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People routinely ponder “how much” or “how little,” and these questions
have naturally found their way into the bedrock of mathematics. Indeed, math-
ematics abounds with the max, min, sup and inf operators, and as such, a
study of optimization supports, in some degree, the spectrum of mathematics
and its applications. The field’s diversity is one of its greatest strengths, but it
is also one of its biggest curricular challenges. For what does it mean to study
and teach optimization? You are likely to get different answers from different
people, and this article addresses the pedagogical issues of an undergraduate
course in optimization. In particular, we position the recent texts Introduction
to Optimization by Pablo Pedregal [4] and Understanding and Using Linear
Programming by Jǐrŕ Matoušek and Bernd Gärtner [3] within this context.

An undergraduate optimization course differs from the mathematical staples
of calculus, linear algebra, analysis and algebra, which are arguably the basis of
an undergraduate education in mathematics. Although the organization and de-
livery of these courses is debated, many of the topics are standardized. Calculus
and analysis are built on the concepts of continuity, differentiability and inte-
grability; algebra demands a study of groups, rings and fields; and most linear
algebra contains an introduction to matrix algebra and linear transformations.
The gateway to optimization is not as well defined. At its core, optimization is
the study of problems that can be formulated as

opt{f(x) : x ∈ X}, (1)

where opt is one of min, max, inf or sup, X is a set germane to the study, and
f maps X into some partially ordered set. From this simplistic description we
see that students need at least a rudimentary, if not formal, introduction to set
theory & functions. Otherwise, the flavor of the course depends on the tools of
the students who enter the classroom. The course’s intent can vary along with
its level of sophistication, and hence, a course in optimization is available to
almost any undergraduate with a few standard prerequisites, such as calculus
and linear algebra.
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Although there is not a list of standard topics that coalesce to define a stereo-
typical undergraduate course, the following three themes should be addressed,

Modeling The art of modeling is paramount and provides the elemental ex-
amples needed to motive insight, rigor, and subtlety.

Duality and Necessary/Sufficient Conditions This is optimization’s cen-
tral topic and guides much of the theory to analyze and solve problems.

Solution Techniques Optimization has flourished due to the success of effi-
cient algorithms to solve large, meaningful problem classes.

No introductory course can deeply mine all these concepts, but an inauguration
into their fundamentals is certainly possible in a first course. It is unnecessary
to give equal homage to each, and some courses will naturally focus on one or
two. For example, the author’s modeling course teaches the process of going
from expressed interests and data, to a general model, and then to an analysis of
the problem instance defined by the data. In optimization, much of the analysis
requires an understanding of duality and the solution procedure, for egregious
interpretations are otherwise possible. So, even in a course focused on modeling,
a detailed introduction into the other themes is important. A theoretical intro-
duction to duality and/or solution methods is possible without modeling, but
this hollows the essence of the discipline. Such a development would be similar
to a course in Lebesgue theory without an example of a Lebesgue integrable
function that fails to be Riemann integrable. The point is that the beauti-
ful convergence theory supported by Lebesgue theory is appreciated against
the backdrop of the Riemann integral’s limitations. With good examples, the
reason and theoretical restrictions are self-evident. The same is true for opti-
mization. Many problem classes are important because they include meaningful
applications, and many of the theoretical nuances are clear with illuminating
examples.

A common first course uses linear programming (LP) as the educational
vehicle, which is the topic of the text by Matoušek and Gärtner [3]. This
type of course is prevalent, and some mistakenly assume that optimization is
synonymous with LP (and more generally with mathematical programming).
Similarly, others mistakenly interchange optimization with control theory and
dynamic programming (controls & DP). Problems in these areas generally com-
bine to form optimization. Both sides are principled on the above themes, and
armed with an understanding in one prepares for an understanding in the other.
The text of Pedregal [4] succinctly introduces both realms and highlights the
parallel themes.

Dividing optimization into mathematical programming versus controls & DP
is but one of the many possible splits in a taxonomy. This particular division
largely hinges on the nature of the feasible set X. If we are solving problems
over a vector space like Rn, then we are within the realm of mathematical pro-
gramming. If we are instead concerned with a space like the collection of smooth
functions, then we are working in controls & DP. Other standard divisions are
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Topic Prerequisites Audience
Linear Prog. Calculus, Lin. Alg. 2nd - 4th year students.

(analysis) Math, Science, Engineering,
Management Sci., Economics

Integer Prog. Calculus, Lin. Alg. 2nd - 4th year students.
(Computing) Math, Computer Science,

Management Science
Opt. Modeling Calculus, Lin. Alg. 2nd - 4th year students.

(Diff. Eq., Prob. & Math, Science, Engineering,
Stat., Computing) Management Sci., Economics

Comb. Opt. Graph Theory, Lin. Alg. 2nd - 4th year students.
Math, Computer Science,
Management Science

Nonlinear Prog. Analysis, Lin. Alg. 3rd - 4th year students.
Math, Engineering

Control Theory Analysis, Lin. Alg. 3rd - 4th year students.
Math, Engineering

Mathematical Opt. Analysis, Line. Alg. 3rd - 4th year students
(algebra, graph theory) Math

Table 1: Some example topics for a first course. Parenthetical prerequisites are
suggested depending on the level of desired rigor.

deterministic versus stochastic, linear versus nonlinear, and continuous versus
discrete. A first course should live within one of the main subdivisions. As an ex-
ample, it is likely overly ambitious to introduce both deterministic and stochastic
variants of nonlinear programming within a standard semester/quarter while at
the same time sufficiently introducing the above themes.

Characteristics for a few gateway courses are listed in Table 1, which is but
a whisper of the possibilities. The purposeful omission of operations research
(OR) deserves comment. While OR and optimization have a significant over-
lap, OR includes additional topics that limit an introduction into optimization’s
central themes within the confines of a single course. For example, OR would
typically include discussions on queuing theory and simulation, which play a
role in optimization but are disciplines within themselves. OR is innately an
applied discipline that brings to bear whatever mathematical tools aid a prob-
lem’s solution, and its study is consequently spread over topics in and out of
optimization.

The prerequisites in Table 1 indicate the topics needed to succeed and/or
a comparable level of mathematical maturity. Calculus is listed for linear and
integer programming, but it is possible to introduce the needed concepts within
the most basic of courses. Most curricula require some calculus before linear
algebra, making the calculus prerequisite tacit. Those listed with an analysis
prerequisite indicate that the theoretical development is rigorously similar to
a standard first course in analysis or advanced calculus. The prerequisites can
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vary depending on the intent of the course. If stochastic problems are to be
considered, then a prerequisite in probability is appropriate. The topics in
Table 1 are intentionally deterministic since the stochastic counterparts have
an increased level of sophistication that complicates the fundamental theory.
If probability theory is standard among the student population, a stochastic
version of any of these is possible, if not desirable.

From the author’s experience, students generally enter a course with two
weaknesses. First, they are able to mechanically perform multivariate calculus
but lack the command and geometric insight to use this material in a theoretical
framework. This sentiment is not atypical and is the impetus for Div, Grad,
Curl and all That [5]. Second (and similarly), students have mechanical skills
from linear algebra but little control of the associated theory. These shortcom-
ings lengthen the time required to present simple concepts, like the definition
of a hyperplane, gradient descent, or analytic equivalents of convexity. This is
not a deriding reflection on the calculus and linear algebra we all teach; rather,
the fact is that most students need time to wield these concepts. The sub-
tlety of mathematics is striking, and we should not forget that several great
minds made mistakes. Unlike the author, who initially overestimated student
abilities, first time instructors should be cautious about the course’s pace since
succinct reviews are warranted. As discussed momentarily, combining material
from several courses is one of optimizations strengths within the undergraduate
curriculum.

Some (graduate) curricula sequence their optimization courses, with LP be-
ing the conventional introduction. This makes sense if there is an ample menu
of continuations, but undergraduate courses should be tailored to the curricular
goals of the environment and to the flexibility of the program. An undergradu-
ate degree only introduces the mathematical discipline, and providing a window
into the many realms of mathematics is not possible. By the time a student com-
pletes the staples mentioned earlier together with other, more common courses
such as differential equations, number theory, combinatorics, geometry, topol-
ogy, etc..., there are only a few opportunities to broaden and/or deepen the
undergraduate experience. In such a situation, what is the reason to offer a
course in optimization? Two answers come to mind.

• Optimization builds on several mathematical staples and fills the peda-
gogical role of a capstone course that re-emphasizes and solidifies previous
coursework.

• Optimization is a natural conduit to other disciplines.

The first of these is directed at a course in the later part of an undergraduate
curriculum. Such a course could combine topics from analysis, algebra, lin-
ear algebra, and combinatorics. Few students would be able to acquire each
of these as a prerequisite, but as long as a student enters the course with an
understanding of and the maturity from a couple of these courses, topics in the
others can be introduced to promote optimization. This type of course broadens
and affirms the undergraduate repertoire and provides a rigorous foundation for
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further study in optimization. The second reason highlights the fact that op-
timization is well positioned to support the interdisciplinary nature of modern
mathematics. From the author’s experience, the trend among undergraduate
mathematics majors is to have a second major. In such an environment, an
optimization course can support the educational hand-off between the disci-
plines. This intermediary role is supported by abundant examples in science
and engineering, but also extends to art, see the work of Bosch [1], and the
social sciences, especially within economics. Moreover, there is the flexibility
to include a quantitative/computer science component, which is sometimes de-
sired. So, optimization is a handy curricular tool that broadens departmental
offerings and advances other educational directives. Also, the level of rigor and
application can be tuned to meet curricular desires.

Although their objectives are different, the two texts of this article amply
meet the needs of a first course in optimization and are quality classroom com-
panions. Neither is written expressly for students of mathematics, but both
have a pleasant mix of application and theory. The level of rigor approaches a
third or fourth year student who has already had calculus, linear algebra, and
possibly differential equations.

In the preface of Introduction to Optimization, Dr. Pedregal indicates the in-
tended audience is science and engineering students. The text’s goal is to show
that “mathematical programming, variational problems, and optimal control
problems are explained and integrated as a unity.” The author beautifully ac-
complishes this objective in a succinct 233 pages, including homework problems
and a long, well-explained collection of meaningful examples. The examples
initiate the presentation and are re-visited as the material to analyze them is
developed. The author immediately and successfully establishes that the art of
modeling is an essential part of the discipline. Students in physics, engineering
and applied mathematics will warm to this beginning and will be encouraged
to learn the mathematics that follows.

The rest of the text is staged with a discussion of mathematical program-
ming, with chapters on LP (including the simplex algorithm), nonlinear pro-
gramming, and nonlinear solution techniques, followed by chapters on varia-
tional problems & DP and control theory. The strength of this progression is
that it highlights the role of the above mentioned themes across the discipline.
The theoretical content is presented in a ‘conversational’ form and reminds the
author of the style used by Churchill and Brown in Complex Variables and Ap-
plications [2]. Several concepts are illustrated with example instead of proof,
but the central theory is clear and well established. The use of examples to
flirt with important concepts just beyond the central themes is expected and
necessitated by the author’s goal to present the “unity” that encompasses the
entirety of the field.

A limitation of the presentation is that the mathematical results are stated
in a simple from, which reduces subtlety and rigor. For example, the discussion
on LP routinely refers to the optimal solution and claims that a unique optimal
solution “is the most desirable situation.” It is certainly desirable from a pre-
sentation perspective since it streamlines development, but the most desirable
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situation is the one that most accurately describes the phenomena and that is
mathematically sound. This particular issue presents itself with the common
misconception that the dual solution provides marginal information, which is
generally false in the presence of degeneracy. Nothing in this discussion is tech-
nically incorrect or purposefully misleading since the author’s goal is to give
insight instead of rigor. The development of the Karush-Kuhn-Tucker condi-
tions similarly assumes the simplifying condition of regularity and states that
singularities are “beyond the scope of this text,” which is true and exactly the
point. If these and related issues were developed, the text would lose its lean
attractiveness of introducing the preeminent topics over the entirety of the field.

The reliance on intuition and example increases as the text continues with
DP and controls in Chapters 5 and 6, where Bellman’s equation and Pontryagin’s
maximum principal are presented. The examples highlight the results and hint
at the underlying mathematics, and importantly, they give the insight needed
to solve problems. On this later point, the author includes a brief discussion
about discretizing continuous problems for numerical approximation. Again,
the fact that these results are intuitively motivated is necessitated by the over-
riding pedagogical objective. Just as it would be daunting, if not impossible, to
begin a course with separable differential equations and conclude with a rigor-
ous presentation of Krylov spaces, it is unrealistic to expect a mathematically
robust presentation of controls & DP. The point is that the author has found
a way to start with the fundamentals of mathematical programming and end
with an intuitive glimpse into the mathematics of controls & DP.

A mathematics course based on this text is well suited to students of mathe-
matics and engineering. In a single course, students see the mathematical pillars
of a theory driven by rich and meaningful examples and leave with a broad un-
derstanding of optimization as an applied mathematical discipline. They will
also be prepared to advance their understanding of the sub-disciplines. Few
texts introduce the desired unity of the discipline, and none to the authors
knowledge do so as succinctly and as cleanly. Augmented with theoretical de-
velopments, especially for the material on controls & DP, this text could span
two courses.

The text by Matoušek and Gärtner [3] has the different target audience of
computer science students, with their guiding phrase being “what every theo-
retical computer scientist should know about linear programming.” This text
almost exclusively addresses LP and is thus similar to many LP texts that are
used for an introductory course. The text begins with a geometric description
and a brief collection of traditional examples like the diet problem, the problem
of finding a separating hyperplane, the problem of maximizing flow in a net-
work, and 1-norm regression. As with the other text, the idea is to use modeling
as motivation. More interesting applications await the reader at the end of the
text.

The book continues with a look at integer programming, which focuses on
the three problems of finding 1) a maximum weight matching, 2) a minimum
vertex cover, and 3) a maximum independent set. These are classic problems
and are purposefully selected to highlight the varied difficulties associated with
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integer programs. The first problem is shown to be solvable by relaxing the
integral constraints. The second is known to be NP-hard, but the authors use
the relaxation to develop a heuristic that renders a solution with an objective
value no worse than twice the best possible. The integral relaxation for the third
is shown to provide no information about the best objective value under the
integral constraint, and hence, the scheme used in the first two examples fails.
Introducing these concepts early in the text is not standard but is appropriate
for the target audience since these problems are often considered by computer
scientists. Moreover, this material is not an introduction to integer programming
but is rather a good description of how the continuous relaxation can or can
not approximate the associated integer problem. This presentation assumes a
basic knowledge of complexity, a topic that is not likely to be understood by
mathematics students.

LP theory and solution methods are alternately discussed in the next four
chapters. The authors do not take the shortest route through this material and
thankfully discusses convexity and polyhedral theory, discussions that would
not have been needed if the goal had been to only develop the simplex method
and the strong duality theorem. This is one of the book’s strengths, as the
authors seem intent on educating the reader about how LP’s theory flows from
more general and powerful results. The lack of a similar intent is the downfall
of some texts used in the mathematics classroom. If the goal is to provide a
first course in optimization from the LP perspective, then LP should be used
to illuminate results within the field and not solely be viewed as a particularly
special problem class with special proofs. Matoušek and Gärtner balance their
presentation between proofs based on the linearity and those that do not. As
an example, the text provides two proofs of the duality theorem, one based on
the simplex algorithm, which is specific to LP, and another on Farkas’ lemma,
which is a more general result. Three separate derivations of Farkas’ lemma
are included, a traditional argument based on separating hyperplanes, another
on minimally (irreducible) infeasible subsystems (a proof that was new to me),
and a final argument that uses Fourier-Motzkin elimination. This is a wonderful
development for mathematics students since each proof is in its own right a little
gem of thought and creativeness.

Solution methods are not limited to the simplex method, and the basics of an
ellipsoid method and an interior point method are present. The discussion of the
simplex method is robust and includes different pivot schemes and a proof that
cycling is not possible under Bland’s rule. It also hints at the fact that an LP
algorithm is searching for a partition of the variable indices, a point often missed.
The other techniques lack the same level of rigor, with the only complete result
being that the central path is well defined under a rank condition. A benefit
of this material is that it requires Newton’s method, which again, places LP
within the broader context of optimization. Newton’s method is not specifically
mentioned, but the technique is evident.

The final chapter is titled “More Applications,” but these are not blaisé
models like those mentioned earlier in the text. Rather, this is a collection
of theoretical applications, and the authors impressively demonstrate how the
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theory of LP can be used as a tool to prove other results. Some of the areas
considered are zero sum games, coding theory, and the search for sparse so-
lutions (those with small support sets). This collection is a welcome addition
to an introductory course since it begins to show how optimization’s tentacles
reach into other disciplines. The text concludes with a substantive glossary that
extends beyond the covered topics.

Although there are numerous favorable qualities, the role of [3] within a
standard mathematics classroom is limited for three reasons. First, there are
no homework problems. Second, as with the first text, there are places where
proofs are either sketched or simply ignored. The authors place many of the
proofs in indented text and state that “Whoever finds these passages incompre-
hensible may freely ignore them.” This mentality may be fine in other areas,
but mathematicians are all about the proofs. Third, as mentioned above, there
are areas where some knowledge of computer science is assumed, and this ma-
terial will likely need supplementation. If the instructor is willing to augment
the text, then this would be an exceptional basis for a mathematics course that
bridges computer science. It would certainly be a superb auxiliary text for an
undergraduate course on LP.
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