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Abstract

Proteins are a primary functional component of organic life, and understanding their
function is integral to many areas of research in biochemistry. The three-dimensional
structure of a protein largely determines this function. Protein structure alignment com-
pares the structure of a protein with known function to that of a protein with unknown
function. A protein’s three-dimensional structure can be transformed through a smooth
piecewise-linear sigmoid function to a real symmetric contact matrix that represents the
functional significance of certain parts of the protein. We address the protein alignment
problem as a minimization of the 2-norm difference of two proteins’ contact matrices.
The minimization is presented as a bilinear program, and spectral bounds for best- and
worst-case alignments are provided, which are continuous with respect to small changes
in the protein’s structure. Further conditions for a perfect alignment and heuristics for
finding quality solutions are given.

1 Introduction

Proteins are long chains of amino acids that form unique, tightly packed, globular structures
called folds. The three-dimensional structure of a protein molecule, defined by its fold, largely
determines its biological function [3]. Applying this property, protein alignment techniques
seek to draw useful conclusions about the biological function of a protein given data about its
fold. Specifically, the available data is the locations in three-dimensional space of components
of the protein. With current technology, these components are generally amino acids, but in
the future the location of every atom might be known. Our mathematical model is the same,
and so, a generalized term for the components is used, namely residues.

The fold of a protein can be described by the relative distances between residues rather than by
a list of the three-dimensional coordinates. In this way, proteins can be compared independently
of the coordinate system. One common alignment technique compares the relative distances
between the residues directly. A second common technique compares contact matrices, or
contact maps, that describe the closeness of any two residues relative to a cut-off distance. In
both cases, the goal is to compare the three-dimensional structure of a protein whose function
is unknown to the three-dimensional structure of a protein whose biological function is known.
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Methods of comparing protein structures that use distances directly have a disadvantage, which
stems from the biology of the problem. At distances greater than a certain length, no chemical
bonding occurs [3]. Contact matrices are used to compare proteins because they provide
information about which residues are chemically bonded to others. While contact map overlap
alignment problems use discrete contact maps [5], defining contact discretely limits flexibility.
We follow the model presented in [7], which smooths the contact information and reformulates
the problem in n-dimensional Euclidean space.

2 Notation

Consider an n × 3 coordinate matrix whose ith row is the coordinates of the ith residue of
the protein, and let M be the n × n distance matrix whose (i, j)th element is the distance
between residue i and residue j. This gives a symmetric matrix whose diagonal elements are
zero. When comparing two different proteins, we refer to their distance matrices as M ′ and
M ′′.

Let C be a smooth contact map, or matrix, based on a distance matrix M . Let B1 and B2,
with 0 ≤ B1 ≤ B2, be the breakpoints of a piecewise-linear sigmoid function. Define C by

[C(B1, B2)]i,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if Mij ≤ B1

0 if Mij ≥ B2

1 − Mij −B1

B2 −B1
if B1 < Mij < B2.

(1)

The entry in the (i, j)th position of C gives a measurement of the strength of the bond between
the ith and jth residues. A value of one is the strongest bond, and a value of zero is the weakest.
Since a distance of zero produces a contact value of one, the diagonal entries of C are one.
The breakpoints, B1 and B2, permit flexibility with regard to the exact cut-off distance. For
any distance between B1 and B2, the greater the distance, the smaller the value in the smooth
contact map. For all distances greater than B2, the contact has a value of zero.

Let C′ and C′′ be the contact matrices for the two proteins being compared, and assume
that C′ and C′′ are the same size, i.e., assume that two proteins contain the same number of
residues.1 The eigenvalues of C′ and C′′ are denoted λ′i and λ′′i , respectively, where i indexes the
eigenvalues in order of decreasing magnitude. Since C′ and C′′ are real symmetric matrices,
C′ and C′′ are normal. It follows that each is unitarily similar to a diagonal matrix of its
eigenvalues. Specifically,

C′ = UD′UT and C′′ = WD′′WT ,

where D′ and D′′ are the diagonal matrices with λ′i and λ′′i , respectively, in the ith row, and
U and W are unitary matrices whose ith column is the eigenvector associated with λ′i and λ′′i .

1C.f. the matrix Γ in [7] for a way to ameliorate the problem of differing numbers of residues per protein
and how to judicially select which ones are relevant for protein function and therefore comparison.
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Figure 1: Graph of C(2, 8) as defined in (1)

2.1 Example of determining a contact matrix

Consider the coordinate matrix X , corresponding distance matrix M , and corresponding con-
tact matrix C below.

X =

⎡
⎢⎣
2 2 0

8 −6 0

5 −2 0

⎤
⎥⎦ =⇒ M =

⎡
⎢⎣

0 10 5

10 0 5

5 5 0

⎤
⎥⎦ =⇒ C =

⎡
⎢⎣

1 0 1
2

0 1 1
2

1
2

1
2 1

⎤
⎥⎦

The element in the first row and second column of M is calculated as follows:

M1,2 = ‖(2, 2, 0)− (8,−6, 0)‖ =
√

(2 − 8)2 + (2 −−6)2 + (0 − 0)2 = 10

All other elements of M are calculated similarly. The element in the first row and third column
of C is calculated as defined in (1):

C1,3(2, 8) = 1 − M1,3 − 2
8 − 2

= 1 − 5 − 2
8 − 2

=
1
2

In this example, C1,1(2, 8) = 1 means that residue 1 has full contact with itself, C1,2(2, 8) = 0
means that residue 1 has no contact with residue 2, and C1,3(2, 8) = 1

2 means that residue 1
has some contact with residue 3. Figure 1 provides further intuition about the meaning of each
contact value.
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3 Problem Statement

We define a search space over three collections of linear operators. Let

• P be the collection of all permutation matrices,

• R be the collection of all unitary matrices, and

• I be the collection of all axial reflections, i.e., I is the set of all diagonal matrices I± for
which each diagonal element is either 1 or −1. The diagonal element in the ith row of
I± is denoted ηi.

Let ‖ · ‖ represent the matrix 2-norm (or equivalently the Frobenius norm) unless indicated
otherwise. The alignment problem is

min{‖C′ − ΘC′′Ω‖ : ΘΩTW = UI±, I± ∈ I,Θ ∈ R,Ω ∈ P}. (2)

As stated, the optimization problem studies the deviation between the smooth contact maps,
and we refer to it as the deviation problem statement. Two proteins align well if their contact
matrices align well, allowing for permutation, by Ω, and signing, by I±, of the columns. The
role of Θ is to align the eigenspaces of the contact matrices. We rewrite the optimization
problem in three distinct forms that remove Θ by substitution and focus on the remaining two
parameters Ω and I±. Each form lends itself to a different approach to solving the problem.

3.1 Matrix form of a bilinear program

The first form in which we state the problem considers a minimization of the matrix 2-norm as
in (2). We alter the expression inside the norm. First, substituting Θ = UI±WT , C′ = UD′UT

and C′′ = WD′′WT , we have

C′ − ΘC′′Ω = UD′UT − UI±WTWD′′WT Ω
= U(D′UT − I±D′′WT Ω).

Since the 2-norm is invariant under unitary transformations,

‖U(D′UT − I±D′′WT Ω)‖ = ‖D′UT − I±D′′WT Ω‖ = ‖D′ − I±D′′WT ΩU‖.

We rewrite the deviation problem in the left matrix form as

min{‖D′UT − I±D′′WT Ω‖ : I± ∈ I,Ω ∈ P}, (3)

and in the right matrix form as

min{‖D′ − I±D′′WT ΩU‖ : I± ∈ I,Ω ∈ P}. (4)

The matrix forms of a bilinear program are useful for calculating a worst-case I±.2

2See Section 7, A Simplified Calculation of I±.
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3.2 Angle calculation

To obtain the second form of the problem, we exploit properties of the 2-norm and simplify
the right matrix form in (4). Specifically, we modify a simplification of the problem shown in
[7] to rewrite the minimization of the 2-norm as a maximization of a finite sum. Since we are
considering a optimization problem over I± and Ω, minimizing ‖ · ‖2 minimizes ‖ · ‖. Then, by
a property of the 2-norm,

‖D′ − I±D′′WT ΩU‖2

= tr((D′ − I±D′′WT ΩU)T (D′ − I±D′′WT ΩU))
= tr((D′ − UT ΩTWD′′I±)(D′ − I±D′′WT ΩU))
= tr((D′)2 −D′I±D′′WT ΩU − UT ΩTWD′′I±D′ + UT ΩTWD′′I±I±D′′WT ΩU)
= tr((D′)2 −D′I±D′′WT ΩU − UT ΩTWD′′I±D′ + UT ΩTW (D′′)2WT ΩU)
= tr((D′)2) − tr(D′I±D′′WT ΩU) − tr(UT ΩTWD′′I±D′) + tr(UT ΩTW (D′′)2WT ΩU).

Since tr(A) = tr(AT ) for any matrix A,

‖D′ − I±D′′WT ΩU‖2 = tr(D′2) + tr(UT ΩTW (D′′2)WT ΩU) − 2tr(D′I±D′′WT ΩU).

Optimizing over I± and Ω allows us to ignore the first two terms. The first term is clearly
invariant under the optimization. For the second term, note that tr(UT ΩTW (D′′2)WT ΩU) =
‖D′′WT ΩU‖2. Then since W , U , Ω and their respective transpose matrices are unitary,
‖D′′WT ΩU‖2 = ‖D′′‖2 = tr((D′′)2). Therefore, the second term is invariant under the opti-
mization as well. The problem reduces to

max{tr(D′I±D′′WT ΩU) : I± ∈ I, Ω ∈ P}. (5)

The problem as stated in (5), provides geometric intuition about the angle between paired
eigenvectors. The terms in the trace sum are dot products of rows of WT and columns of ΩU ,
both of which are eigenvectors, and the dot product of two vectors is inversely proportional
to the angle between them. So, by maximizing the trace calculation, we are minimizing the
angles between the paired eigenvectors.

3.3 A bilinear program based on the assignment problem

The trace calculation of an n-dimensional matrix is a finite sum of n terms. In order to
maximize the trace calculation, we want each of these n terms to be as large as possible.
Choosing the best combination of terms is directly related to the choice of either 1 or 0 as the
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value of Ωij for each pair (i, j). We consider the assignment problem:

max
n∑
ij

cijΩij

subject to
n∑
i

Ωij = 1

n∑
j

Ωij = 1

Ωij ∈ {0, 1}.

In this model, cij represents the benefit of choosing 1 as the value of Ωij . In the expression
in the interior of our trace calculation, the permutation matrix Ω is acting on the rows of U .
Since Ω is pairing a row of U with a column of WT , we say that Ω is pairing a row of U with
a row of W . Specifically, if the value of Ωij is 1, then the jth row of U is paired with the ith
row of W . We must also incorporate I±, D′ and D′′. Note that all three matrices act on the
columns of W . In particular, ηk, λ′k and λ′′k act on the kth column of W . We thus define cij
by

cij =
n∑
k

ηkλ
′
kλ

′′
kWikUjk

The bilinear optimization problem associated with (4) is

max
n∑
ij

(
n∑
k

ηkλ
′
kλ

′′
kWikUjk

)
Ωij (6)

subject to
n∑
i

Ωij = 1

n∑
i

Ωij = 1

Ωij ∈ {0, 1}, ηk ∈ {−1, 1}.

The assignment problem has been studied in detail, and so, modelling our problem in this
way provides us with a tool for finding a quality solution. Previous work with this protein
alignment technique has shown that if one knows the optimal I±, then finding the optimal Ω is
possible in polynomial time. When the problem is written as in (6), it is clear that if we know
the value of cij for all (i, j) pairs, then we can calculate Ωij for all (i, j) pairs in polynomial
time. As defined above, each cij depends on I±. Note that if one could find an optimal Ω,
then one could find the optimal I± in linear time.

Both the calculation of I± and the calculation of Ω involve large search spaces, 2n and n!,
respectively. Reformulating the alignment problem, however, yields two useful results. In
Section 4, we bound the optimization problem independent of both I± and Ω. In Section 7,
we will explain a more efficient calculation of I± than previously presented in [7].
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4 Bounding the Problem

In this section we derive both an upper and lower bound for the problem dependent only on the
eigenvalues of the contact matrices, C′ and C′′. A lower spectral bound allows us to analyse
the implications of a perfect alignment with regard to the eigenvalues.

4.1 Upper and lower bounds

Recall the equality developed in 3.2:

‖D′ − I±D′′WT ΩU‖2 = tr((D′)2) + tr((D′′)2) − 2tr(D′I±D′′WT ΩU).

Also recall that W , U , Ω and their respective transpose matrices are unitary, and any product
of unitary matrices is also unitary. Since each diagonal element of a unitary matrix is less than
or equal to 1 and greater than or equal to −1, we bound the expression tr(D′I±D′′WT ΩU) as
follows:

−
n∑

i=1

(|λ′i||λ′′i |) ≤ tr(D′I±D′′WT ΩU) ≤
n∑

i=1

(|λ′i||λ′′i |) .

Then,

2
n∑

i=1

(|λ′i||λ′′i |) ≥ −2tr(D′I±D′′WT ΩU) ≥ −2
n∑

i=1

(|λ′i||λ′′i |)

Adding tr((D′)2) + tr((D′′)2) through the inequality, an upper bound for the left matrix form
and thus the deviation problem in (2) is

n∑
i=1

(
(λ′i)

2 + (λ′′i )2
)

+ 2
n∑

i=1

(|λ′i||λ′′i |) , (7)

and a lower bound for (2) is

n∑
i=1

(
(λ′i)

2 + (λ′′i )2
)− 2

n∑
i=1

(|λ′i||λ′′i |) . (8)

Factoring this out, we have the equivalent form of this lower bound,

n∑
i=1

(|λ′i| − |λ′′i |)2 .

This form shows that lower bound (8) is always non-negative.

4.2 Tightening the bounds

These bounds give the possible range of the equation

‖D′ − I±D′′WT ΩU‖

7



in the situation that D′ and D′′ are known, but W , U , Ω and I± could be any matrices in
their respective domains. In our situation, however, we intend to choose Ω and I± to minimize
the result, and it is possible to use this fact to achieve a tighter bound on our overall problem.

Consider Equation (4.1):

−
n∑

i=1

(|λ′i||λ′′i |) ≤ tr(D′I±D′′WT ΩU) ≤
n∑

i=1

(|λ′i||λ′′i |) .

The upper bound is as small as it can be, because it is possible that W = U , in which case we
set Ω = I to get WT ΩU = UTU = I, and we can choose I± to make the diagonal elements of
the D′I±D′′ positive and achieve the upper bound.

However, we will never achieve the lower bound, because we can always choose I± so that the
signs of the elements on the diagonal of D′I±D′′WT ΩU are non-negative, which will make the
trace the sum of non-negative real numbers, which means it will always be at least zero.

Furthermore, zero is the least upper bound on this equation when we consider all W and U ,
because it is possible that

WT =

⎡
⎢⎢⎣

1√
n

· · · 1√
n

−1√
n

· · · −1√
n

...
. . . 1√

n
−1√

n

. . .
...

1√
n

· · · 1√
n

−1√
n

· · · −1√
n

⎤
⎥⎥⎦ , U =

⎡
⎢⎣

1√
n

· · · 1√
n

...
. . .

...
1√
n

· · · 1√
n

⎤
⎥⎦

where WT has n
2 columns of 1√

n
and n

2 columns of −1√
n
.

In this situation, ΩU = U ∀Ω ⇒ WT ΩU = n
2
√

n
+ −n

2
√

n
= 0, so tr(D′I±D′′WT ΩU) = tr(0) =

0 ∀Ω.

This discussion has proven the following theorem.
Theorem 4.2.1. For any known D′ and D′′,

0 ≤ tr(D′I±D′′WT ΩU) ≤
n∑

i=1

(|λ′i||λ′′i |) ,

and there exist W and U such that the trace expression will attain both of those bounds.

This means the overall minimization problem (4) is

n∑
i=1

(
(λ′i)

2 + (λ′′i )2
)− 2

n∑
i=1

(|λ′i||λ′′i |)

≤ min
{‖D′ − I±D′′WT ΩU‖ : I± ∈ I,Ω ∈ P}

≤
n∑

i=1

(
(λ′i)

2 + (λ′′i )2
)
.

Note that is the smallest range we can get without considering W and U .
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4.3 A perfect alignment

Definition 4.3.1. We say that two proteins are in perfect alignment if

‖D′ − I±D′′WT ΩU‖ = 0.

Lemma 4.3.1. If two proteins are in perfect alignment, then the eigenvalues of their respective
contact matrices have the same magnitude.

Proof. Suppose two proteins are in perfect alignment. Then by definition 4.3.1,

‖D′ − I±D′′WT ΩU‖ = 0.

Since (8) is a non-negative lower bound for ‖D′ − I±D′′WT ΩU‖, (8) has a value of zero. Note
that

n∑
i=1

((λ′i)
2 + (λ′′i )2) − 2

n∑
i=1

(|λ′i||λ′′i |) = 0

if and only if |λ′i| = |λ′′i | for all i.

Lemma 4.3.2. If two proteins are in perfect alignment, then WT ΩU = Î±, where Î± ∈ I.

Proof. Suppose two proteins are in perfect alignment. By Definition 4.3.1,

‖D′ − I±D′′WT ΩU‖ = 0

⇐⇒
D′ − I±D′′WT ΩU = 0

⇐⇒
D′ = I±D′′WT ΩU

Then since D′ is a diagonal matrix, I±D′′WT ΩU is diagonal as well. Since I± and D′′ are
diagonal by definition, WT ΩU is diagonal, and thus, each column of WT ΩU contains only
one non-zero element, namely the diagonal element. Since WT ΩU is the product of unitary
matrices, the Euclidean norm of each of its columns is equal to 1. Therefore, every diagonal
element of WT ΩU is either 1 or −1.

Theorem 4.3.1. Two proteins are in perfect alignment if and only if |λ′i| = |λ′′i | for all i, and
WÎ±UT = Ω, where Î± ∈ I and Ω ∈ P.

Proof. (⇒) Suppose two proteins are in perfect alignment. By Lemma 4.3.1, |λ′i| = |λ′′i | for all
i, and by Lemma 4.3.2, WT ΩU = Î±. Using properties of unitary matrices, the equation is
rearranged as WÎ±UT = Ω.

(⇐) Suppose |λ′i| = |λ′′i | ∀i, and WT ΩU = Î±. Then ‖D′ − I±D′′WT ΩU‖ = ‖D′ − I±D′′Î±‖.
D′ and D′′ are the same in absolute value, and we can choose any I±, so we will choose the
I± that makes their signs the same. Therefore ‖D′ − I±D′′Î±‖ = ‖D′ −D′‖ = 0.

9



5 Continuity of the Bounds for the Deviation Problem

Unlike discrete approaches to protein structure alignment such as the contact map overlap
problem, the bounds of the bilinear program and its reformulations are continuous under small
perturbations in the breakpoints, B1 and B2, that define our contact map, C(B1, B2). This
is biologically significant because certain physical conditions may alter the contact of residues.
Consider ε, not necessarily positive, so that if B1 and B2 are our original break points, then
B1 = B1+ε and B2 = B2+ε are our perturbed breakpoints. If given a contact map C′(B1, B2),
define a perturbed contact matrix C′ = C′ + E′ so that

[C′(B1,B2)]i,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if Mij ≤ B1

0 if Mij ≥ B2

1 − Mij − B1

B2 − B1
if B1 < Mij < B2.

Substituting B1 = B1 + ε and B2 = B2 + ε, and noting that C′(B1,B2) = C′(B1, B2, ε),

[C′(B1, B2, ε)]i,j =

⎧⎪⎪⎨
⎪⎪⎩

1 if Mij ≤ B1 + ε

0 if Mij ≥ B2 + ε

1 − Mij −B1

B2 −B1
+ ε
B2 − B1

if B1 + ε < Mij < B2 + ε.

We now have C′(B1, B2, ε) = C′(B1, B2) + E′(ε), where C′ is our original contact matrix (1)
and

[E′(ε)]i,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Mij −B1

B2 −B1
if B1 < Mij ≤ B1 + ε

ε

B2 −B1
if B1 + ε < Mij < B2

1 − Mij −B1

B2 −B1
+ ε
B2 −B1

if B2 ≤Mij < B2 + ε

0 otherwise.

For the same reason that C′ was normal, C′ is also normal. Let it have the eigen decomposition
C′ = UD′UT . Similarly, for our other perturbed contact matrix, we have C′′ = WD′′WT . Thus,
our right matrix form (4), reformulated for the perturbed contact matrix is

‖D′ − I±D′′WT ΩU‖. (9)

5.1 Perturbed spectral bounds

In order to analyse the stability of the spectrum of our original contact matrix C′, we develop
an expression similar to our spectral upper bound (7). First, note the following relationship
between the matrix norm presented above and the spectral norm used to analyse the perturbed
matrix, see [1] for this and other results.

Proposition 5.1.1. For any matrix A, we have that

‖A‖2 ≤ ‖A‖F ≤ √
r‖A‖2

where r is the rank of the matrix.
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If C′,E′, and C′ are normal, then they have full row rank; so, r = n. However, it is conceivable
that a perturbation in the breakpoints of our sigmoid function will make two columns of Q′

linearly dependent and therefore reduce the row rank. We discuss this later as we consider the
limitations on the breakpoints. Now that we have established a norm relationship, we use the
following spectral result to give an upper bound for our perturbed problem. Let C′ and E′

have eigenvalues λ1, . . . , λn and μ1, . . . , μn, respectively.

Lemma 5.1.1. If C′ and E′ are normal and our norm ‖ · ‖ is spectral, then for every i and
any fixed α ∈ R, the eigenvalues of C′ = C′ + E′ are bounded by

{z : |z − (α + λi)| ≤ max
i

|μi − α|}.

A proof of this lemma is found in [4]. Let ψ1, . . . , ψn be the eigenvalues of C′. Then, the
preceding lemma implies that for every i,

|ψi − (α + λi)| ≤ max
i

|μi − α|.

Since ψi ∈ R, we have

(α+ λi) − max
i

|μi − α| ≤ ψi ≤ (α+ λi) + max
i

|μi − α|.

Thus, for every α ∈ R,

|ψi| ≤ min{|(α+ λi) − max
i

|μi − α||, |α+ λi) + max
i

|μi − α||}.

We define
ρi(α) := min{|(α+ λi) − max

i
|μi − α||, |α+ λi) + max

i
|μi − α||}.

Applying the same logic to find the unperturbed spectral upper bounds (7), by Definition 5.1.1
the upper bounds for the perturbed problem is

√
n

[
n∑

i=1

((ρ′i)
2 + (ρ′′i )2) + 2

n∑
i=1

(|ρ′i||ρ′′i |)
]
. (10)

Similarly, the lower bound is,
n∑

i=1

((ρ′i)
2 + (ρ′′i )2) − 2

n∑
i=1

(|ρ′i||ρ′′i |) (11)

Note that this is never negative by an earlier calculation.

5.2 Continuity of perturbed bounds

We now show that small changes in ε produce small changes in the perturbed bounds (10)
and (11). Clearly, any change in ε for fixed B1 and B2 change the eigenvalues μ1, . . . , μn of
[E′(ε)]i,j and therefore the bounds. However, this is a continuous change.
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Lemma 5.2.1. Let A be an n × n symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn. Then,
λi is continuous under perturbations of A.

A proof of this Lemma is found in [2]. Since the eigenvalues of E′(ε) are continuous in ε, our
bounds (10) and (11) are continuous with respect to ε. However, if ε changes too drastically,
there is the potential for the perturbed contact matrix C′ to loose row rank. We give a condition
on ε in terms of B1 and B2 to guarantee this cannot happen. First, we require a lemma and
corollary to the lemma. Let A† represent the Moore-Penrose generalized inverse of A ∈ C

m×n

and ‖ · ‖ be any matrix norm.

Lemma 5.2.2. If E ∈ Cm×n and

‖E‖ < 1
‖A†‖ ,

then rank(A+ E)≥rank(A).

A proof of this lemma is given in [6]. Assume dim(C′)=rank(C′)= n.

Corollary 5.2.1. If C′ = C′ + E′, rank(C′)= n, and

‖E′‖ < 1
‖C′−1‖ ,

then rank(C′)= n =rank(C′).

Proof. Since C′ is a normal matrix, it is invertible. So, C′† = C−1. Now, the result follows
from Lemma 5.2.2 because rank(C′)
> n by definition of C′.

We are now ready to give a condition for which perturbations in ε will not produce loss of row
rank. Let max

ij

∣∣[C′−1]i,j
∣∣ denote the largest entry in absolute value of C′−1.

Theorem 5.2.1. For any distance matrix Mi,j, if

ε <

∣∣∣∣∣∣
(B2 −B1)

max
ij

∣∣[C′−1]i,j
∣∣
∣∣∣∣∣∣ (12)

then rank(C′)=rank(C′).

Proof. Consider the max norm defined for some matrix A as ‖A‖ = max
ij

|Aij |. Then,

‖[C′−1]i,j‖ = max
ij

∣∣[C′−1]i,j
∣∣ .

Because C′ is not the zero matrix, there is some cij ∈ C′−1 so that |cij | > 0. So,

max
ij

∣∣[C′−1]i,j
∣∣ 
= 0

and the max norm for C′−1 is well defined. Now, by the definition of E′,

‖E′(ε)‖ = max
ij

|E′
i,j | ≤

ε

B2 −B1
.

12



Condition (12) implies that
ε

B2 −B1
<

1
max

ij

∣∣[C′−1]i,j
∣∣ .

So, using the max norm, we have that

‖E′‖ ≤ ε

B2 −B1
<

1
max

ij

∣∣[C′−1]i,j
∣∣ =

1
‖C′−1‖ .

Thus, Corollary 5.2.1 implies that rank(C′)= n =rank(C′).

This theorem shows that as long as condition (12) holds, then by Lemma 5.2.1, our bounds
are continuous.

6 Conditional Bounds for the Program

As shown by the bilinear program developed in Section 3.3, if we know either I± or Ω, we
can calculate the other. In this section, we show that if we know either I± or Ω, then we can
establish worst-case bounds on the problem by considering all possibilities for the other.

6.1 Known I±

Let us consider the problem in the left matrix form shown in (3), where I± is fixed:

min{‖D′UT − I±D′′WT Ω‖ : Ω ∈ P}.

We can distribute the matrix 2-norm over the entries in the matrix. We know that Ω permutes
the columns of I±D′′WT but does not change the set of elements in each row, so first we
distribute the norm over the rows:

min{
∑

k

‖(D′UT )k: − (I±D′′WT Ω)k:‖ : Ω ∈ P}.

To find a lower bound we will consider subtracting any element of the kth row of D′UT from
any element of the kth row of I±D′′WT Ω. The greatest that the norm of such a subtraction
could be is

Sk = max
{

max
i

{(D′UT )ki} − min
j

{(I±D′′WT )kj},min
i
{(D′UT )ki} − max

j
{(I±D′′WT )kj}

}
.

Since there are n element-by-element subtractions per row, we take the worst-case bound for
the row to be n · Sk. We bound the left matrix form with fixed I± as follows:

min{‖D′UT − I±D′′WT Ω‖ : Ω ∈ P} ≤
∑

k

n · Sk.

13



When we consider different I± matrices, the bound for each row depends on our choice of I±.
In this context, we let S+

k be the bound on row k when I±kk = 1, and S−
k be the bound on row

k when I±kk = −1.

6.1.1 An approximation algorithm for I±

This upper bound is the basis for the approximation algorithm given in [7]. The algorithm
considers this upper bound as a function of I± and chooses an I± that minimizes that function,
and then finds the best Ω for the constructed I±. This is not guaranteed to produce the best
(I±,Ω) pair out of all possible pairs, but numerical tests on a data set with known matchings
show that this method produces results close to the correct ones [7]. We describe the algorithm
with our notation as follows:

Algorithm 1 The approximation algorithm from [7] for choosing I±

for all k ∈ {1...n} do
if S+

k > S−
k then

I±kk = 1
else if S+

k < S−
k then

I±kk = −1
else
I±kk = 0

end if
end for

The algorithm assigns I±kk = 0 in the case where S+
k = S−

k because it was considered better to
ignore the information from row k rather than to make a potentially non-optimal choice of I±kk

that could have adversely affected the later choice of Ω.

Each Sk only depends on (I±)kk, not the other elements of I±, so by considering the 2n S+
k

and S−
k , we have actually minimized our bound over all 2n possible I± matrices.

6.2 Known Ω

By analogy to the previous subsection, it is possible to derive a bound on our problem in the
case that Ω is fixed. In this case, we use the fact that I± changes the sign of the rows of
D′′WT Ω but makes no other change. First, we distribute the norm over every entry in the
result matrix:

{‖D′UT − I±D′′WT Ω‖ : I± ∈ I} =
∑
i,j

{‖(D′UT − I±D′′WT Ω)ij‖, I± ∈ I}.

To find a lower bound, we observe that ‖a − b‖ ≤ ‖|a| + |b|‖, and the worst-case element-
by-element subtraction occurs when the quantities being subtracted have different signs. We
bound the left matrix form with fixed Ω as follows:

{‖D′UT − I±D′′WT Ω‖ : I± ∈ I} ≤
∑
i,j

∥∥|(D′UT )i,j | + |(I±D′′WT Ω)ij |
∥∥ .

14



6.2.1 An approximation algorithm for Ω

We can also use the bound in (??) to create an approximation algorithm. We choose an Ω
matrix that minimizes the bound, and then choose an I± that minimizes the deviation problem
given this Ω.

Since Ω pairs columns of D′UT with columns of I±D′′WT , we regroup our sum as a sum by
columns. When we consider different choices for Ω, we let Skp be the upper bound on the
portion of the norm that comes from the subtraction of columns k and p:∥∥|D′UT

:k| − |D′′WT
:p |
∥∥ .

Given any C′ and C′′, there are n2 such bounds Skp, and the problem is to choose n of them
such that each possible value of k and p is included exactly once. This is the assignment
problem, and we can solve it with standard techniques.

Once we have this Ω, we can find an optimal I± by using the S+ and S− technique from the
previous section.

7 A Simplified Calculation of I±

The algorithm shown in 6.1.1 can be improved. We want to calculate I± both optimally
and efficiently. If we orient an eigenvector incorrectly, we will have poor alignment results.
Furthermore, we want to accurately determine as many elements of I± as possible so that we
do not lose any information. In order to improve the calculation of I±, we simplify the right
matrix form in (4).

Specifically, we consider (4) ignoring D′ and D′′, so we have ‖I − I±WT ΩU‖. As a result, we
consider only the eigenvector information. We let V = WT ΩU . Note that V T = UT ΩTW ,
and so

V V T = UT ΩTWWT ΩU
= I.

Thus, V is a unitary matrix. We call this the unscaled version of the problem:

min{‖ I − I±V ‖p
p: I

± ∈ I,Ω ∈ P}. (13)

7.1 Defining a signal

Even with our simplifications, each diagonal element of I± must be determined individually,
and we will do so by comparing the elements in the ith row of I with the elements in the ith
row of V. Notationally, eij is the component in the ith row and jth column of I, and similarly,
vij is the component in the ith row and jth column of V .
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For each row i, let

B+
i = max

j
({eij} ∪ {vij}) − min

j
({eij} ∪ {vij})

B−
i = max

j
({eij} ∪ {−vij}) − min

j
({eij} ∪ {−vij}) .

If B+
i > B−

i , we prefer B−
i and choose I±ii = −1. If B−

i > B+
i , we prefer B+

i and choose
I±ii = 1. If B+

i = B−
i , we get no information from this test and are forced to set I±ii = 0.

Definition 7.1.1. We say that there is a signal in row i if B+
i 
= B−

i .

A signal by our definition tells us that choosing either 1 or −1 for I±ii will improve our mini-
mization problem. We are interested in defining the necessary condition for no signal as well.
Since V is unitary and thus orthonormal, we know that

|vij | ≤ 1 ∀i, j.
Therefore, maxj ({eij} ∪ {vij}) = 1, and so, B+

i = 1 − minj ({eij} ∪ {vij}). Similarly, B−
i =

1 − minj ({eij} ∪ {−vij}). We note that minj ({eij} ∪ {vij}) will be zero unless minj{vij} is
negative. Similarly, we note that minj ({eij} ∪ {−vij}) will be zero unless maxj{vij} is positive.
In particular, if minj{vij} = −maxj{vij}, then B+

i = B−
i . The condition for having no signal

is then
B+

i = B−
i ⇔ −vij = vik and max

m
{vim} = vik,

where vij and vik are elements of the ith row of V .

7.2 Probability of a signal in every row

We would prefer that we never have B+
i = B−

i because in that case we set I±kk = 0 for some
k, which means we ignore information in our algorithm. We will show that after restating the
problem as shown in (13), P (Bi 
= B−

i ) = 1 for all i, i.e, we get a signal for every row i.

In order to prove this proposition we will use a decomposition of orthonormal matrices using
Givens rotations. A Givens rotation is a matrix

G(i, j, θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where c = cos(θ) is in entry (i, i) and (j, j) and s = sin(θ) is in entry (i, j) and its negative
in (j, i) [1], or equivalently a rotation of angle θ through a plane defined by the ith and jth
coordinate axes.
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The central fact about Givens rotations is that any orthonormal matrix O can be written as

O = I±G1 · · ·Gm,

where I± is the identity matrix with some of its diagonal entries being −1, and G1 through
Gm Givens rotations. In particular, we can write the matrix V that way.

Lemma 7.2.1. A Givens rotation only affects the coordinates of the axes on which it rotates.

Proof. Let G be a Givens matrix that rotates through axes i and j, A be any matrix, and
k 
= i, j. For any l,

[GA]kl = Gk:A:l = (0 · · · 010 · · ·0)

⎛
⎜⎝
a1l

...
anl

⎞
⎟⎠ = akl.

Since this holds for all k 
= i, j and all l, we see that GA = A in all rows except the ith and
jth.

Consider a Givens rotation G around axes i and j acting on matrix A, and choose two columns
of A, k and l. Now consider what would be necessary for the resulting matrix to have the sort
of symmetry in the kth and lth columns that could give us no signal along the ith axis.

We know that
[GA]i: = (0 · · · 0 c 0 · · · 0 s 0 · · · 0)A = cAi: + sAj:,

so
[GA]ik = caik + sajk and GAil = cail + sajl.

In order for them to have the symmetry we want, we have

GAik = −GAil

⇔ caik + sajk = −(cail + sajl)
⇔ c(aik + ail) = −s(ajk + ajl)

⇔ s

c
=

−(aik + ail)
ajk + ajl

= tan(θ).

For any value of A, there will be at most two θ that satisfy this equation.

Theorem 7.2.1. Symmetry occurs with probability zero in any continuous probability distri-
bution.

Proof. For any Givens rotation G acting on a matrix A, we know there are only two θ that can
introduce a symmetry into columns we like. If we assume that the θ come from a continuous
probability distribution, the probability that we introduce a symmetry into any two chosen
columns of A is 0.
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Finally, consider the n by n matrix V from the optimization problem written as

V = I±G1 · · ·Gm,

where G1 through Gm are Givens rotations, and the angles of the Givens rotations come from
continuous probability distributions. Then for each rotation,

P (that rotation introduces a symmetry)

≤
(
n

2

)
P (that rotation introduces a symmetry for two given columns of V)

=
(
n

2

)
0 = 0,

so

P (all the rotations together leave us with a symmetry)
≤ m · 0 = 0.

The actual distribution of the θ is unknown, but we believe it is reasonable to assume that the
distribution is continuous, which makes this theorem a good sign for our algorithm.

7.3 Feasibility of no signal for every row

Another question that naturally arises is whether or not it is possible for there to be no signal
in every row, i.e., ∀i, B+

i = B−
i . This subsection shows that this is impossible; i.e., there is at

least one row that gets a signal. To this end, we propose the following mathematical program
that we will show is infeasible. Let n be the size of our matrix V . Consider

min{0} (14)

s.t.

∑
j

wj = n,wj ∈ {0, 1}
∑

i

vijvih = 0, j 
= h

∑
i

vijvij = 1, ∀j

yi ≤ vij , ∀i, j
zi ≤ −vij , ∀i, j

−zi − yi ≤ 2(1 − wi), ∀i.
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The parameters
∑

i vijvih = 0 and
∑

i vijvij = 1 insure orthogonality and yi ≤ vij ≤ −zi force
the vij term to zero in every row since wi forces −zi − yi ≥ 0 to zero. The Lagrangian of the
above program (14) is

L(w, y, z, v, α, λ, σ, ρ, η, β) = α

(
(
∑

i

wi) − n

)
−

∑
j �=h

λjh(
∑

i

vijvih)

−
∑

j

σj(
∑

i

vijvij − 1)

−
∑
j,i

ρj,i(vkj − yi)

−
∑
j,i

ηj,i(−vij − zi)

− β
∑

i

2(1 − wi) + zi + yi,

where ρ,η and β are non-negative and the other Lagrangian multipliers are unsigned. To show
the infeasibility of (14), we show that the Lagrangian dual tends to infinity. The idea is to
let the Lagrangian multipliers be sequences that iterate on t so that as t tends to infinity, the
Lagrangian also tends to infinity. The proof follows.

Proof. Case 1:
∑

iwi 
= n. Then, for some î, wî = 1. For this index, let α = −t and the other
Lagrangian multipliers be zero. So,

lim
t→∞L(w, y, z, v, α, λ, σ, ρ, η, β) = lim

t→∞−t
∑

i

wi − n

= lim
t→∞−t(wî − n)

= lim
t→∞ t(n− 1)

= ∞.

Thus, when
∑

i wi 
= n, our mathematical program (14) is infeasible. Case 2:
∑

iwi = n. Let
λjh = 0 and σj = 0 for every j and h. Then, the Lagrangian reduces to

L(w, y, z, v, α, λ, σ, ρ, η, β) = −
∑
j,i

ρj,i(vkj − yi)

−
∑
j,i

ηj,i(−vij − zi)

− β
∑

i

2(1 − wi) + zi + yi.
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Splitting the sums, we have

L(w, y, z, v, α, λ, σ, ρ, η, β) = −
∑
j,i

ρj,ivkj +
∑
j,i

ρj,iyi

+
∑
j,i

ηj,ivij +
∑
j,i

ηj,izi

− β
∑

i

2(1 − wi) − β
∑

i

zi − β
∑

i

yi.

Combining the vij , yi, and zi terms, we find

L(w, y, z, v, α, λ, σ, ρ, η, β) = +
∑
j,i

(ηj,i − ρj,i)vkj

+
∑
j,i

ρj,iyi − β
∑

i

yi

+
∑
j,i

ηj,izi − β
∑

i

zi

− β
∑

i

2(1 − wi).

Since
∑

j −β
n

∑
i yi = −β∑i yi,

L(w, y, z, v, α, λ, σ, ρ, η, β) = +
∑
j,i

(ηj,i − ρj,i)vkj

+
∑
j,i

(ρj,i − β

n
)yi

+
∑
j,i

(ηj,i − β

n
)zi

− β
∑

i

2(1 − wi).

Now we use our assumption that
∑

i wi = n and let ρj,i = ηj,i = β
n for every i and j. Then,

L(w, y, z, v, α, λ, σ, ρ, η, β) = +
∑
j,i

(0)vkj

+
∑
j,i

(0)yi

+
∑
j,i

(0)zi

+ 2β(n− 1).

Let β = t. Then,

lim
t→∞L(w, y, z, v, α, λ, σ, ρ, η, β) = lim

t→∞ 2t(n− 1)
= ∞.
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Thus, when
∑

i wi = n, our mathematical program (14) is infeasible. This completes the
proof.

8 Conclusion

The reformulations of the eigensystem-based protein structure alignment algorithm and the
associated bounds described in this article provide a better understanding of the protein align-
ment problem and offer new tools to solve it optimally and efficiently. Our model, based on the
assignment problem, is bilinear in the sense that if either Ω or I± are known, then the problem
reduces to a linear program; this offers intuition about the complexity of the problem. The
exact complexity of the problem remains unknown, however, showing that there is possibly
room to make the deviation problem solve faster and more optimally.

The bounds on the deviation problem show that error arises from two sources. The first source
of error is associated with the difference in magnitude of the eigenvalues of two respective
contact matrices. If the eigenvalues differ greatly enough, then the proteins will be dissimilar.
This might provide a valuable tool in database wide alignments. If the eigenvalues are the same,
then the lower bound is zero, but the minimization is not guaranteed to attain the bound. The
fact that the deviation problem may not attain zero is due to a secondary source of error that
arises if given an optimal Î±, then WÎ±UT is not a permutation matrix. Understanding the
error in the model engenders two key results: First, we can eliminate bad alignments based
solely on the eigenvalues. Second, if the eigenvalues are similar, then we can reduce the problem
to the calculation of the secondary source of error that is similar to an assignment problem.
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