− nΓ(n
2 + 1

2)− Γ(n
2 + 1

2)

nΓ(n
2 + 1

2)
(11)

Here, Ψ(n) = (d
dxΓ(x))/Γ(x) and γ represents the Euler constant, which is approximately 0.57721566.

Proof. The generating functions for these parameters were developed in [2], and in following with the
notation from [5], they are called Ξ(z). Since the equations can get quite large, only the process for
computing the average cycle length is reproduced here. The other functions are created in exactly the
same manner, but can get quite messy. The generating function Ξ(z) for the average tail length is:

Ξ(z) =
2z2(1−

√
1− 2z2)

(1− 2z2)2
+

2z2

(1− 2z2)3/2
(12)

Using the same techniques as earlier, a differential equation can be found that is satisfied by Ξ(z),
which can then be used to get the following recurrence:

4u(n)− 4u(n+ 2) + u(n+ 4) (13)

u(1) = 0

u(0) = 0

u(2) = 2

u(3) = 0

This recurrence can then be solved to give the surprisingly simple solution of

[zn]Ξ(z) = 2n/2(n/2) (14)

This is of course only true when n is even. To find the expected value for the cycle length for a
given graph, this result needs to be normalized. First it must be multiplied by n!, since c is the actual
parameter of interest and [zn]Ξ(z) = c/n!. The result should also be divided by the total number of
binary functional graphs (to get an expected value), and finally by n because this parameter (as well as
average tail) is taking results as seen from a random node in the functional graph. This final division is
not performed for the calculation of the expected number of components and cyclic nodes. Since g(n)

5

actually equals the number of binary functional graphs divided by n!, the result for Theorem 2 can be
obtained by expanding

[zn]Ξ(z)

n(g(n))
(15)

�

Unfortunately the techniques to calculate maximum tail length and maximum cycle length expected
values uses other approximations which prevent a direct recursive calculation at this time. However,
since much more data has been collected for this paper, it will be interesting to look at the previously
determined asymptotic estimations of these parameters. They are reproduced here for reference:

Theorem 3 (Theorem 7 of [3]) The asymptotic forms for the expected sizes of the largest cycle and
the largest tail in a random binary functional graph of size n, as n→∞, are

Largest Cycle

√
πn

2

∫ ∞
0

[
1− exp

(
−
∫ ∞
v

e−u
du

u

)]
dv ≈ 0.78248

√
n (16)

Largest Tail
√

2πn ln(2)− 3 + 2 ln(2) ≈ 1.73746
√
n+ 1.61371 (17)

3.3 Variances

Theorem 4 The variance in number of components, number of cyclic nodes, average cycle length and
average tail length between binary functional graphs is

Number of Components

1

2
Ψ

(
n

2
+

1

2

)
+

(
1

2

)
γ + ln(2) +

1

4
γ2 + γ ln(2) + ln(2)2 +

n/2−1∑
l=0

Ψ(l + 1
2)

(2l + 1)
− 1

4
Ψ

(
n

2
+

1

2

)2

(18)

Number of Cyclic Nodes

−
(−2Γ(n

2 + 1
2)2 − 4n

2 Γ(n
2 + 1

2)2 +
√
πΓ(n

2 + 1)Γ(n
2 + 1

2) + πΓ(n
2 + 1)2)

Γ(n
2 + 1

2)2
(19)

Average Cycle Length

1

12

(−3πΓ(n
2 + 1)2 − 6

√
πΓ(n

2 + 1)Γ(n
2 + 1

2) + 16n
2 Γ(n

2 + 1
2)2 + 8Γ(n

2 + 1
2)2)

Γ(n
2 + 1

2)2
(20)

Average Tail Length

−1

6

(−18Γ(n
2 + 3

2)− 8Γ(n
2 + 3

2)n
2 + 9n

2

√
πΓ(n

2 + 1) + 9
√
πΓ(n

2 + 1))

(n
2)Γ(n

2 + 1
2)

−1

4

(
√
πΓ(n

2 + 1) + n
2

√
πΓ(n

2 + 1)− 2Γ(n
2 + 3

2))2

(n
2)2Γ(n

2 + 1
2)2

(21)

Proof. As the reader can undoubtedly see, these equations can become quite large. For this reason, the
proof will again be limited to determining the average cycle value. The variance for a set of data is

1

N

N∑
i=1

(xi− x)2 where N is the number of data points, x is the mean, and the xi are the individual data

6

points. Using some simple algebra this is equivalent to
1

N

(
N∑
i=1

x2
i

)
− x2, so a generating function for(

N∑
i=1

x2
i

)
would be very handy.

Using the techniques from [1], a doubly marked function for the average cycle length in a random
binary functional graph is

ξ(z) =
ln
(

1
(1−u(1−

√
1−2z2w2))

)
√

1− 2z2
(22)

To compute Ξ, which was used to find the expected average cycle length, the authors of [1] took
Ξ(z) = ∂

∂w∂uξ(z) |u=1,w=1 to eventually obtain [zn]Ξ(z) (this was actually done for tertiary graphs, but
the idea is the same). Since u is marking the parameter of interest, differentiating with respect to u then
substituting u = 1 is like summing up the parameter for each graph of size n then putting it in front

of zn. A technique to get

(
N∑
i=1

x2
i

)
would be to differentiate with respect to u, then multiply by u to

correct for the power of u, then differentiate with respect to u again. Now the coefficient of the u terms
is the parameter squared, so substituting in u = 1 gives the needed generating function. Doing this with
a doubly marked generating function does not introduce any problems, the w was only introduced to
account for the fact that the average cycle length is a statistic taken from every node. Therefore the
generating function for the total cycle length squared is

Ξ∗(z) =
d

du

(
u

(
∂

∂w∂u
ξ(z) |w=1

))
|u=1 (23)

which turns out to be

Ξ∗(z) = −6z2(−1 +
√

1− 2z2)

(1− 2z2)2
+

2z2

(1− 2z2)3/2
+

4z2(−1 +
√

1− 2z2)2

(1− 2z2)5/2
(24)

Turning this into a differential equation, then a recurrence relation, and solving for the recurrence
relation (as demonstrated previously in the paper) gives

[zn]Ξ∗(z) =
1

3

2
n
2 (3n

2

√
πΓ(n

2)− 8Γ(n
2 + 3

2))
√
πΓ(n

2)
(25)

Now, let v(z) be the variance in the average cycle length of graphs of size z. The mean has already

been described as [zn]Ξ(z)
n(g(n)) , so combining this result with the one just obtained, and using them with the

simplified equation for variance computed at the beginning of the proof, yields

v(z) =
[zn]Ξ∗(z)g(n)n− ([zn]Ξ(z))2

n2g(n)2
(26)

When expanded, v(z) is the same value as in the theorem. The rest of the variances in the parameters
(components, cyclic nodes and average tail) are computed similarly with the only difference from the
computation of the average cycle being in the normalization, just like the mean.

7

The key to the success of this technique is having a marked generating function. Since the generating
functions for the maximum cycle length and the maximum tail length were not computed using marked
generating functions, and no marked generating functions have been found yet, a theoretical value for
the variance in these two statistics does not yet exist. Observed values for the variance were collected
though in order to better compare the means to the expected values.

4 Observed Values

The same techniques as [2] were used to gather data on functional graphs which use (1) as the transition
function. A large prime p is chosen, and a generator r is chosen for the integers modulo p, then a graph is
generated using g = ra for each possible a ∈ {1, 2, 3, 4, ..., p−1} where gcd(a, p−1) = 2. For each prime,
the results are then combined to get the average number of components, cyclic nodes, cycle length, tail
length, maximum cycle and maximum tail. Data for the variances of these parameters is collected as
well. The code to generate these graphs is based on the C++ code written by the author of [2], but it
has been converted to C, optimized in places, parallelized and altered to collect data for the computation
of the variance.

The total number of graphs generated depends on φ(p− 1). The primes to test were chosen in three
sets of 10. The first set is around 100,000, the second set is all safe primes (primes which can be written
as 2q+ 1 where q is prime) which are basically spread evenly between 110,000 and 200,000, and the last
set is primes which are spread over the same interval and have a very composite p− 1. For a list of the
number of graphs generated for each prime, see Appendix A.

4.1 Means

For a given p, φ((p − 1)/2) graphs can be generated. In order to compare the average values of the
parameters in these graphs with the values that Theorems 2 and 3 predict, this paper uses a t-test on
the means. The idea here is to ascribe some statistical significance to the results, instead of just saying
that they look similar. When performing a t-test, the experimenter has a hypothesis in mind which he
would like to verify, H0, and an alternative hypothesis Ha. The t-test on the data produces a t-statistic,
which can then be matched with a table to get a P-value. The P-value is the probability of obtaining
a test statistic which is stranger, or more extreme, than the one that was observed, given that the null
hypothesis is false. So low P-values indicate that the data collected may be unusual, and high P-values
give no indication that the null hypothesis is true. In this case, an observed mean (for components for
instance) µobs is compared to a predicted mean µpred (from Theorem 2 or 3). The null hypothesis is
H0 : µpred = µobs and the alternative hypothesis is Ha : µpred 6= µobs. The t-test is

(µpred − µobs)
√
N

σobs

where N = p−1 in this case and σobs is the standard deviation (which is the square root of the variance)
in the observed samples. The number of degrees of freedom here is very large (df >> 1000), so the
t-statistic is actually the same as a z-statistic and we can use a z table to get the corresponding P-value.
Since our null hypothesis allows for µpred > µobs or µpred < µobs, the value obtained from the table is
doubled to get the actual P-value (this is called a 2-tailed t-test). For more information on these tests
see [4]. Table 1 gives an example of the results of this test for a single prime and its associated graphs.

8

Predicted Observed t-value P-value
Components 6.392 6.389 0.266 0.842
Cyclic Nodes 395.417 395.303 0.123 0.920
Average Cycle 198.208 198.319 -0.173 0.920
Average Tail 197.212 197.178 0.088 1.000
Maximum Cycle 247.495 247.261 0.339 0.764
Maximum Tail 547.935 541.827 8.359 0.000

Table 1: Observed means, t-values and corresponding P-values for the prime 100043

All of the P-values obtained for the maximum tail statistic were very low, and in general the observed
values are a bit lower than the theoretical means. Some other statistics have very low P-values for some
primes, but have very high P-values for other primes. Based on the definition of a P-value, a uniform
distribution is expected when looking at the same statistic over all of the p which have data. Therefore
some low values are expected along with some high ones (it would actually be unusual to have P-values
which are all very high). To tell if this is actually what’s going on for these P-values, one could perform
some sort of uniformity test on them. Alternatively, one could perform a normality test (of which
there are a large number to choose from) on the test statistics since the t-test uses so many degrees of
freedom that it is like a z-test, which uses a normal curve. Table 2 shows the P-value obtained from an
Anderson-Darling normality test on each statistic where the 33 t-test results were used as input.

P-value
Components 0.632
Cyclic Nodes 0.069
Average Cycle 0.483
Average Tail 0.084
Maximum Cycle 0.102

Table 2: P-values obtained by doing Anderson-Darling normality tests on the t-statistics from the
mean tests. The maximum tail length statistic is excluded because the P-values from the t-test were
consistently very low. Tests were run using Minitab.

4.2 Variance

Techniques similar to those used to compare means will also be useful to take a statistical look at the
observed variance compared to the predicted variance. Here the null hypothesis is H0 : σ2

obs = σ2
pred and

the alternative hypothesis is Ha : σ2
obs 6= σ2

pred. The test used to get the P-value when comparing these
is very similar to the one used to compare means; it is

(σ2
pred − σ2

obs)
√
N

τobs

where τobs is used to denote Var({(xi−xobs)2}), the variance between the square of the difference between
an individual data point (the number of components in a certain functional graph for instance) and the
mean value for that statistic. This produces another statistic which can be used to find a P-value in a

9

z-table. Since no theoretical variances have been obtained for the maximum tail and maximum cycle,
this test cannot be performed on those statistics. Table 3 gives an example of the results of this test on
data from a single prime.

Predicted Observed t-value P-value
Components 5.158 5.117 1.227 0.230
Cyclic Nodes 42543.192 42227.348 1.123 0.272
Average Cycle 27210.527 20392.727 35.112 0.000
Average Tail 27210.956 7362.882 302.252 0.000
Maximum Cycle 23806.218
Maximum Tail 26709.198

Table 3: Predicted and observed variances, t-values and corresponding P-values for the prime 100043.
Theoretical values for the maximum cycle and maximum tail variances do not exist

The observed variances in the average tail length and the average cycle length are quite a bit lower
than expected. The P-values for the other statistics look like those obtained for the means, so it useful
to perform a normality test on these test statistics as well. Table 4 shows the results from these tests.

P-value
Components 0.485
Cyclic Nodes 0.487

Table 4: P-values obtained by doing Anderson-Darling normality tests on the t-statistics from the
variance tests. The average tail length and average cycle length statistics are excluded because the
P-values from these t-tests were consistently very low. Test statistics are unavailable for maximum cycle
and maximum tail variance. Tests were run using Minitab.

5 Conclusions and Future Work

The results produced by these tests lend some statistical backing to the statement that the average
number of components, cyclic nodes, and max cycle length in functional graphs generated using (1)
are similar to the expected statistics for random binary functional graphs. The results also let one say
with some degree of confidence that the average cycle length and the average tail length of graphs made
with (1) are similar to those random graphs. The most interesting result, however, is the extremely low
variance in these two statistics when compared to the expected variance. Unfortunately there is not an
immediately evident reason for this, so future work could include an investigation as to why the variance
is so much lower, but still somewhat consistent for these statistics. Regression tests could be performed
to try and match some sort of function which relates the size of a graph and its observed variance. An
initial look at the data, however, makes it appear that such a function would have to be very complicated
in order to account for the large jumps that can be seen in the observed results. It is still possible that
a relatively simple asymptotic formula exists though.

Intuition seems to indicate that while the choice of the average tail/cycle length for some graph
generated by the code may be like what a random binary functional graph is like, it may be that (1)
imposes some structure that keeps the tail/cycle length from varying too much between the graphs for

10

a given prime. Additional research could also be done to attempt formulate an attack on some system
that uses (1) based on the knowledge that the average tail or cycle variance will be lower than random
graphs. Perhaps, for instance, if one could figure out the prime a pseudorandom bit generator based on
(1) is using, he/she could gain more knowledge about how long the generator will take to enter a cycle
and repeat than should be available.

While less dramatic, the lower than average maximum tail length is also curious. While a recursive
formula was not found for this statistic, the asymptotic analysis does not change significantly when
additional terms are added, so it appears that the difference is not due to the asymptotic estimation.
Besides being an asymptotic formula, the computation also uses an integral estimate which could also
be off slightly. Additional research could be done here to analyze the lower value, but the reason is
probably more subtle and does not appear to be as significant.

Theoretical values for the variance in the maximum tail length and maximum cycle length also remain
unsolved. These statistics could give further insight into how closely graphs generated with (1) exhibit
characteristics of random graphs. Results in this area might also serve to motivate or direct research
into why the variance is so low for average cycle/tail lengths.

A number of open problems from [2] also remain unsolved. It is possible to extend this work to deal
with any m-ary graph, but the methods would need to be altered somewhat in order to account for the
problems the new variable m would introduce. It was also pointed out that in practice (for the RSA
encryption standard, for instance), sometimes composites of large primes are used instead of primes.
Additional research could be done to investigate what graphs generated using this composite modulus
look like.

Acknowledgments The author would like to thank Joshua Holden for all his great advice and help
with the project, and Mark Inlow for all the help with the statistical tests and interpreting the results.

11

A Number of Graphs

Prime Number of Graphs
99923 48852
99961 10752
99971 36864
99989 21420
99991 24000
100003 28560
100019 48804
100043 50020
100049 22464
100057 15120
100069 16080
100103 50050
106261 10560
110017 18240
110459 55228
120041 24000
120167 60082
130021 15680
130127 65062
140053 21200
140123 70060
150001 20000
150083 75040
160009 25984
160079 80038
170099 85048
170101 19440
180001 24000
180023 90010
190093 25920
190523 95260
200041 26656
200087 100042

Table 5: Number of binary functional graphs generated for each prime.

12

B Components

Prime Mean Variance
Predicted Observed t-value P-value Predicted Observed t-value P-value

99923 6.391 6.375 1.559 0.134 5.158 5.170 -0.344 0.764
99961 6.391 6.384 0.329 0.764 5.158 5.210 -0.702 0.484
99971 6.391 6.391 0.059 1.000 5.158 5.219 -1.513 0.134
99989 6.392 6.388 0.261 0.842 5.158 5.147 0.213 0.842
99991 6.392 6.411 -1.330 0.194 5.158 5.131 0.567 0.618
100003 6.392 6.415 -1.746 0.090 5.158 5.208 -1.111 0.272
100019 6.392 6.393 -0.160 0.920 5.158 5.198 -1.136 0.272
100043 6.392 6.389 0.266 0.842 5.158 5.117 1.227 0.230
100049 6.392 6.356 2.342 0.022 5.158 5.144 0.272 0.842
100057 6.392 6.364 1.505 0.134 5.158 5.098 0.981 0.368
100069 6.392 6.380 0.661 0.548 5.158 5.139 0.316 0.764
100103 6.392 6.386 0.637 0.548 5.158 5.182 -0.683 0.548
106261 6.422 6.370 2.350 0.022 5.188 5.176 0.169 0.920
110017 6.439 6.478 -2.269 0.028 5.206 5.171 0.611 0.548
110459 6.441 6.453 -1.201 0.230 5.208 5.184 0.738 0.484
120041 6.483 6.480 0.232 0.842 5.249 5.266 -0.328 0.764
120167 6.483 6.480 0.324 0.764 5.250 5.207 1.371 0.194
130021 6.523 6.508 0.801 0.424 5.289 5.170 1.974 0.058
130127 6.523 6.528 -0.515 0.618 5.290 5.300 -0.352 0.764
140053 6.560 6.576 -1.031 0.318 5.326 5.298 0.530 0.618
140123 6.560 6.545 1.745 0.090 5.327 5.324 0.101 0.920
150001 6.594 6.546 2.978 0.004 5.361 5.354 0.118 0.920
150083 6.595 6.609 -1.756 0.090 5.361 5.360 0.023 1.000
160009 6.627 6.600 1.866 0.072 5.393 5.376 0.335 0.764
160079 6.627 6.637 -1.242 0.230 5.393 5.380 0.472 0.690
170099 6.657 6.644 1.609 0.110 5.424 5.407 0.596 0.618
170101 6.657 6.632 1.521 0.134 5.424 5.381 0.738 0.484
180001 6.686 6.627 3.908 0.000 5.452 5.338 2.247 0.028
180023 6.686 6.685 0.098 1.000 5.452 5.486 -1.278 0.230
190093 6.713 6.699 0.985 0.368 5.479 5.444 0.722 0.484
190523 6.714 6.723 -1.203 0.230 5.480 5.515 -1.339 0.194
200041 6.738 6.704 2.423 0.016 5.505 5.462 0.872 0.424
200087 6.738 6.745 -0.919 0.368 5.505 5.517 -0.477 0.690

Table 6: Observed and theoretical mean number of components and variance in number of components
for 33 primes. t-statistics are from applying a 2-tail t-test, and were used to obtain the P-value.

13

C Cyclic Nodes

Prime Mean Variance
Predicted Observed t-value P-value Predicted Observed t-value P-value

99923 395.179 395.621 -0.472 0.690 42491.925 42783.286 -1.010 0.318
99961 395.254 392.525 1.372 0.194 42508.159 42563.770 -0.093 1.000
99971 395.274 396.225 -0.878 0.424 42512.432 43214.886 -2.030 0.046
99989 395.310 395.114 0.137 0.920 42520.122 43451.612 -2.129 0.036
99991 395.314 394.853 0.348 0.764 42520.976 42190.923 0.804 0.424
100003 395.338 396.658 -1.079 0.318 42526.103 42733.314 -0.551 0.618
100019 395.369 395.179 0.204 0.842 42532.938 42587.935 -0.189 0.920
100043 395.417 395.303 0.123 0.920 42543.192 42227.348 1.123 0.272
100049 395.429 395.312 0.085 1.000 42545.755 43234.898 -1.573 0.134
100057 395.445 395.858 -0.246 0.842 42549.173 42781.153 -0.454 0.690
100069 395.468 395.211 0.157 0.920 42554.299 43343.408 -1.590 0.134
100103 395.536 394.245 1.407 0.162 42568.825 42136.548 1.536 0.134
106261 407.551 408.433 -0.430 0.690 45199.846 44488.375 1.102 0.272
110017 414.708 414.603 0.066 1.000 46804.777 46880.846 -0.146 0.920
110459 415.543 417.077 -1.663 0.110 46993.651 47011.789 -0.061 1.000
120041 433.234 433.334 -0.069 1.000 51088.590 50971.173 0.242 0.842
120167 433.462 433.045 0.452 0.690 51142.441 51228.171 -0.275 0.842
130021 450.924 453.199 -1.198 0.272 55354.352 56512.667 -1.780 0.090
130127 451.109 452.989 -2.033 0.046 55399.663 55614.724 -0.659 0.548
140053 468.035 467.198 0.504 0.618 59643.012 58631.769 1.676 0.110
140123 468.152 467.555 0.647 0.548 59672.939 59757.006 -0.250 0.842
150001 484.407 483.525 0.494 0.690 63896.358 63807.597 0.130 0.920
150083 484.540 487.669 -3.386 0.000 63931.420 64096.713 -0.468 0.690
160009 500.339 500.424 -0.053 1.000 68175.897 67755.971 0.674 0.548
160079 500.449 500.681 -0.252 0.842 68205.832 67829.395 1.047 0.318
170099 515.904 512.754 3.425 0.000 72490.997 71981.329 1.373 0.194
170101 515.907 514.844 0.555 0.618 72491.852 71368.015 1.459 0.162
180001 530.737 529.276 0.823 0.424 76726.139 75536.984 1.640 0.110
180023 530.769 531.465 -0.753 0.484 76735.549 76786.860 -0.134 0.920
190093 545.440 542.939 1.416 0.162 81042.959 80875.321 0.222 0.842
190523 546.058 547.976 -2.079 0.046 81226.899 81064.068 0.416 0.690
200041 559.556 557.622 1.083 0.318 85298.562 84995.931 0.388 0.764
200087 559.620 562.252 -2.841 0.006 85318.241 85825.849 -1.258 0.230

Table 7: Observed and theoretical mean number of cyclic nodes and variance in number of cyclic nodes
for 33 primes. t-statistics are from applying a 2-tail t-test, and were used to obtain the P-value.

14

D Average Cycle Length

Prime Mean Variance
Predicted Observed t-value P-value Predicted Observed t-value P-value

99923 198.090 198.892 -1.236 0.230 27177.770 20631.551 32.900 0.000
99961 198.127 195.151 2.190 0.036 27188.143 19855.515 18.353 0.000
99971 198.137 197.991 0.195 0.920 27190.873 20575.488 28.372 0.000
99989 198.155 198.157 -0.002 1.000 27195.786 20983.340 20.199 0.000
99991 198.157 197.564 0.639 0.548 27196.332 20643.351 22.748 0.000
100003 198.169 198.300 -0.154 0.920 27199.608 20645.738 25.561 0.000
100019 198.185 197.841 0.529 0.618 27203.976 20630.259 32.799 0.000
100043 198.208 198.319 -0.173 0.920 27210.527 20392.727 35.112 0.000
100049 198.214 197.505 0.748 0.484 27212.165 20198.512 24.740 0.000
100057 198.222 198.215 0.006 1.000 27214.349 20680.648 17.942 0.000
100069 198.234 197.509 0.640 0.548 27217.624 20624.273 18.798 0.000
100103 198.268 197.704 0.883 0.424 27226.906 20389.102 35.060 0.000
106261 204.275 206.612 -1.619 0.110 28907.991 22003.465 15.180 0.000
110017 207.854 206.185 1.514 0.134 29933.434 22186.572 22.445 0.000
110459 208.271 209.063 -1.228 0.230 30054.110 22921.145 33.981 0.000
120041 217.117 216.709 0.399 0.764 32670.422 25058.237 21.701 0.000
120167 217.231 216.963 0.418 0.690 32704.828 24617.970 37.913 0.000
130021 225.962 227.173 -0.925 0.368 35395.773 26875.914 19.489 0.000
130127 226.054 227.404 -2.090 0.046 35424.722 27112.730 36.694 0.000
140053 234.518 235.155 -0.546 0.618 38135.661 28874.204 21.605 0.000
140123 234.576 234.477 0.154 0.920 38154.780 28860.896 40.497 0.000
150001 242.704 244.271 -1.255 0.230 40852.904 31212.642 20.560 0.000
150083 242.770 244.601 -2.846 0.006 40875.303 31056.500 41.103 0.000
160009 250.669 253.280 -2.292 0.028 43586.806 33696.107 22.438 0.000
160079 250.724 250.808 -0.130 0.920 43605.929 32881.529 42.924 0.000
170099 258.452 256.815 2.574 0.012 46343.356 34436.466 47.313 0.000
170101 258.454 258.444 0.007 1.000 46343.903 35361.541 19.892 0.000
180001 265.868 264.323 1.252 0.230 49048.767 36552.212 24.427 0.000
180023 265.885 266.585 -1.089 0.318 49054.778 37210.351 44.854 0.000
190093 273.220 273.708 -0.395 0.764 51806.297 39567.572 22.938 0.000
190523 273.529 274.813 -1.995 0.058 51923.794 39467.061 45.135 0.000
200041 280.278 279.706 0.460 0.690 54524.668 41233.270 24.104 0.000
200087 280.310 281.659 -2.097 0.046 54537.238 41358.233 47.640 0.000

Table 8: Observed and theoretical mean average cycle length and variance in average cycle length for 33
primes. t-statistics are from applying a 2-tail t-test, and were used to obtain the P-value.

15

E Average Tail Length

Prime Mean Variance
Predicted Observed t-value P-value Predicted Observed t-value P-value

99923 197.094 197.552 -1.177 0.272 27178.199 7400.315 289.163 0.000
99961 197.131 196.782 0.424 0.690 27188.572 7279.408 135.068 0.000
99971 197.141 198.754 -3.563 0.000 27191.302 7554.003 242.988 0.000
99989 197.159 197.091 0.116 0.920 27196.215 7337.799 194.463 0.000
99991 197.161 196.741 0.763 0.484 27196.761 7263.687 216.992 0.000
100003 197.173 197.926 -1.492 0.162 27200.037 7269.436 228.496 0.000
100019 197.189 197.071 0.303 0.764 27204.405 7401.001 289.771 0.000
100043 197.212 197.178 0.088 1.000 27210.956 7362.882 302.252 0.000
100049 197.218 198.290 -1.859 0.072 27212.594 7464.627 194.361 0.000
100057 197.226 196.768 0.657 0.548 27214.778 7335.733 166.087 0.000
100069 197.238 200.522 -4.739 0.000 27218.054 7722.150 162.246 0.000
100103 197.272 196.897 0.972 0.368 27227.335 7436.388 289.012 0.000
106261 203.279 201.644 1.930 0.058 28908.420 7578.376 141.245 0.000
110017 206.858 205.797 1.602 0.110 29933.863 8004.221 177.592 0.000
110459 207.275 207.261 0.036 1.000 30054.540 8165.605 310.309 0.000
120041 216.121 216.655 -0.877 0.424 32670.851 8910.985 203.307 0.000
120167 216.235 215.620 1.602 0.110 32705.257 8845.946 325.515 0.000
130021 224.966 224.368 0.759 0.484 35396.203 9728.814 160.217 0.000
130127 225.058 226.124 -2.752 0.006 35425.151 9765.134 328.879 0.000
140053 233.521 234.855 -1.907 0.058 38136.090 10380.536 193.514 0.000
140123 233.580 233.598 -0.047 1.000 38155.209 10318.550 351.600 0.000
150001 241.707 242.031 -0.433 0.690 40853.334 11220.811 185.284 0.000
150083 241.773 241.350 1.107 0.272 40875.733 10941.976 374.663 0.000
160009 249.673 248.871 1.206 0.230 43587.235 11474.843 221.910 0.000
160079 249.727 249.619 0.283 0.842 43606.358 11726.168 379.344 0.000
170099 257.455 257.153 0.791 0.484 46343.786 12382.481 390.537 0.000
170101 257.457 257.594 -0.172 0.920 46344.332 12394.279 187.779 0.000
180001 264.871 265.199 -0.440 0.690 49049.196 13336.878 202.746 0.000
180023 264.888 265.843 -2.468 0.016 49055.207 13477.276 385.937 0.000
190093 272.223 273.566 -1.822 0.072 51806.726 14080.980 213.220 0.000
190523 272.532 273.337 -2.094 0.046 51924.223 14072.768 412.570 0.000
200041 279.281 280.272 -1.338 0.194 54525.097 14637.299 224.727 0.000
200087 279.313 278.974 0.883 0.424 54537.668 14731.689 418.880 0.000

Table 9: Observed and theoretical mean average tail length and variance in average tail length for 33
primes. t-statistics are from applying a 2-tail t-test, and were used to obtain the P-value.

16

F Maximum Cycle

Prime Mean Variance
Predicted Observed t-value P-value Observed

99923 247.347 247.597 -0.358 0.764 24009.258
99961 247.394 244.195 2.176 0.036 23231.014
99971 247.406 247.104 0.375 0.764 24003.558
99989 247.428 246.834 0.557 0.618 24354.597
99991 247.431 246.591 0.841 0.424 23880.666
100003 247.446 247.461 -0.017 1.000 23985.838
100019 247.465 246.537 1.327 0.194 23881.212
100043 247.495 247.261 0.339 0.764 23806.218
100049 247.502 246.768 0.716 0.484 23652.104
100057 247.512 247.302 0.167 0.920 23985.249
100069 247.527 246.502 0.839 0.424 24030.513
100103 247.569 246.561 1.464 0.162 23746.781
106261 255.070 256.986 -1.229 0.230 25629.420
110017 259.539 257.916 1.362 0.194 25908.517
110459 260.060 260.661 -0.867 0.424 26503.298
120041 271.105 270.519 0.534 0.618 28918.058
120167 271.248 270.751 0.718 0.484 28760.455
130021 282.150 283.448 -0.917 0.368 31463.383
130127 282.265 283.567 -1.873 0.072 31441.827
140053 292.833 292.879 -0.037 1.000 33562.989
140123 292.906 292.427 0.691 0.548 33621.248
150001 303.054 303.790 -0.547 0.618 36165.692
150083 303.137 304.979 -2.659 0.010 35994.045
160009 313.001 315.267 -1.855 0.072 38751.775
160079 313.069 312.615 0.659 0.548 38105.498
170099 322.719 320.296 3.525 0.000 40178.418
170101 322.721 321.416 0.901 0.368 40801.664
180001 331.979 330.325 1.242 0.230 42612.976
180023 332.000 332.393 -0.567 0.618 43236.317
190093 341.159 340.368 0.595 0.618 45900.280
190523 341.544 342.689 -1.650 0.110 45840.435
200041 349.972 348.661 0.978 0.368 47826.847
200087 350.012 351.356 -1.939 0.058 48068.838

Table 10: Observed and theoretical mean maximum cycle and observed variance in maximum cycle
length for 33 primes. t-statistics are from applying a 2-tail t-test, and were used to obtain the P-value.
No theoretical values for maximum cycle variance exist yet.

17

G Maximum Tail

Prime Mean Variance
Predicted Observed t-value P-value Observed

99923 547.606 543.281 5.835 0.000 26833.550
99961 547.710 541.005 4.253 0.000 26730.420
99971 547.738 544.967 3.219 0.002 27307.394
99989 547.787 542.476 4.746 0.000 26833.394
99991 547.793 541.265 6.173 0.000 26832.102
100003 547.826 543.877 4.087 0.000 26665.133
100019 547.870 542.008 7.905 0.000 26827.293
100043 547.935 541.827 8.359 0.000 26709.198
100049 547.952 544.386 3.226 0.002 27440.183
100057 547.974 541.701 4.707 0.000 26848.354
100069 548.007 549.379 -1.049 0.318 27531.440
100103 548.100 540.967 9.702 0.000 27059.016
106261 564.756 554.905 6.093 0.000 27602.038
110017 574.679 565.605 7.192 0.000 29039.726
110459 575.836 569.769 8.243 0.000 29920.698
120041 600.361 595.029 4.580 0.000 32531.293
120167 600.677 592.276 11.482 0.000 32159.836
130021 624.885 616.087 5.877 0.000 35141.251
130127 625.141 621.785 4.553 0.000 35347.570
140053 648.606 645.702 2.169 0.036 38004.996
140123 648.768 642.440 8.629 0.000 37674.203
150001 671.303 665.275 4.243 0.000 40375.416
150083 671.486 665.402 8.280 0.000 40529.603
160009 693.389 685.142 6.479 0.000 42098.894
160079 693.541 686.769 9.240 0.000 42989.106
170099 714.967 707.318 10.494 0.000 45190.679
170101 714.971 709.991 3.269 0.002 45110.111
180001 735.529 730.899 3.243 0.002 48941.776
180023 735.574 731.320 5.766 0.000 48996.888
190093 755.912 752.173 2.656 0.010 51345.311
190523 756.768 752.829 5.365 0.000 51364.029
200041 775.481 770.913 3.207 0.002 54093.098
200087 775.570 769.207 8.657 0.000 54039.057

Table 11: Observed and theoretical mean maximum tail and observed variance in maximum tail length
for 33 primes. t-statistics are from applying a 2-tail t-test, and were used to obtain the P-value. No
theoretical values for maximum tail variance exist yet.

18

H Code

H.1 bnprime.h

/* Auto generated by bn_prime.pl */

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*

* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*

* Copyright remains Eric Young’s, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word ’cryptographic’ can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*

* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

19

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*

* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

#ifndef EIGHT_BIT

#define NUMPRIMES 2048

#else

#define NUMPRIMES 54

#endif

static const unsigned int primes[NUMPRIMES]=

{

2, 3, 5, 7, 11, 13, 17, 19,

23, 29, 31, 37, 41, 43, 47, 53,

59, 61, 67, 71, 73, 79, 83, 89,

97, 101, 103, 107, 109, 113, 127, 131,

137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199, 211, 223,

227, 229, 233, 239, 241, 251,

#ifndef EIGHT_BIT

257, 263,

269, 271, 277, 281, 283, 293, 307, 311,

313, 317, 331, 337, 347, 349, 353, 359,

367, 373, 379, 383, 389, 397, 401, 409,

419, 421, 431, 433, 439, 443, 449, 457,

461, 463, 467, 479, 487, 491, 499, 503,

509, 521, 523, 541, 547, 557, 563, 569,

571, 577, 587, 593, 599, 601, 607, 613,

617, 619, 631, 641, 643, 647, 653, 659,

661, 673, 677, 683, 691, 701, 709, 719,

727, 733, 739, 743, 751, 757, 761, 769,

773, 787, 797, 809, 811, 821, 823, 827,

829, 839, 853, 857, 859, 863, 877, 881,

883, 887, 907, 911, 919, 929, 937, 941,

947, 953, 967, 971, 977, 983, 991, 997,

20

1009,1013,1019,1021,1031,1033,1039,1049,

1051,1061,1063,1069,1087,1091,1093,1097,

1103,1109,1117,1123,1129,1151,1153,1163,

1171,1181,1187,1193,1201,1213,1217,1223,

1229,1231,1237,1249,1259,1277,1279,1283,

1289,1291,1297,1301,1303,1307,1319,1321,

1327,1361,1367,1373,1381,1399,1409,1423,

1427,1429,1433,1439,1447,1451,1453,1459,

1471,1481,1483,1487,1489,1493,1499,1511,

1523,1531,1543,1549,1553,1559,1567,1571,

1579,1583,1597,1601,1607,1609,1613,1619,

1621,1627,1637,1657,1663,1667,1669,1693,

1697,1699,1709,1721,1723,1733,1741,1747,

1753,1759,1777,1783,1787,1789,1801,1811,

1823,1831,1847,1861,1867,1871,1873,1877,

1879,1889,1901,1907,1913,1931,1933,1949,

1951,1973,1979,1987,1993,1997,1999,2003,

2011,2017,2027,2029,2039,2053,2063,2069,

2081,2083,2087,2089,2099,2111,2113,2129,

2131,2137,2141,2143,2153,2161,2179,2203,

2207,2213,2221,2237,2239,2243,2251,2267,

2269,2273,2281,2287,2293,2297,2309,2311,

2333,2339,2341,2347,2351,2357,2371,2377,

2381,2383,2389,2393,2399,2411,2417,2423,

2437,2441,2447,2459,2467,2473,2477,2503,

2521,2531,2539,2543,2549,2551,2557,2579,

2591,2593,2609,2617,2621,2633,2647,2657,

2659,2663,2671,2677,2683,2687,2689,2693,

2699,2707,2711,2713,2719,2729,2731,2741,

2749,2753,2767,2777,2789,2791,2797,2801,

2803,2819,2833,2837,2843,2851,2857,2861,

2879,2887,2897,2903,2909,2917,2927,2939,

2953,2957,2963,2969,2971,2999,3001,3011,

3019,3023,3037,3041,3049,3061,3067,3079,

3083,3089,3109,3119,3121,3137,3163,3167,

3169,3181,3187,3191,3203,3209,3217,3221,

3229,3251,3253,3257,3259,3271,3299,3301,

3307,3313,3319,3323,3329,3331,3343,3347,

3359,3361,3371,3373,3389,3391,3407,3413,

3433,3449,3457,3461,3463,3467,3469,3491,

3499,3511,3517,3527,3529,3533,3539,3541,

3547,3557,3559,3571,3581,3583,3593,3607,

3613,3617,3623,3631,3637,3643,3659,3671,

3673,3677,3691,3697,3701,3709,3719,3727,

3733,3739,3761,3767,3769,3779,3793,3797,

3803,3821,3823,3833,3847,3851,3853,3863,

21

3877,3881,3889,3907,3911,3917,3919,3923,

3929,3931,3943,3947,3967,3989,4001,4003,

4007,4013,4019,4021,4027,4049,4051,4057,

4073,4079,4091,4093,4099,4111,4127,4129,

4133,4139,4153,4157,4159,4177,4201,4211,

4217,4219,4229,4231,4241,4243,4253,4259,

4261,4271,4273,4283,4289,4297,4327,4337,

4339,4349,4357,4363,4373,4391,4397,4409,

4421,4423,4441,4447,4451,4457,4463,4481,

4483,4493,4507,4513,4517,4519,4523,4547,

4549,4561,4567,4583,4591,4597,4603,4621,

4637,4639,4643,4649,4651,4657,4663,4673,

4679,4691,4703,4721,4723,4729,4733,4751,

4759,4783,4787,4789,4793,4799,4801,4813,

4817,4831,4861,4871,4877,4889,4903,4909,

4919,4931,4933,4937,4943,4951,4957,4967,

4969,4973,4987,4993,4999,5003,5009,5011,

5021,5023,5039,5051,5059,5077,5081,5087,

5099,5101,5107,5113,5119,5147,5153,5167,

5171,5179,5189,5197,5209,5227,5231,5233,

5237,5261,5273,5279,5281,5297,5303,5309,

5323,5333,5347,5351,5381,5387,5393,5399,

5407,5413,5417,5419,5431,5437,5441,5443,

5449,5471,5477,5479,5483,5501,5503,5507,

5519,5521,5527,5531,5557,5563,5569,5573,

5581,5591,5623,5639,5641,5647,5651,5653,

5657,5659,5669,5683,5689,5693,5701,5711,

5717,5737,5741,5743,5749,5779,5783,5791,

5801,5807,5813,5821,5827,5839,5843,5849,

5851,5857,5861,5867,5869,5879,5881,5897,

5903,5923,5927,5939,5953,5981,5987,6007,

6011,6029,6037,6043,6047,6053,6067,6073,

6079,6089,6091,6101,6113,6121,6131,6133,

6143,6151,6163,6173,6197,6199,6203,6211,

6217,6221,6229,6247,6257,6263,6269,6271,

6277,6287,6299,6301,6311,6317,6323,6329,

6337,6343,6353,6359,6361,6367,6373,6379,

6389,6397,6421,6427,6449,6451,6469,6473,

6481,6491,6521,6529,6547,6551,6553,6563,

6569,6571,6577,6581,6599,6607,6619,6637,

6653,6659,6661,6673,6679,6689,6691,6701,

6703,6709,6719,6733,6737,6761,6763,6779,

6781,6791,6793,6803,6823,6827,6829,6833,

6841,6857,6863,6869,6871,6883,6899,6907,

6911,6917,6947,6949,6959,6961,6967,6971,

6977,6983,6991,6997,7001,7013,7019,7027,

22

7039,7043,7057,7069,7079,7103,7109,7121,

7127,7129,7151,7159,7177,7187,7193,7207,

7211,7213,7219,7229,7237,7243,7247,7253,

7283,7297,7307,7309,7321,7331,7333,7349,

7351,7369,7393,7411,7417,7433,7451,7457,

7459,7477,7481,7487,7489,7499,7507,7517,

7523,7529,7537,7541,7547,7549,7559,7561,

7573,7577,7583,7589,7591,7603,7607,7621,

7639,7643,7649,7669,7673,7681,7687,7691,

7699,7703,7717,7723,7727,7741,7753,7757,

7759,7789,7793,7817,7823,7829,7841,7853,

7867,7873,7877,7879,7883,7901,7907,7919,

7927,7933,7937,7949,7951,7963,7993,8009,

8011,8017,8039,8053,8059,8069,8081,8087,

8089,8093,8101,8111,8117,8123,8147,8161,

8167,8171,8179,8191,8209,8219,8221,8231,

8233,8237,8243,8263,8269,8273,8287,8291,

8293,8297,8311,8317,8329,8353,8363,8369,

8377,8387,8389,8419,8423,8429,8431,8443,

8447,8461,8467,8501,8513,8521,8527,8537,

8539,8543,8563,8573,8581,8597,8599,8609,

8623,8627,8629,8641,8647,8663,8669,8677,

8681,8689,8693,8699,8707,8713,8719,8731,

8737,8741,8747,8753,8761,8779,8783,8803,

8807,8819,8821,8831,8837,8839,8849,8861,

8863,8867,8887,8893,8923,8929,8933,8941,

8951,8963,8969,8971,8999,9001,9007,9011,

9013,9029,9041,9043,9049,9059,9067,9091,

9103,9109,9127,9133,9137,9151,9157,9161,

9173,9181,9187,9199,9203,9209,9221,9227,

9239,9241,9257,9277,9281,9283,9293,9311,

9319,9323,9337,9341,9343,9349,9371,9377,

9391,9397,9403,9413,9419,9421,9431,9433,

9437,9439,9461,9463,9467,9473,9479,9491,

9497,9511,9521,9533,9539,9547,9551,9587,

9601,9613,9619,9623,9629,9631,9643,9649,

9661,9677,9679,9689,9697,9719,9721,9733,

9739,9743,9749,9767,9769,9781,9787,9791,

9803,9811,9817,9829,9833,9839,9851,9857,

9859,9871,9883,9887,9901,9907,9923,9929,

9931,9941,9949,9967,9973,10007,10009,10037,

10039,10061,10067,10069,10079,10091,10093,10099,

10103,10111,10133,10139,10141,10151,10159,10163,

10169,10177,10181,10193,10211,10223,10243,10247,

10253,10259,10267,10271,10273,10289,10301,10303,

10313,10321,10331,10333,10337,10343,10357,10369,

23

10391,10399,10427,10429,10433,10453,10457,10459,

10463,10477,10487,10499,10501,10513,10529,10531,

10559,10567,10589,10597,10601,10607,10613,10627,

10631,10639,10651,10657,10663,10667,10687,10691,

10709,10711,10723,10729,10733,10739,10753,10771,

10781,10789,10799,10831,10837,10847,10853,10859,

10861,10867,10883,10889,10891,10903,10909,10937,

10939,10949,10957,10973,10979,10987,10993,11003,

11027,11047,11057,11059,11069,11071,11083,11087,

11093,11113,11117,11119,11131,11149,11159,11161,

11171,11173,11177,11197,11213,11239,11243,11251,

11257,11261,11273,11279,11287,11299,11311,11317,

11321,11329,11351,11353,11369,11383,11393,11399,

11411,11423,11437,11443,11447,11467,11471,11483,

11489,11491,11497,11503,11519,11527,11549,11551,

11579,11587,11593,11597,11617,11621,11633,11657,

11677,11681,11689,11699,11701,11717,11719,11731,

11743,11777,11779,11783,11789,11801,11807,11813,

11821,11827,11831,11833,11839,11863,11867,11887,

11897,11903,11909,11923,11927,11933,11939,11941,

11953,11959,11969,11971,11981,11987,12007,12011,

12037,12041,12043,12049,12071,12073,12097,12101,

12107,12109,12113,12119,12143,12149,12157,12161,

12163,12197,12203,12211,12227,12239,12241,12251,

12253,12263,12269,12277,12281,12289,12301,12323,

12329,12343,12347,12373,12377,12379,12391,12401,

12409,12413,12421,12433,12437,12451,12457,12473,

12479,12487,12491,12497,12503,12511,12517,12527,

12539,12541,12547,12553,12569,12577,12583,12589,

12601,12611,12613,12619,12637,12641,12647,12653,

12659,12671,12689,12697,12703,12713,12721,12739,

12743,12757,12763,12781,12791,12799,12809,12821,

12823,12829,12841,12853,12889,12893,12899,12907,

12911,12917,12919,12923,12941,12953,12959,12967,

12973,12979,12983,13001,13003,13007,13009,13033,

13037,13043,13049,13063,13093,13099,13103,13109,

13121,13127,13147,13151,13159,13163,13171,13177,

13183,13187,13217,13219,13229,13241,13249,13259,

13267,13291,13297,13309,13313,13327,13331,13337,

13339,13367,13381,13397,13399,13411,13417,13421,

13441,13451,13457,13463,13469,13477,13487,13499,

13513,13523,13537,13553,13567,13577,13591,13597,

13613,13619,13627,13633,13649,13669,13679,13681,

13687,13691,13693,13697,13709,13711,13721,13723,

13729,13751,13757,13759,13763,13781,13789,13799,

13807,13829,13831,13841,13859,13873,13877,13879,

24

13883,13901,13903,13907,13913,13921,13931,13933,

13963,13967,13997,13999,14009,14011,14029,14033,

14051,14057,14071,14081,14083,14087,14107,14143,

14149,14153,14159,14173,14177,14197,14207,14221,

14243,14249,14251,14281,14293,14303,14321,14323,

14327,14341,14347,14369,14387,14389,14401,14407,

14411,14419,14423,14431,14437,14447,14449,14461,

14479,14489,14503,14519,14533,14537,14543,14549,

14551,14557,14561,14563,14591,14593,14621,14627,

14629,14633,14639,14653,14657,14669,14683,14699,

14713,14717,14723,14731,14737,14741,14747,14753,

14759,14767,14771,14779,14783,14797,14813,14821,

14827,14831,14843,14851,14867,14869,14879,14887,

14891,14897,14923,14929,14939,14947,14951,14957,

14969,14983,15013,15017,15031,15053,15061,15073,

15077,15083,15091,15101,15107,15121,15131,15137,

15139,15149,15161,15173,15187,15193,15199,15217,

15227,15233,15241,15259,15263,15269,15271,15277,

15287,15289,15299,15307,15313,15319,15329,15331,

15349,15359,15361,15373,15377,15383,15391,15401,

15413,15427,15439,15443,15451,15461,15467,15473,

15493,15497,15511,15527,15541,15551,15559,15569,

15581,15583,15601,15607,15619,15629,15641,15643,

15647,15649,15661,15667,15671,15679,15683,15727,

15731,15733,15737,15739,15749,15761,15767,15773,

15787,15791,15797,15803,15809,15817,15823,15859,

15877,15881,15887,15889,15901,15907,15913,15919,

15923,15937,15959,15971,15973,15991,16001,16007,

16033,16057,16061,16063,16067,16069,16073,16087,

16091,16097,16103,16111,16127,16139,16141,16183,

16187,16189,16193,16217,16223,16229,16231,16249,

16253,16267,16273,16301,16319,16333,16339,16349,

16361,16363,16369,16381,16411,16417,16421,16427,

16433,16447,16451,16453,16477,16481,16487,16493,

16519,16529,16547,16553,16561,16567,16573,16603,

16607,16619,16631,16633,16649,16651,16657,16661,

16673,16691,16693,16699,16703,16729,16741,16747,

16759,16763,16787,16811,16823,16829,16831,16843,

16871,16879,16883,16889,16901,16903,16921,16927,

16931,16937,16943,16963,16979,16981,16987,16993,

17011,17021,17027,17029,17033,17041,17047,17053,

17077,17093,17099,17107,17117,17123,17137,17159,

17167,17183,17189,17191,17203,17207,17209,17231,

17239,17257,17291,17293,17299,17317,17321,17327,

17333,17341,17351,17359,17377,17383,17387,17389,

17393,17401,17417,17419,17431,17443,17449,17467,

25

17471,17477,17483,17489,17491,17497,17509,17519,

17539,17551,17569,17573,17579,17581,17597,17599,

17609,17623,17627,17657,17659,17669,17681,17683,

17707,17713,17729,17737,17747,17749,17761,17783,

17789,17791,17807,17827,17837,17839,17851,17863,

#endif

};

H.2 ca3.h

#ifndef CA3

#define CA3

#include <stdio.h>

#include<math.h>

#include "bn_prime.h"

#include "mpi.h"

#define STATUS "status.txt"

#define n 10069

#define trials 1676.0

#define M_ARY 2

/*

7 -- 2

11 -- 4

1019 -- 508

2579 -- 1288

10069 -- 1676

99923 -- 48852

99961 -- 10752

99971 -- 36864

99989 -- 21420

99991 -- 24000

100003 -- 28560

100019 -- 48840

100049 -- 22464

100069 -- 16080

100103 -- 50050

100057 -- 15120

100043 -- 50020

106261 -- 10560

26

250007 -- 125002

300023 -- 150010

500231 -- 200088

*/

#define bool char

#define false 0

#define true 1

void run();

void run2();

int m_expn(int b, int r, int num);

int m_exp(int b, int r);

long long ml_exp(long long, int, long long);

void computeResults(const int*, const int*, int*, int*);

void setArrays(int*,bool*, int*, bool*);

bool isPrimRoot(int);

bool isRelPrime(int);

void writeTotalResults(int*, int*, int*, int*, int*, int*, int*);

int gcd(int, int);

bool isPrime(int);

bool MillerRabin(int, int, int, int);

#endif

H.3 Lindle2.c

#include "ca3.h"

int main(int argc, char* argv[]) {

MPI_Init(&argc, &argv);

run();

MPI_Finalize();

return 0;

}

27

H.4 Lindle2ca.c

#include "ca3.h"

int mynode, totalnodes;

int m_expn(int b, int r, int num) {

return (int) ml_exp((long long) b, r, (long long) num);

}

int m_exp(int b, int r) {

return m_expn(b, r, n);

}

/*

long long ml_exp(long long b, int r, long long num) {

if (r == 0) return 1;

if(r % 2 == 0) {

long long result = ml_exp(b,r/2,num);

return result * result % num;

}

long long result = ml_exp(b,r/2,num);

return (b * result % num) * result % num;

}

*/

/*taken from wikipedia page*/

long long ml_exp(long long b, int e, long long m) {

long long result = 1;

while (e > 0) {

/*// multiply in this bits’ contribution while using modulus to keep result small*/

if ((e & 1) == 1) result = (result * b) % m;

e >>= 1;

b = (b * b) % m;

}

return result;

}

void computeResults(const int* distToCycle, const int* cycleSize,

int* allToCycleSum, int* allCycleLengthSum) {

int sumDistToCycle = 0;

int sumCycleSize = 0;

int i = 0;

28

for(i = 0; i < n; i++) {

sumDistToCycle += distToCycle[i];

sumCycleSize += cycleSize[i];

}

*allToCycleSum = sumDistToCycle;

*allCycleLengthSum = sumCycleSize;

}

bool isPrimRoot(int base) {

if(!isPrime(n)) return false;

int n_1 = n-1;

if ((unsigned)n_1 > (primes[NUMPRIMES-1]*primes[NUMPRIMES-1]))

printf("Error in Primitive Root Testing, n could have prime factor too large for testing\n");

int n1 = n_1;

int index = 0;

int p;

while(n1 > 1 && index < NUMPRIMES) {

/*find the primes that divide phi(n)*/

if((n1 % primes[index]) == 0) {

p = primes[index];

/* divide out that prime all the way so it isn’t tested again */

while((n1 % primes[index] == 0)) n1/=primes[index];

/*if base^phi(n)/p is 1, not a prim root */

if(m_exp(base,n_1/p) == 1) return false;

/*if(isPrime(n1)) return m_exp(base,n_1/n1) == 1; */

if(n1 == 50021) return (m_exp(base,n_1/50021) != 1);

}

index++;

}

return true;

}

bool isPrime(int num) {

int i = 0;

for(i = 0; i < 50;i++) {

if(primes[i] > (unsigned)num) return true;

if((num % primes[i] == 0) && (num!=primes[i])) return false;

}

29

int k = 0;

int q = num-1;

while(q % 2 == 0) {

k++;

q >>= 1;

}

srand(time(0));

int a;

for(i = 0; i < 10; i++) {

a = (rand() % (num-2)) + 1;

if(!MillerRabin(num, k, q, a)) return false;

}

return true;

}

bool MillerRabin(int num, int k, int q, int a) {

int n1 = num-1;

if(m_expn(a,q, num) == 1) return true;

int i = 0;

for(i = 0; i < k; i++)

if(m_expn(a,(int)pow(2,i)*q, num) == n1) return true;

return false;

}

bool isRelPrime(int base) {

return gcd(base, n-1) == 1;

}

int gcd(int a, int b) {

if(a== 0) return b;

if(b==0) return a;

int r = a % b;

int d = b;

int c;

while (r > 0) {

c = d;

d = r;

r = c % d;

}

return d;

}

void setArrays(int * cycleSize, bool* visit, int* distToCycle, bool* image){

30

int i = 0;

for(i = 0; i < n; i++){

visit[i] = false;

cycleSize[i] = 0;

distToCycle[i] = 0;

image[i] = false;

}

}

void zeroList(int * listArray) {

int i = 0;

for(i = 0; i < n; i++)

listArray[i] = 0;

}

void writeTotalResults(

int* maxTAll,

int* maxCAll,

int* terminalAll,

int* allComponents,

int* allCyclicNodes,

int* allToCycleSum,

int* allCycleLengthSum) {

char fileStr[20];

sprintf(fileStr, "%d_%d_%d.dat", n, M_ARY, mynode);

FILE * out = fopen(fileStr, "w");

/*# cycles base i

//sum of cycle size seen from nodes in base i

//sum of distance to cycle from nodes in base i

//terminal nodes for base i

//max cycle for base i

//max tail for base i

//cyclic nodes for base i */

int i = 2;

for(i = 2; i < n; i++) { /*0 and 1 not considered*/

fprintf(out, "%d %d %d %d %d %d %d\n", allComponents[i], allCycleLengthSum[i],

allToCycleSum[i], terminalAll[i], maxCAll[i], maxTAll[i], allCyclicNodes[i]);

}

fclose(out);

double cComponents = 0;

double cComponentsSquared = 0;

31

double cCyclicNodes = 0;

double cCyclicNodesSquared = 0;

double cImageNodes = 0;

/*variance = 0*/

double cMaxCycle = 0;

double cMaxCycleSquared = 0;

double cMaxTail = 0;

double cMaxTailSquared = 0;

double cWeightedCycle = 0;

double cWeightedCycleSquared = 0;

double cWeightedTail = 0;

double cWeightedTailSquared = 0;

for (i = 2; i < n; i++)

{

cComponents += ((double)allComponents[i]) / trials;

cComponentsSquared += (double)allComponents[i] * (double)allComponents[i] / trials;

cCyclicNodes += (double)allCyclicNodes[i] / trials;

cCyclicNodesSquared += (double)allCyclicNodes[i] * (double)allCyclicNodes[i] / trials;

double cycle = (double)allCycleLengthSum[i] / (double)(n-1);

cWeightedCycle += (double)(cycle) / trials;

cWeightedCycleSquared += (double)(cycle*cycle) / (trials);

double tail = (double)allToCycleSum[i] / (double)(n-1);

cWeightedTail += tail / trials;

cWeightedTailSquared += (double)(tail*tail) / (trials);

if (i != n)

{

if (terminalAll[i] > 0)

cImageNodes += ((double)(n-1) - terminalAll[i]) / trials;

cMaxCycle += (double)maxCAll[i] / trials;

cMaxCycleSquared += (double)maxCAll[i]*(double)maxCAll[i] / trials;

cMaxTail += (double)maxTAll[i] / trials;

cMaxTailSquared += (double)maxTAll[i]*(double)maxTAll[i] / trials;

}

}

32

double cComponentsTot = 0;

double cComponentsSquaredTot = 0;

double cCyclicNodesTot = 0;

double cCyclicNodesSquaredTot = 0;

double cImageNodesTot = 0;

double cMaxCycleTot = 0;

double cMaxCycleSquaredTot = 0;

double cMaxTailTot = 0;

double cMaxTailSquaredTot = 0;

double cWeightedCycleTot = 0;

double cWeightedCycleSquaredTot = 0;

double cWeightedTailTot = 0;

double cWeightedTailSquaredTot = 0;

MPI_Reduce(&cComponents, &cComponentsTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cComponentsSquared, &cComponentsSquaredTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cCyclicNodes, &cCyclicNodesTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cCyclicNodesSquared, &cCyclicNodesSquaredTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cImageNodes, &cImageNodesTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cMaxCycle, &cMaxCycleTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cMaxCycleSquared, &cMaxCycleSquaredTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cMaxTail, &cMaxTailTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cMaxTailSquared, &cMaxTailSquaredTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cWeightedCycle, &cWeightedCycleTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cWeightedCycleSquared, &cWeightedCycleSquaredTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cWeightedTail, &cWeightedTailTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Reduce(&cWeightedTailSquared, &cWeightedTailSquaredTot, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (mynode == 0)

{

char res[20];

sprintf(res, "results_%d.dat", n);

33

FILE * r = fopen(res, "w");

double ComponentsVariance = cComponentsSquaredTot - cComponentsTot*cComponentsTot;

double CyclicNodesVariance = cCyclicNodesSquaredTot - cCyclicNodesTot*cCyclicNodesTot;

double WeightedCycleVariance = cWeightedCycleSquaredTot - cWeightedCycleTot*cWeightedCycleTot;

double WeightedTailVariance = cWeightedTailSquaredTot - cWeightedTailTot*cWeightedTailTot;

double MaxCycleVariance = cMaxCycleSquaredTot - cMaxCycleTot*cMaxCycleTot;

double MaxTailVariance = cMaxTailSquaredTot - cMaxTailTot*cMaxTailTot

fprintf(r, "components: %lf \n", cComponentsTot);

fprintf(r, "components variance: %lf \n", ComponentsVariance);

fprintf(r, "cyclic nodes: %lf \n", cCyclicNodesTot);

fprintf(r, "cyclic nodes variance: %lf\n", CyclicNodesVariance);

fprintf(r, "avg cycle: %lf\n", cWeightedCycleTot);

fprintf(r, "avg cycle variance: %lf\n", WeightedCycleVariance);

fprintf(r, "avg tail: %lf\n", cWeightedTailTot);

fprintf(r, "avg tail variance: %lf\n", WeightedTailVariance);

fprintf(r, "image nodes: %lf\n", cImageNodesTot);

fprintf(r, "max cycle: %lf\n", cMaxCycleTot);

fprintf(r, "max cycle variance: %lf\n", MaxCycleVariance);

fprintf(r, "max tail: %lf\n", cMaxTailTot);

fprintf(r, "max tail variance: %lf\n", MaxTailVariance);

fclose(r);

}

}

void run() {

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

FILE * s;

if (mynode == 0)

{

s = fopen(STATUS, "w");

fprintf(s, "Allocating...\n");

fclose(s);

34

}

/*status << "Allocating...\n";

status.close();*/

bool visit[n];

bool image[n];

/*maximum tail length for base [i]*/

int maxTAll[n];

/*maximum cycle lenghth for base [i]*/

int maxCAll[n];

/*terminal nodes for base [i]*/

int terminalAll[n];

/*size of cycle for the component this node is a part of*/

int cycleSize[n];

/*distance to cycle from node n (0 if node n is cyclic)*/

int distToCycle[n];

/*The number of nodes -in- cycles of size [i] for current n

//int *allCResults = new int[n+1];

//The number of nodes which are [i] away from their cycle

//int *allTResults = new int[n+1];

//The number of tail nodes that lead to a cycle of size [i]

//int *allToCycleResults = new int[n+1];*/

/*Number of components for base i*/

int allComponents[n+1];

/*Number of image nodes for base i*/

int allCyclicNodes[n+1];

/*Sum of all nodes’ distance to cycle for base i */

int allToCycleSum[n+1];

/*Sum of each node’s cycle length for base i */

int allCycleLengthSum[n+1];

/*max cycle, max tail */

int mC, mT;

int next, loc, baseTail, cycleLength, terminal;

int root, exp, base;

int listArray[n];

int listSize = 0;

if (mynode == 0)

{

35

s = fopen(STATUS, "w");

fprintf(s, "zeroing...\n");

fclose(s);

}

/*initialize arrays to 0 */

int i = 0;

for(i = 0; i < n; i++){

if(i < n) {

maxTAll[i] = 0;

maxCAll[i] = 0;

terminalAll[i] = 0;

}

}

allComponents[n] = 0;

allCyclicNodes[n] = 0;

allToCycleSum[n] = 0;

allCycleLengthSum[n] = 0;

double t;

if (mynode == 0)

t = MPI_Wtime();

double tt;

double expTime = 0;

double tailTime = 0;

double intoCycleTime = 0;

double cycleTime = 0;

double resultsTime = 0;

if (mynode == 0)

{

s = fopen(STATUS, "w");

fprintf(s, "Finding a PR...\n");

fclose(s);

}

/*find the smallest primitive root*/

for(root = 1; !isPrimRoot(root); root++);

if (mynode == 0)

{

s = fopen(STATUS, "a");

fprintf(s, "Prim root is %d...\n", root);

fclose(s);

36

}

int count = -1;

for(exp = 0; exp < n; exp ++) {

if(exp % 100 == 0 && mynode == 0) {

s = fopen(STATUS, "w");

fprintf(s, "Exp is %d\n", exp);

fclose(s);

}

/*discard all but the bases which will make the target M-ARY graphs*/

if(gcd(exp,n-1) != M_ARY) continue;

count++;

if(count % totalnodes != mynode) continue;

base = m_exp(root,exp);

mC = 0;

mT = 0;

/*0 out everything*/

setArrays(cycleSize, visit, distToCycle, image);

/*begin making graph, using gamma(i) = base^i mod n*/

for(i = 1; i < n; i++) {

if (visit[i])

continue;

next = i;

listArray[0] = next;

listSize = 1;

tt = MPI_Wtime();

while(!visit[next]){

visit[next] = true;

next = m_exp(base,next);

image[next] = true;

listArray[listSize] = next;

listSize++;

}

expTime += MPI_Wtime() - tt;

int j = 0;

if(cycleSize[next] != 0) {

if(distToCycle[next] == 0) {/*all tail into cycle*/

tt = MPI_Wtime();

37

cycleLength = cycleSize[listArray[listSize-1]];

if(listSize - 1 > mT) mT = listSize - 1;

for(j = 0; j < listSize-1; j++){

distToCycle[listArray[j]] = listSize - 1 - j;

cycleSize[listArray[j]] = cycleLength;

}

intoCycleTime += MPI_Wtime() - tt;

} else {/*extension of tail*/

tt = MPI_Wtime();

baseTail = distToCycle[listArray[listSize-1]];

cycleLength = cycleSize[listArray[listSize-1]];

if(listSize-1 + baseTail > mT) mT = listSize-1 + baseTail;

for(j = 0; j < listSize-1; j++) {

distToCycle[listArray[j]] = baseTail + listSize - 1 - j;

cycleSize[listArray[j]] = cycleLength;

}

tailTime += MPI_Wtime() - tt;

}

} else {/*new cycle found*/

tt = MPI_Wtime();

/*loc will be the first node in the cycle we ran in to*/

int repeat = listArray[listSize-1];

for(j = 0; listArray[j] != repeat; j++);

int firstCycle = j;

cycleLength = listSize - (j+1);

if(cycleLength > mC) mC = cycleLength;

if(firstCycle > mT) mT = firstCycle;

/*mark each tail node along the way with how far it is to*/

/*the cycle (marked as a negative number)*/

for(j = 0; j < firstCycle; j++) {

distToCycle[listArray[j]] = firstCycle - j;

cycleSize[listArray[j]] = cycleLength;

}

/*mark each cycle nodes with how big the cycle is*/

for(j = firstCycle; j < listSize - 1; j++)

cycleSize[listArray[j]] = cycleLength;

allComponents[base]++;

allCyclicNodes[base] += cycleLength;

cycleTime += MPI_Wtime() - tt;

38

}

}

tt = MPI_Wtime();

terminal=0;

for(i = 1; i < n; i++)

if(!image[i]) terminal++;

maxTAll[base] = mT;

maxCAll[base] = mC;

terminalAll[base] = terminal;

computeResults(distToCycle, cycleSize, &allToCycleSum[base], &allCycleLengthSum[base]);

resultsTime += MPI_Wtime() - tt;

}

if (mynode == 0)

{

s = fopen(STATUS, "w");

fprintf(s, "Writing Results...\n");

fclose(s);

}

writeTotalResults(

maxTAll,

maxCAll,

terminalAll,

allComponents,

allCyclicNodes,

allToCycleSum,

allCycleLengthSum);

if (mynode == 0)

{

s = fopen(STATUS, "w");

fprintf(s, "%lf minutes...\n Exiting...\n%lf %lf %lf %lf %lf\n", (MPI_Wtime() - t)/60, expTime, tailTime, intoCycleTime, cycleTime, resultsTime);

fclose(s);

}

printf("%lf\n", expTime);

}

39

References

[1] Max Brugger and Christina Frederick. The discrete logarithm problem and ternary func-
tional graphs. Rose-Hulman Undergraduate Mathematics Journal, 8(2), 2007. http://www.rose-
hulman.edu/mathjournal/archives/2007/vol8-n2/paper8/v8n2-8pd.pdf.

[2] Daniel R. Cloutier. Mapping the discrete logarithm. Senior thesis, Rose-Hulman Institute of Tech-
nology, 2005. http://www.rose-hulman.edu/ holden/Preprints/MapDisLog.pdf.

[3] Daniel R. Cloutier and Joshua Holden. Mapping the discrete logarithm. 2006.
http://xxx.lanl.gov/abs/math.NT/0605024.

[4] Jay Devore and Nicholas Farnum. Applied Statistics for Enginrs and Scientists, chapter 8. Curt
Hinrichs, 2005.

[5] Philippe Flajolet and Andrew M. Odlyzko. Random mapping statistics. In Advances in cryptology—
EUROCRYPT ’89 (Houthalen, 1989), volume 434 of Lecture Notes in Comput. Sci., pages 329–354.
Springer, Berlin, 1990.

[6] B. Salvy and P. Zimmermann. Gfun: a maple package for the manipulation of generating and
holonomic functions in one variable. ACM Transactions on Mathematical Software, 1994.

40

	A Statistical Look at Maps of the Discrete Logarithm
	Recommended Citation

	08-06cover
	08-06direct

