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Abstract

We present two algorithms that use spectral methods to align protein folds. One of the

algorithms is suitable for database searches, the other for difficult alignments. We present

computational results for 780 pairwise alignments used to classify 40 proteins as well as

results for a separate set of 36 protein alignments used for comparison to four other alignment

algorithms. We also provide a mathematically rigorous development of the intrinsic geometry

underlying our spectral approach.

F

1 INTRODUCTION

Proteins are long molecular chains constructed from twenty amino acids (residues) and

are an important part of most biochemical processes. Protein chains fold into unique,

tightly packed globular structures called folds. See Figure 1. The particular sequence

of amino acids determines the proteins unique fold, and the geometry of a proteins

fold largely determines its specific biological function. Identifying the function of an

individual protein is an important and challenging problem. A better understanding
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(a) protein atoms (b) protein chain

Fig. 1: (a) The 3D geometry of Crambin (1CRN), a small protein consisting of 46 residues

and 327 atoms (not including hydrogen atoms). (b) The 3D geometry of a fold is often

represented by a cartoon depicting the path of the protein’s chain through its fold.

of protein evolution would aid the identification of protein function and could lead to

advances in biology as well as new treatments for diseases.

The evolution of proteins is studied by making comparisons, either by aligning protein

sequences or aligning protein folds. Fold-based comparisons are believed to be more

informative and robust [23]. The question of how to achieve fast, accurate fold-based

alignments continues to be a topic of current interest [13], [27], [28], [24], [32], [1], [20].

The objective in protein alignment is to determine a one-to-one correspondence be-

tween a subset of the residues in two different protein folds. (See Figure 2 for a two

dimensional version of the problem.) The subset chosen should optimize some biologi-

cally relevant similarity measure, although there is currently no consensus on what this

measure of similarity should be [23], [13].

In protein alignment, the ordering of the residues in a protein’s chain plays a key role

in making comparisons. This is largely for biological reasons. Nature assembles proteins

from DNA in a linear fashion. Over the course of time, mutations occur in DNA causing

corresponding changes in a protein’s chain. The changes are either insertions, deletions

or substitutions of individual residues of the protein’s chain. It is reasonable to assume

that as proteins evolve over time, they preserve the sequence order of the segments of

their chains [7]. Thus, we only consider alignments that preserve the sequence order of

each protein’s chain.
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Fig. 2: A two dimensional version of the protein alignment problem. Aligning pro-

tein A to protein B involves gapping the protein chains and pairing the remain-

ing atoms so that the chain order is preserved in each. The alignment shown is

(A2, B2), (A3, B3), (A7, B4), (A8, B5). The indices of each of the atoms in the alignment

must increase. Note, (A2, B2) is indicated in the fold alignment by 2, 2. Other aligned

pairs are denoted similarly.

A protein’s fold is normally described by the three dimensional (3D) Cartesian coordi-

nates of the protein’s atoms. A distance matrix specifying all the distances between pairs

of atoms completely determines the fold up to reflections in a coordinate invariant way

[14], [9]. A distance matrix is often converted into a contact matrix whose entries are

equal to one for residues that are within a certain cutoff distance from one another and

zero otherwise. See Figure 3(a). We use a piecewise-linear, continuous cutoff function

(Figure 4) to obtain a smoothed contact matrix like the one in Figure 3(b). In particular,

we can choose our cutoff function so that the smoothed contact matrix we obtain is

positive definite. We then use this matrix to define an N dimensional Euclidean space

to represent the fold, where N equals the number of residues in the protein’s chain. In

this representation of a fold, residues are associated with unit vectors we refer to as the

intrinsic contact vectors of the fold. See Figure 5.

The underlying optimization problem associated with our spectral method was first
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(a) sharp contact matrix (b) smoothed contact matrix

Fig. 3: Contact matrices for Crambin, the protein depicted in Figure 1.
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Fig. 4: Piecewise-linear, continuous cutoff function with cutoff parameter κ.

Fig. 5: The 46 intrinsic contact vectors of the fold of Crambin, the protein depicted in

Figure 1. The vectors have been projected from 46 dimensional space to 3D space.
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proposed in [26]. That paper develops a heuristic to orient the spectral information in

a way that bounds the maximum deviation between the two proteins with respect to

their smooth contact maps. The heuristic was shown to be efficient for classification

purposes. In this work, we give a rigorous development of the intrinsic geometry

associated with the optimization problem and develop several new heuristics based on

spectral information. These heuristics are compared with the earlier heuristic in [26] and

with other published methods. We show that our general algorithm achieves monotonic

convergence in contact space. Two data sets are used to compare our methods on

problems of varying difficulty. Our numerical results are promising, and in particular,

our fastest alignment method appears suitable for database-wide alignments.

2 CONTACT GEOMETRY

Let the columns of X equal (xi, yi, zi)
>, i = 1, 2, . . . , N , so that column i contains the 3D

coordinates of the ith Cα atom of a protein. (The Cα atoms are numbered consecutively

along a protein chain.) Define the Cα distance matrix of a protein to be the matrix

D = [dij] where dij is the Euclidean distance between the ith and jth Cα atoms. We

represent the geometry of a fold by a Cα contact matrix C = [cij], where C is computed

from the distance matrix D by applying a cutoff function, cij = σ(dij), like the one given

in equation (1). We define the contact between residue i and residue j of a protein to

be cij .

σ(dij) =

 1− 1
κ
dij 0 ≤ dij ≤ κ

0 otherwise.
(1)

If the cutoff parameter, κ, in equation (1), is chosen sufficiently small, the contact ma-

trix C is diagonally dominant and hence positive-definite [26]. The positive-definiteness

of C plays a key role in our geometric formulation of the protein alignment problem

because it allows us to represent a protein fold in N -dimensional Euclidean space, where

N is the length of the chain, i.e. the number of residues. Specifically, the contact matrix

C defines the generalized inner product

〈u,v〉C = u>Cv. (2)



6

This inner product has a useful interpretation. If we assign residue i to the standard

unit vector ei = (0, . . . , 0, 1, 0, . . . , 0)>, then the contact between residue i and residue j

is given by the inner product

〈ei, ej〉C = e>i Cej = cij.

In support of this observation, we define ei to be the standard contact coordinates of

residue i. (We refer to the Cα atom coordinates (xi, yi, zi)
> as the 3D coordinates of

residue i.) The discussion above motivates the following definition.

Definition 1 (Contact Space): A contact space is an N-dimensional Euclidean space RN

with generalized inner product 〈·, ·〉C, where C is a positive-definite contact matrix.

Before we align the folds of two proteins, we first define an appropriate coordinate

system in which to make comparisons. The order of the standard contact coordinate

system {e1, e2, . . . , eN} is determined by the sequence of residues in a protein’s chain.

The path of a protein chain through a given fold, however, varies from protein to protein.

It makes sense to define a new coordinate system that is independent of the order of

the residues in a protein’s chain and that is intrinsic to the fold itself. We do this by

solving a sequence of optimization problems as shown below.

Let the first unit vector in our intrinsic coordinate system be the unit vector v1 that

has the largest sum of squared contacts with all the residues in a fold. The contacts v1

has with each residue is given by the vector

w = 〈(e1, . . . , en),v1〉C = I>Cv1 = Cv1, (3)

and the sum of the squared contact is s = w>w = v>1 C>Cv1. Therefore, v1 is the solution

to the following optimization problem:

max v>1 C>Cv1

subject to v>1 v1 = 1.
(4)

The second unit vector is defined similarly, as it is the unit vector, v2, that has the

largest sum of squared contacts, but with the additional constraint that v2 must be

perpendicular to v1. Therefore, it is a solution to

max v>2 C>Cv2

subject to v>2 v2 = 1, v>2 v1 = 0.
(5)
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Proceeding in this fashion we construct a contact coordinate system, {v1,v2, . . . ,vN},

that is intrinsic to a particular fold and that is independent of the order of the residues

in a given protein’s chain. A standard result from linear algebra known as Rayleigh’s

Principle [22] implies that v1,v2, . . . ,vN are equal to the eigenvectors of the contact

matrix C.

Theorem 1 (Rayleigh’s Principle): Assume C is an N by N , symmetric, positive definite

matrix. The solution to the sequence of optimization problems

max v>i C>Cvi

subject to v>1 vi = 0, . . . ,v>i−1vi = 0,v>i vi = 1

for i = 1, . . . , N is given by the eigenvectors of C.

The following lemma shows that the eigenvalue, λi, associated with eigenvector vi,

is a measure of the contact between vi and the entire fold.

Lemma 1: The square-root of the sum of all the squared contacts that the unit vectors,

ej , j = 1, . . . , N make with eigenvector vi equals the eigenvalue λi associated with vi.

Proof : Let w = 〈(e1, . . . , eN),vj〉C = Cvi. Then the square root of the squared contacts

that the standard unit vectors make with eigenvector vi equals
√

w>w =

√
v>i C>Cvi =

√
λ2
i = λi.

�

Taken together, Theorem 1 and Lemma 1 imply that the intrinsic contact coordinate

system {v1,v2, . . . ,vN} is ordered (from largest to smallest) by the size of the eigen-

values, λ1, λ2, . . . , λN of the contact matrix C. If the eigenvalues of a fold are distinct

(which has always been observed to be the case) the corresponding eigenspaces are

one dimensional and the eigenvectors defined by Rayleigh’s Principle are unique up to

orientation. This means the ordering is unique for practical purposes. Moreover, this

order is independent of the sequence of a particular chain through a fold and is intrinsic

to the fold itself. We refer to the ordered set of eigenvalues of a contact matrix of a fold

as the spectrum of the fold.

Given a vector, x, in standard coordinates, we compute its intrinsic coordinates, y, by

solving the equation x = Vy, where V = [v1|v2| . . . |vN ] and where vi, i = 1, 2, . . . , N are
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intrinsic unit vectors given by Rayleigh’s Principle. Since V is an orthonormal matrix,

y = V>x. Under the mapping V> : x 7→ y, the inner product 〈·, ·〉C maps to 〈·, ·〉D, where

D is a diagonal matrix with the eigenvalues of C along the main diagonal. Suppose we

are interested in comparing protein A and B with contact maps CA and CB respectively.

In intrinsic coordinate, we will, in general, have two distinct inner products, 〈·, ·〉DA
and

〈·, ·〉DB
. We must therefore align the spectrum of the folds before we define a common

contact space to make comparisons. (Spectrum alignment is the bases for the fast fold

alignment algorithm described in section 3.)

Before mapping a vector to intrinsic contact space, it is convenient to apply the scale

transformation
√

D : x 7→ y, which is allowed since the contact maps are assumed to

be positive definite. This allows us to use the standard inner product 〈·, ·〉 in intrinsic

contact space, as we prove in Theorem 2. First, we define intrinsic contact coordinates.

Definition 2 (Intrinsic Contact Coordinates): Let C = VDV> be the eigenvalue-eigenvector

decomposition of the contact matrix C with eigenvalues sorted from largest to smallest

in size. Define R =
√
DV>. The columns of R are the intrinsic contact coordinates of a

fold with contact matrix C.

Since ri = Rei is a column of R, the matrix R maps the standard contact coordinates,

ei, of residue i, to its intrinsic contact coordinates, ri. The next theorem shows that R

maps the generalized inner product 〈·, ·〉C to the standard inner product 〈·, ·〉.

Theorem 2: The matrix R =
√
DV> maps the generalized inner product 〈·, ·〉C to the

standard inner product 〈·, ·〉.

Proof : It is sufficient to prove that the result holds true for the standard contact vectors

{e1, e2, . . . , eN} since they form a basis for contact space. For i, j = 1, 2, . . . , N , we have

〈ei, ej〉C = e>i Cej

= e>i VDV>ej

= e>i
(√

DV>
)> (√

DV>
)

ej

= (Rei)
> (Rej)

= r>i rj

= 〈ri, rj〉.
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�

Note that even with the scale transformation, the intrinsic contact vectors rj , j =

1, 2, . . . , N , are unit vectors since 〈rj, rj〉 = 〈ej, ej〉C = cjj = 1. Note also that R preserves

the orthogonality of the eigenvectors vi but not their lengths, since Rvi =
√

DV>vi =
√
λei. The contact length of vi is given by

‖vi‖C =
√
〈vi,vi〉C =

√
〈
√
λiei,

√
λiei〉 = ‖

√
λiei‖ =

√
λi, (6)

which is preserved by R.

The intrinsic contact geometry of a fold has a simple geometric interpretation. The

contact between any two residues, i and j, is 〈ri, rj〉 = cos(θ), where θ is the angle

between their intrinsic contact vectors. Residues that are not in contact have orthogonal

contact vectors. Since all contacts are greater than or equal to zero, all the contact vectors

of a fold are within 90◦ of each other. We caution, however, that when we align two

different folds, we may have protein-protein contacts that are negative.

3 SPECTRUM ALIGNMENT

The spectrum λ1, λ2, . . . , λN of a fold is somewhat like a finger print and can be use to

classify folds. The spectrum, however, does not contain information on the path of a

protein chain through its fold. We present an algorithm that takes this information into

account and constructs a crude, but fast, fold alignment.

Our algorithm has a preprocessing step that partitions the residues of a fold by

eigenspace. Specifically, we assign each residue to the eigenspace of the fold the residue

is closest to in terms of contact angle. Theorem 3 provides a formula for computing

the cosine of this contact angle. Each residue is then assigned the eigenvalue of its

eigenspace. Finally, we compute the matrix S = [sij] with sij = |λi − λj| to score

alignments and apply dynamic programming to compute the optimal alignment.

Dynamic programming (DP), first used by Needleman and Wunsch to align proteins

[21], is commonly used in bioinformatics to align sequences. Apart from being relatively

fast and easy to implement, DP based sequence alignments have the biologically desir-

able property of preserving the sequence-order of the sequences aligned. DP sequence
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alignment require as input: 1) an alignment scoring matrix and 2) a gap penalty. The

scoring matrix gives the score of aligning element Ai of the first sequence with element

Bj of the second sequence. The gap penalty penalizes the creation of gaps in the

alignment. (The interested reader is referred to [16], [5], [10] for a detailed description

of DP and sequence alignment.)

In database applications, a protein may be aligned to thousands of other proteins.

The preprocessing step of our algorithm is completed only once per protein and the

eigenvalues of the residues in each fold are then stored in the database. During a search,

only the scoring matrix, S, needs to be computed and dynamic programming applied

using this matrix to compute an alignment.

We next provide a detailed description of our algorithm outline in Table 1. First we

show how to compute the cosine of the contact angle between the contact vector of a

residue and an eigenspace of a fold.

Theorem 3 (Residue-Eigenspace Contact Angle): The cosine of the contact angle, θij , be-

tween residue j and eigenspace i, equals
√
λivji where vji is the jth component of

eigenvector vi.

Proof : The proof is more intuitive in standard coordinates. In standard coordinates we

have that

〈ej,vi〉C = e>j Cvi = λie>j vi = λivji. (7)

But,

〈ej,vi〉C = ‖ej‖C‖vi‖C cos(θij) =
√
λi cos(θij). (8)

Therefore, λivji =
√
λi cos(θij), implying that cos(θij) =

√
λivji.

�

Recall that column j of R =
√

DV> is the intrinsic contact coordinates of residue j.

Coordinate i of residue j is equal to
√
λivji, which, by Theorem 3 equals cos(θij), where

θij is the angle between residue j and eigenspace i. Therefore, we assign residue j, eigen-

value λi∗ , were i∗ is the solution to max
i

√
λi|vji|. This is accomplished by determining

the row, i∗, in which the maximum of column j of R occurs.
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1) Preprocessing:

a) Construct the contact matrix C of each fold.

b) Compute the eigensystem decomposition C = VDV> of each fold.

c) Compute the intrinsic contact coordinates R =
√
DV> of each fold.

d) Determine the mapping ν : j 7→ i∗, which gives the row in which the

maximum of each column of |R| occurs.

e) Assign residue j eigenvalue λν(j).

2) Construct alignment scoring matrix S = [sij] where sij = |λi − λj|.

3) Align folds using DP with scoring matrix S and a suitable gap penalty.

TABLE 1: Spectrum Alignment Algorithm

4 PROTEIN CLASSIFICATION

To test our spectrum algorithm, we repeated the protein classification computations

reported in our earlier work [26]. We evaluated the ability of the spectrum algorithm to

identify the known families identified by SCOP [2] among 40 protein structures taken

from the Skolnick data set [1], [6] given in Table 2. The protein structures in the Skolnick

data set were obtained from the Protein Data Bank [3] and parsed with BioPython [8].

A cutoff value of κ = 8 Angstroms and a gap penalty equal to 1 was used for the

spectrum alignment method. The delta alignment method tested in our earlier work

required 553.3 seconds to compute 780 alignments or approximately 0.7 seconds per

alignment. The spectrum alignment algorithm required only 96.3 seconds, 0.12 seconds

per alignment, an 83% reduction in processing time. The preprocessing times for both

methods are not included as this step is done only once when a database is created.

Figure 6 indicates that the spectrum algorithm does a good job of correctly clustering

the protein families in the Skolnick data set.

5 CONTACT ALIGNMENT

A difficult step in our approach to aligning proteins is constructing a good alignment

scoring matrix. We use protein-protein contact matrices in this step of the alignment
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SCOP Fold SCOP Family Proteins

Flavodxin-like CheY-related 1b00, 1dbw, 1nat, 1ntr, 3chy

1qmp(A,B,C,D), 4tmy(A,B)

Cupredoxin-like Plastocyanin 1baw, 1byo(A,B), 1kdi, 1nin

azurin-like 1pla, 2b3i, 2pcy, 2plt

TIM beta/alpha-barrel Triosephosphate 1amk, 1aw2, 1b9b, 1btm, 1hti

isomerase (TIM) 1thm, 1tre, 1tri, 1ydv, 3ypi, 8tim

Ferritin-like Ferritin 1b71, 1bcf, 1dps, 1fha, 1ier, 1rcd

Microbial ribonuclease Fungal ribonucleases 1rn1(A,B,C)

TABLE 2: Skolnick data set.
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Fig. 6: Alignment scores for the Skolnick data set. The 40 proteins compared are ordered

as they are listed in Table 2. (a) STRUCTAL is a widely used alignment scoring function

[30], [18]. (b) RMSD is computed after the structures have been superimposed using the

Kabsch procedure. (c) Contact Score is the score maximized by DP.

process. The eigenspaces of the two proteins must be aligned and oriented before a

protein-protein contact matrix can be computed. (Note that aligning eigenvectors is

simpler than aligning residues because unlike intrinsic contact vectors, eigenvectors are

orthogonal.) We then compute a protein-protein contact matrix by computing all of

the inner products of the intrinsic contact vectors of the first protein with the second

protein. Finally, we use DP to compute an alignment.

Specifically, let CA and CB be the contact matrices of proteins A and B. Using the
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procedure outlined in section 2, we compute intrinsic contact coordinates, RA and RB for

each protein fold. Since the protein chains typically have different lengths, we determine

two orthogonal projection matrices, ΓA and ΓB, that gap the spectrum of each protein’s

fold. We also determine a permutation matrix Ω that appropriately pairs the gapped

spectrum of each fold. Finally, we determine a diagonal matrix I± with ±1 along the

diagonal, that appropriately orients the eigenspaces of one of the folds. Let R̂A and

R̂B be the intrinsic contact coordinates after the eigenspaces of each fold have been

appropriately gapped, paired and oriented, i.e., let R̂A = ΩΓARA and R̂B = I±ΓBRB. The

protein-protein contact matrix is then CAB = R̂
>
AR̂B.

Since the spectrum of a fold has a natural ordering, we can use DP to determine

ΓA, ΓB and Ω which align the eigenspaces of proteins A and B. DP has the added

advantage of preserving the sequence order of the spectrum alignment. We need an

eigenspace-alignment scoring matrix, EAB for this purpose. The residues of proteins A

and B must be aligned before EAB can be computed. This presents us with a “chicken-

and-egg” problem which we solve by using the iteration algorithm outlined in Table 3.

Before describing this algorithm in detail, we explain how we compute the eigenvector

alignment matrix EAB.

The matrix EAB is a protein-protein contact matrix for eigenvalue-weighted eigen-

vectors. (We use eigenvalue-weight eigenvectors because we want an alignment that

aligns the eigenvalues as well as the eigenspaces.) We use the standard inner product

in standard coordinates to compute all inner products of eigenvalue-weighted eigen-

vectors of protein A with eigenvalue-weighed eigenvectors of protein B. To do this, we

need matrices ΓsA, ΓsB and Ωs that align the residues, and hence, the standard contact

coordinates of the two proteins. (Superscript s denotes the matrices are acting on the

protein chain sequence of residues.)

The rows of R are eigenvalue-weighted eigenvectors expressed in standard coor-

dinates. Recall that row i of R equals
√
λivi and that the contact length of row i is

‖
√
λivi‖C = λi, hence the name eigenvalue-weighted eigenvector. It follows then that

EAB = R̃AR̃
>
B, where R̃A = RAΓsAΩs and R̃B = RBΓsB. Since the eigenspaces are not

oriented, we use |EAB| to score eigenspace alignments and then choose the orientation

matrix I± that maximizes the final alignment.
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1) Use the spectrum alignment algorithm (Table 1) to determine initial chain-sequence

gapping matrices ΓsA, ΓsB and a chain-order preserving permutatation Ωs that align

the residues of the protein chains.

2) Compute R̃A = RAΓsAΩs and R̃B = RBΓsB.

3) Compute the protein-protein, eigenvalue-weighted, eigenvector contact matrix

EAB = R̃AR̃
>
B.

4) Determine eigenspace gapping matrices ΓA, ΓB and spectrum-order preserving

permutation Ω that align the eigenspaces of the protein folds by solving the

following optimization problem with DP:

max
ΓA,ΓB ,Ω

trace(ΩΓA|EAB|ΓB).

5) Determine the orientation matrix I± which satisfies the equation

diag(I±) = sign(diag(ΩΓAEABΓB)).

6) Compute R̂A = ΓARA and R̂B = I±ΩΓBRB.

7) Compute the protein-protein contact matrix CAB = R̂
>
AR̂B.

8) Determine protein chain gapping matrices ΓsA, ΓsB and chain-order preserving

permutation Ωs that align the protein chains by solving the following optimization

problem with DP:

max
Γs

A,Γ
s
B ,Ω

s
trace(ΩsΓsACABΓsB).

9) Return to step 2 and repeat until the algorithm converges.

TABLE 3: Contact Alignment Algorithm

Our contact alignment algorithm in Table 3 alternates between aligning the eigenspaces

of protein folds using standard contact coordinates (steps 2–5) and aligning protein

chains using intrinsic contact coordinates (steps 6–8). Theorem 4 establishes that the

algorithm converges monotonically.

Theorem 4: The contact alignment algorithm converges monotonically.

Proof : First we establish upper bounds for the optimization problems in steps 4 and 8

in Table 3. We then show that the solution to each optimization problem must increase
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monotonically, thus establishing convergence of the algorithm.

Using the notation (α1, β1), . . . , (αm1 , βm2) to denote the eigenspace alignment deter-

mined by ΓsA, ΓsB and Ωs, we have that

trace(ΩΓAEABΓB) =

m1∑
i=1

EABαiβi
(9)

=

m1∑
i=1

√
λAαi

λBβi
(vAαi

)>vBβi
, (10)

where 0 ≤ m1 ≤ min(N1, N2). Taking absolute values we have∣∣∣trace(ΩΓAEABΓB)
∣∣∣ ≤ m1∑

i=1

√
λAαi

λBβi

∣∣∣(vAαi
)>vBβi

∣∣∣ (11)

≤
m1∑
i=1

√
λAαi

λBβi
(12)

≤
min(N1,N2)∑

i=1

√
λAi λ

B
i , (13)

where we have used the fact that the eigenvectors vAαi
and vBβi

are unit vectors and

that the eigenvalues λAi and λBi are ordered from largest to smallest. Inequality (13)

establishes an upper bound for the optimization problem in step 4 of the algorithm.

Using the notation (a1, b1), . . . , (am1 , bm1) to denote the protein chain alignment deter-

mined by the matrices ΓsA, ΓsB and Ωs we have that∣∣∣trace(ΩsΓsACABΓsB)
∣∣∣ ≤ m2∑

j=1

∣∣∣CAB
ajbj

∣∣∣ (14)

=

m2∑
j=1

∣∣∣(rAaj
)>rBbj

∣∣∣ (15)

≤ min(N1, N2), (16)

where we have used the fact that the intrinsic contact vectors rAj and rBj are unit vectors

and the fact that 0 ≤ m2 ≤ min(N1, N2). Inequality (16) establishes an upper bound for

the optimization problem in step 8 of the algorithm.

Next, we show that the solution to the optimization problems in steps 4 and 8 increase

monotonically. We use the fact that for a given protein chain alignment (a1, b1) . . . (am2 , bm2)

and a given eigenvector alignment (α1, β1) . . . (αm1 , βm1) and orientation I±, the objective
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functions of both optimization problems are equal. Specifically, we show that
m1∑
i=1

EABαiβi
=

m2∑
j=1

CAB
ajbj

. (17)

However, for the moment, assume (17) is valid. Let (α∗1, β
∗
1) . . . (α∗m∗

1
, β∗m∗

1
) denote the glob-

ally optimal solution to the optimization problem in step 4 and let (a∗1, b
∗
1) . . . (a∗m∗

2
, b∗m∗

2
)

denote the globally optimal solution to the optimization problem in step 8. Using

equation (17), we have that
m1∑
i=1

EABαiβi
=

m2∑
j=1

CAB
ajbj

(18)

≤
m∗

2∑
j=1

CAB
a∗j b

∗
j

(19)

=

m1∑
i=1

(
EABαiβi

)∗
(20)

≤
m∗

1∑
i=1

(
EABα∗i β∗i

)∗
, (21)

where the notation
(
EABαiβi

)∗
indicates that the eigenvector contact matrix is computed

using the optimal protein chain alignment (a∗1, b
∗
1) . . . (a∗m∗

2
, b∗m∗

2
). Inequality (21) shows

that the solution to the optimization problem in step 4 increases monotonically. A

similar argument establishes that the solution to the optimization problem in step 8

also increases monotonically.

To complete the proof, we establish equation (17), which follows since
m1∑
i=1

EABαiβi
=

m1∑
i=1

√
λAαi

λBβi
(vAαi

)>vBβi
(22)

=

m1∑
i=1

m2∑
j=1

√
λAαi

λBβi
vAajαi

vBbjβi
(23)

=

m2∑
j=1

m1∑
i=1

rAαiaj
rBβibj

(24)

=

m2∑
j=1

(rAaj
)>rBbj (25)

=

m2∑
j=1

CAB
ajbj

. (26)
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�

Although numerical experiments show that the contact alignment algorithm con-

verges monotonically, it does not result in reliably good alignments. Presumably, this is

because of well known difficulties of embedding contact maps in 3D [9], [31], [25]. Also,

an incorrect orientation for an eigenspace could yield good contact space alignments but

poor 3D alignments. In order to overcome these difficulties, we include 3D information

in the alignment of the eigenspaces in step 3 of the algorithm.

For a given alignment of the protein chain, we superimpose the 3D coordinates of

the folds using the widely used Kabsch procedure [17]. We then construct a 3D protein-

protein contact matrix CAB = [CABij ], i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, as follows. Assume

XA and XB are the 3D coordinate of fold A and fold B. Then CABij = σ(dij), where σ(dij)

is the cutoff function defined in Figure 4 and dij = ‖XA
i −XB

j ‖ is the 3D distance between

residue i in protein A and residue j in protein B. Finally, instead of using the standard

inner product in step 3, we use EAB = R̃ACABR̃>B.

The contact matrix CAB serves as a 3D bridge between the contact spaces of folds A

and B. Define the bilinear function 〈u,v〉CAB
= u>CABv. The contact between residue

i of fold A and residue j of fold B is 〈eAi , eBj 〉CAB
= CABij . The bilinear function uses

linearity to extend this 3D contact information to the entire contact space of each of the

folds. Protein-protein contacts can then be computed between the eigenvalue-weighted

eigenvectors of each fold.

Unfortunately, the modification in step 3 of the algorithm does not preserve the

monotonicity of the algorithm. We therefore run the modified algorithm for a fixed

number of steps or until it converges, save the best alignment in terms of contact score

(the score maximized in step 8) and then resort to alternate applications of the Kabsch

procedure and DP to refine the alignment. We have observed that the contact alignment

algorithm with the 3D modification quickly gives a good global alignment and the

Kabsch procedure and DP quickly give a low RMSD alignment.

6 HARD ALIGNMENTS

We report computational results for 10 difficult alignments studied in [7], [29]. We

compare to four other alignment algorithms (data taken form [7]):
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SAMO multi objective alignment algorithm that simultaneously minimizes RMSD and number of

aligned residues [7].

Dali one of the first fold alignment algorithms. Dali uses distance matrix [15].

CE genetic algorithm based combinatorial extension algorithm [29].

LUND an algorithm that uses “fuzzy” contact matrices interpreted as probabilities [4].

The 3D version of our contact alignment algorithm followed by alternate applications

of the Kabsch procedure and DP is denoted by EIGA (EIGensystem Alignment). The

spectrum algorithm is denoted by EIGAs. We use a cutoff of κ = 8 Angstroms for both

EIGA and EIGAs, a gap penalty equal to zero for EIGA and one for EIGAs.

Tables 4 and 5 show that EIGA compares well to SAMO, Dali, CE and LUND, in

terms of the number of aligned residues and RMSD error. Table 6 show that EIGA is

reasonably fast. (We do not have specific computational times for the alignments of the

other methods.) Additional alignment results are given in Tables 7–9 in the appendix.

Our earlier delta method [26] and the spectrum alignment algorithm (denoted EIGAs),

do not compare favorably with the other methods for the hard alignments in Tables 4–5.

But EIGAs does a reasonable job with the easier alignments and identifying different

folds and fold classes as can be seen in Tables 7 and 8 in the appendix. In particular,

EIGAs outperforms our earlier delta method in terms of both speed and quality. (The

computing times reported in Table 6 and 9 include the preprocessing steps of each

method. Alignment times will be even faster for database searches as the preprocessing

step is done only once when a database is setup and is not required for searches.)

Figure 7 illustrates that despite poor RMSD values, EIGAs seems to do a good job

of quickly forming a good global alignment. For 1FX1a vs 1UBQ, for example, EIGAs

determines an alignment in 0.1 seconds. Figure 7(a) is the 3D protein-protein contact

matrix of the superimposed structures. The RMSD is poor at 9.8. However, the global

alignment is mostly correct with 74 aligned residues and a 3D contact score of 12.3.

Applying the contact alignment algorithm (3D version) to EIGAs’s alignment, reduces

the number of aligned residues to 64 and RMSD to 5.2 and increases the 3D contact

score to 24.6. Finally, a further application of 3D alignment, which involves alternating

between DP and 3D superposition using the Kabsch proceedure, reduces the number

of aligned residues to 63, RMSD to 2.6 and increases the 3D contact score to 45.4.
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Difficult Alignments SAMO Dali CE Lund delta EIGAs EIGA

1. 1FXIa( 96) 1UBQ ( 76) 70 60 64 63 59 74 63

2. 1TEN (195) 3HHRb( 89) 87 86 87 87 75 88 86

3. 3HLAb(114) 2RHE ( 99) 87 75 84 83 73 95 82

4. 2AZAa(129) 1PAZ (120) 82 81 84 83 75 109 83

5. 1CEWi(108) 1MOLa( 94) 83 81 81 82 65 88 81

6. 1CID (177) 2RHE (114) 98 97 97 97 101 113 98

7. 1CRL (534) 1EDE (310) 281 211 219 126 240 304 208

8. 2SIM (390) 1NSBa(381) 322 291 275 292 253 339 292

9. 1BGEb(159) 2GMFa(121) 110 94 107 104 96 121 101

10. 1TIE (166) 4FGF (124) 115 114 116 115 98 120 115

TABLE 4: Number of aligned residues.

Difficult Alignments SAMO Dali CE Lund delta EIGAs EIGA

1. 1FXIa( 96) 1UBQ ( 76) 2.5 2.6 3.8 2.6 9.9 9.8 2.6

2. 1TEN (195) 3HHRb( 89) 1.7 1.9 1.9 1.8 21.7 18.9 1.7

3. 3HLAb(114) 2RHE ( 99) 2.9 3.0 3.4 3.3 15.5 13.4 3.1

4. 2AZAa(129) 1PAZ (120) 2.5 2.5 2.9 2.4 15.4 10.9 2.4

5. 1CEWi(108) 1MOLa( 94) 2.3 2.3 2.3 2.2 14.9 9.2 2.1

6. 1CID (177) 2RHE (114) 2.3 3.2 2.9 2.5 12.5 21.7 2.6

7. 1CRL (534) 1EDE (310) 3.1 3.5 3.8 5.0 24.8 23.6 3.1

8. 2SIM (390) 1NSBa(381) 2.9 3.3 3.0 2.9 21.5 17.0 3.0

9. 1BGEb(159) 2GMFa(121) 3.3 3.3 3.9 3.3 17.5 9.9 3.1

10. 1TIE (166) 4FGF (124) 2.4 3.1 2.9 2.7 16.3 13.5 2.7

TABLE 5: RMSD error (in Angstroms).

7 CONCLUSIONS

The contact geometry description of protein folds presented in this paper has a rich

mathematical structure. We have used this mathematical structure to develop two new

protein fold alignment algorithms, EIGAs and EIGA. Both are fast, but EIGAs is espe-

cially fast as it essentially runs at the speed of DP.

In a recent article, Hasegawa and Holm [13] claim that alignment methods that
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Difficult Alignments delta EIGAs EIGA

1. 1FXIa( 96) 1UBQ ( 76) 0.1 0.1 1.1

2. 1TEN (195) 3HHRb( 89) 0.3 0.2 2.7

3. 3HLAb(114) 2RHE ( 99) 0.2 0.1 1.7

4. 2AZAa(129) 1PAZ (120) 0.2 0.1 3.7

5. 1CEWi(108) 1MOLa( 94) 0.2 0.1 1.4

6. 1CID (177) 2RHE (114) 0.3 0.2 3.4

7. 1CRL (534) 1EDE (310) 3.4 2.5 29.1

8. 2SIM (390) 1NSBa(381) 2.6 1.8 24.3

9. 1BGEb(159) 2GMFa(121) 0.3 0.2 2.8

10. 1TIE (166) 4FGF (124) 0.3 0.2 6.8

TABLE 6: CPU time (in seconds).
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(a) spectrum alignment
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(b) contact alignment
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(c) 3D alignment

Fig. 7: 1FX1a vs 1UBQ, protein-protein, 3D contact matrices after superposition using

(a) spectrum alignment (b) refinement using contact alignment (3D version) and (c) final

3D alignment.

allow for flexibility generate the most biologically meaningful alignments. Instead of

directly aligning the residues of a fold, the spectral alignment methods described in this

paper first align the eigenspaces of the folds. Structural deformations observed in actual

protein folds result in shifts in these eigenspaces. Since residues are referenced to their
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eigenspaces, the final alignment naturally compensates for such structural deformations.

We are currently investigating a spectral approach to multiple structure alignment as

well as refining the mathematical description of the 3D version of our contact alignment

algorithm. We are also working on a detailed mathematical analysis of the alignment

error of protein alignments.
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SAMO Dali CE Lund delta EIGAs EIGA

Reductases

1DHFa(186) 8DFR (182) 182 182 182 182 175 177 182

1DHFa(182) 4DFRa(159) 153 154 154 156 122 156 155

1DHFa(182) 3DFR (162) 159 158 158 159 137 158 159

8DFR (186) 4DFRa(159) 157 155 155 157 126 157 156

8DFR (186) 3DFR (162) 159 159 158 160 129 160 160

4DFRa(162) 3DFR (159) 156 154 155 155 129 153 155

Globins

2HHBa(146) 2HHBb(141) 139 138 139 139 102 136 139

2HHBa(153) 1MBD (141) 141 139 141 141 113 138 141

2HHBa(147) 2HBG (141) 140 138 136 138 107 132 138

2HHBa(141) 1ECD (136) 131 129 128 130 128 131 130

1MBD (153) 2HBG (147) 141 140 140 140 85 141 139

2HHBb(153) 1MBD (146) 145 145 144 145 130 142 145

2HHBb(147) 2HBG (146) 137 135 134 136 95 134 136

2HHBb(146) 1MBA (146) 140 138 139 140 110 137 141

2LHB (153) 1MBD (149) 137 135 137 137 111 135 137

2LHB (149) 2HBG (147) 133 128 130 132 106 132 131

1MBD (153) 1MBA (146) 143 142 141 143 100 138 143

1MBA (146) 1ECD (136) 136 133 134 136 93 131 136

2HBG (147) 1ECD (136) 129 129 125 129 120 129 129

Different Folds

1NSBa(390) 1TIE (166) 156 - 88 - 140 166 81

1NSBa(390) 4FGF (124) 118 - 72 - 110 124 76

1FXIa(108) 1CEWi( 96) 56 - 56 - 75 90 42

1FXIa( 96) 1MOLa( 94) 70 - 48 - 66 84 48

Different Classes

1BGEb(159) 1TEN ( 89) 82 - 40 - 66 86 44

1BGEb(159) 1PAZ (120) 103 - 48 - 105 113 50

2GMFa(121) 1TEN ( 89) 68 - 40 - 72 87 46

TABLE 7: Number of aligned residues.
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SAMO Dali CE Lund delta EIGAs EIGA

Reductases

1DHFa(186) 8DFR (182) 0.7 0.7 0.7 0.7 1.4 2.3 0.7

1DHFa(182) 4DFRa(159) 1.8 2.0 2.0 2.0 10.5 3.8 1.9

1DHFa(182) 3DFR (162) 1.6 1.7 1.7 1.7 6.8 5.0 1.7

8DFR (186) 4DFRa(159) 1.9 2.0 2.0 2.0 8.4 6.1 1.9

8DFR (186) 3DFR (162) 1.6 1.8 1.8 1.8 9.6 4.3 1.8

4DFRa(162) 3DFR (159) 1.5 1.5 1.5 1.5 5.8 3.5 1.5

Globins

2HHBa(146) 2HHBb(141) 1.4 1.4 1.5 1.4 15.5 4.6 1.4

2HHBa(153) 1MBD (141) 1.5 1.5 1.6 1.5 13.7 3.5 1.5

2HHBa(147) 2HBG (141) 1.6 1.7 1.7 1.6 12.8 4.2 1.6

2HHBa(141) 1ECD (136) 2.2 2.3 2.6 2.3 8.7 5.8 2.3

1MBD (153) 2HBG (147) 2.0 2.2 2.1 2.0 18.0 4.3 1.9

2HHBb(153) 1MBD (146) 1.6 1.6 1.6 1.6 5.3 3.0 1.6

2HHBb(147) 2HBG (146) 1.7 2.0 1.9 1.7 18.1 4.9 1.7

2HHBb(146) 1MBA (146) 2.2 2.3 2.4 2.4 7.9 5.0 2.4

2LHB (153) 1MBD (149) 1.4 1.4 1.6 1.5 14.5 4.7 1.5

2LHB (149) 2HBG (147) 1.9 2.0 2.1 2.0 15.2 5.8 1.9

1MBD (153) 1MBA (146) 1.9 1.9 1.8 1.9 14.2 4.5 1.9

1MBA (146) 1ECD (136) 1.9 1.9 2.0 2.0 12.6 4.4 1.9

2HBG (147) 1ECD (136) 2.4 2.6 2.6 2.5 7.8 7.1 2.5

Different Folds

1NSBa(390) 1TIE (166) 3.1 - 6.4 - 20.9 20.8 4.2

1NSBa(390) 4FGF (124) 3.0 - 5.8 - 15.1 18.2 4.5

1FXIa(108) 1CEWi( 96) 2.9 - 7.2 - 15.2 16.0 3.7

1FXIa( 96) 1MOLa( 94) 2.9 - 5.8 - 14.2 13.7 3.7

Different Classes

1BGEb(159) 1TEN ( 89) 2.8 - 7.4 - 15.7 16.0 3.9

1BGEb(159) 1PAZ (120) 3.2 - 6.2 - 16.6 18.5 4.1

2GMFa(121) 1TEN ( 89) 3.0 - 4.8 - 11.9 15.4 3.7

TABLE 8: RMSD error in Angstroms.
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delta EIGAs EIGA

Reductases

1DHFa(186) 8DFR (182) 0.6 0.4 2.5

1DHFa(182) 4DFRa(159) 0.4 0.3 3.0

1DHFa(182) 3DFR (162) 0.4 0.3 2.4

8DFR (186) 4DFRa(159) 0.4 0.3 3.6

8DFR (186) 3DFR (162) 0.4 0.3 3.1

4DFRa(162) 3DFR (159) 0.4 0.2 2.1

Globins

2HHBa(146) 2HHBb(141) 0.3 0.2 2.1

2HHBa(153) 1MBD (141) 0.3 0.2 1.8

2HHBa(147) 2HBG (141) 0.3 0.2 1.9

2HHBa(141) 1ECD (136) 0.3 0.2 1.8

1MBD (153) 2HBG (147) 0.3 0.2 2.5

2HHBb(153) 1MBD (146) 0.3 0.2 2.1

2HHBb(147) 2HBG (146) 0.3 0.2 6.9

2HHBb(146) 1MBA (146) 0.3 0.2 1.7

2LHB (153) 1MBD (149) 0.3 0.2 7.2

2LHB (149) 2HBG (147) 0.3 0.2 2.8

1MBD (153) 1MBA (146) 0.3 0.2 2.3

1MBA (146) 1ECD (136) 0.3 0.2 2.0

2HBG (147) 1ECD (136) 0.3 0.2 2.0

Different Folds

1NSBa(390) 1TIE (166) 1.3 0.9 32.1

1NSBa(390) 4FGF (124) 1.1 0.8 19.6

1FXIa(108) 1CEWi( 96) 0.2 0.1 3.8

1FXIa( 96) 1MOLa( 94) 0.1 0.1 1.9

Different Classes

1BGEb(159) 1TEN ( 89) 0.2 0.2 2.8

1BGEb(159) 1PAZ (120) 0.3 0.2 6.5

2GMFa(121) 1TEN ( 89) 0.2 0.1 3.0

TABLE 9: CPU time (in seconds).
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