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Abstract

Parametric linear programming is the study of how optimal properties
depend on data parametrizations. The study is nearly as old as the field
of linear programming itself, and it is important since it highlights how a
problem changes as what is often estimated data varies. We present what
is a modern perspective on the classical analysis of the objective value’s
response to parametrizations in the right-hand side and cost vector. We
also mention a few applications and provide citations for further study.

The study of parametric linear programming dates back to the work of Gass,
Saaty, and Mills [6, 23, 26] in the middle 1950s, see [27] as well. The analysis of
how optimal properties depend on a problem’s data is important since it allows a
model to be used for its intended purpose of explaining the underlying phenom-
ena. This is because models are often constructed with imperfect information,
and the study of parametric and sensitivity analysis relates optimal properties
to the problem’s data description. The topic is a mainstay in introductory texts
on operations research and linear programming. Here we advance the typical
introduction and point to some modern applications. For the sake of brevity we
omit proofs and instead cite publications in which proofs can be located.

We assume the standard form primal and dual throughout,

(LP) min{cTx : Ax = b, x ≥ 0} and (LD) max{bT y : AT y + s = c, s ≥ 0},

where A ∈ Rm×n has full row rank, b ∈ Rm, and c ∈ Rn. For any B ⊆
{1, 2, . . . , n} we let AB be the submatrix of A whose column indices are in B.
We further let N = {1, 2, . . . , n}\B so that AN contains the columns of A not
in AB . Similarly, cB and cN denote the subvectors of c whose components are
in the set subscripts. The partition (B,N) is optimal if both

ABxB = b, xB ≥ 0 and AT
By = cB , A

T
Ny + sN = cN , sN ≥ 0 (1)

are consistent. One special case is if AB is invertible, and we refer to such a
partition as basic or as a basis. If a basis is optimal, the above systems can be
re-expresses as

A−1
B b ≥ 0 and cN −AT

N (AT
B)−1cB ≥ 0. (2)

Another special case is if B is maximal, meaning that it is not contained in
another optimal B set. There is a unique maximal B for any A, b and c, and
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we denote the corresponding partition as (B̂, N̂). This fact was first established
in [9]. We mention that the terminology used here differs from that in some
of the supporting literature. The maximal partition is often called the optimal
partition, but since it is generally only one of many optimal partitions, we
distinguish it with the term “maximal” since this is the mathematical property
that it has in relation to the other optimal partitions. An optimal solution to
(LP) and (LD) can be constructed for any optimal (B,N) by letting y, xB and
sN be any solution to (1) and by letting xN = 0 and sB = 0.

The classical study in parametric analysis considers linear changes in one of
b or c, and it is this case that we primarily study. Let δb ∈ Rm and consider the
parametrized linear program

z∗(θ) = min{cTx : Ax = b+ θδb, x ≥ 0}.

A typically question is, “Over what range of θ does an optimal basis remain
optimal?” Since the dual inequality in (2) is unaffected by a change in b, we
have that a basic optimal solution remains optimal so long as

xB(θ) = A−1
B (b+ θδb) ≥ 0.

Hence the basis remains optimal as long as θ is at least

max
{
−[A−1

B b]i/δbi : δb > 0
}

= min {θ : ABxB = b+ θδb, x ≥ 0, xN = 0} (3)

and at most

min
{
−[A−1

B b]i/δbi : δbi < 0
}

= max {θ : ABxB = b+ θδb, x ≥ 0, xN = 0} . (4)

The left-hand side of these two equalities is a common ratio test, but it is in-
sightful to realize that these equate to the stated linear programs. The objective
value’s response over this range is

z∗(θ) = cTBxB(θ) = cTBA
−1
B b+ θcTBδb,

which shows that the objective function is linear as long as the basis remains
optimal.

The above calculation is often used to support the result that z∗(θ) is con-
tinuous, piecewise linear and convex. Although true, the above analysis of a
basic optimal solution does not immediately lead to a characterization of z∗

since bases need not remain optimal as long as z∗ is linear. As an illustration,
we consider the following example throughout,

A =
[

1 1 −1 0
0 1 0 −1

]
, b =

(
1
3

)
, δb =

(
0
−1

)
and c =


0
1
0
0

 .
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The unique optimal basis for θ = 0 is B = {2, 3}, and this basis remains
optimal as long as 0 ≤ θ ≤ 2. However, for 2 < θ < 3 the unique optimal basis
is B = {1, 2}, and we have

xB(θ) = xB(0) + θA−1
B δb =

(
−2

3

)
+ θ

(
1
−1

)
.

For θ > 3 the unique optimal basis is {1, 4}, and

xB(θ) = xB(0) + θA−1
B δb =

(
1
−3

)
+ θ

(
0
1

)
.

For these three bases we have

B = {2, 3} ⇒ cTBA
−1
B δb = −1

B = {1, 2} ⇒ cTBA
−1
B δb = −1

B = {1, 4} ⇒ cTBA
−1
B δb = 0,

and the objective value is

z∗(θ) =
{

3− θ, 0 ≤ θ ≤ 3
0, θ > 3.

The linearity intervals of z∗ are [0, 3] and [3,∞), and over the interior of the
first we have dz∗/dθ = −1 and over the interior of the second we have dz∗/dθ =
0. This example shows that a linearity interval not necessarily identified from
the initial collection of optimal bases, i.e. no basis that is optimal for θ = 0
is remains optimal over the first linearity interval. The intersection of two
adjoining linearity intervals is called a break point, and two linearity intervals
sharing a break point are said to adjoin. Although the objective z∗ is not
differentiable at a break point, the left and right-derivatives exist as long as
feasibility is possible on both sides of a break point. Additional examples of
this behavior are found in [22].

The observation that no basis is guaranteed to remain optimal over a lin-
earity interval leads to the question of how to characterize the behavior of the
objective value under parametrization. One solution to this question was moti-
vated by the advent of interior-point methods in the 1980s and 1990s. Specifi-
cally we consider the optimal solution that is the limit of the central path. The
central path is the collection of unique solutions to

Ax = b, x > 0, AT y + s = c, s > 0, xT s = µ > 0,

which we denote by the parametrization (x(µ), y(µ), s(µ)). The path converges
as µ ↓ 0 to a unique optimal solution (x∗, y∗, s∗) up to the representation of the
problem defined by A, b and c. This solution induces (B̂, N̂) as follows

B̂ = {i : x∗i > 0} and N̂ = {i : x∗i = 0}.
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The solution x∗ is continuous with respect to b, see [18], which immediately
implies z∗(θ) is continuous in θ.

Returning to the example, we have B̂ = {1, 2, 3} for 0 ≤ θ < 3 since each
variable indexed by this set can be positive in an optimal solution. For example,
x∗(θ) = (5, 3− θ, 7− θ, 0) is optimal over this range. The variable x2 is forced
to zero once θ reaches 3, and the maximal partition changes to B̂ = {1, 3} and
N̂ = {2, 4}. For θ > 3, the maximal partition is B̂ = {1, 4} and N̂ = {2, 3}. This
suggests that the maximal partition remains constant over the interior of each
linearity interval. This is indeed true, and an analysis based on the maximal
partition characterizes z∗(θ) since it algebraically describes the optimal sets of
(LP) and (LD), which are respectively

P∗ =
{
x : Ax = b, x ≥ 0, xN̂ = 0

}
and D∗ =

{
(y, s) : AT y + s = c, sB̂ = 0

}
.

The counterparts to the right-hand sides of (3) and (4) are to solve

min
{
θ : Ax = b+ θδb, x ≥ 0, xN̂ = 0

}
and max

{
θ : Ax = b+ θδb, x ≥ 0, xN̂ = 0

}
. (5)

As long as θ is between these optimal values the objective z∗ is linear, and the
derivative of z∗ over the interior of this range is

D = max{δbT y : AT y + s = c, s ≥ 0, sB̂ = 0}, (6)

which is a solution to a linear program defined over the dual optimal set. For
the example, the optimal value of this math program is −1 for B̂ = {1, 2, 3},
which is the maximal partition for 0 < θ < 3 and is 0 for B̂ = {1, 4}, which is
the maximal partition for 3 < θ.

The linear programs in (5) and (6) are stated in terms of (B̂, N̂), and al-
though mathematically correct, these sets are nontrivial to calculate due to
numerical round-off, presolving, and scaling. An alternative is to replace the
linear programs in (5) and (6) with

min
{
θ : Ax = b+ θδb, x ≥ 0, cTx = z∗(0) + θD

}
,

max
{
θ : Ax = b+ θδb, x ≥ 0, cTx = z∗(0) + θD

}
, and

max{δbT y : AT y + s = c, s ≥ 0, bT y = z∗(0)}.

The equalities guaranteeing optimality can further be relaxed to cTx ≤ z∗(0) +
θD+ ε and bT y ≥ z∗(0)− ε to improve numerical stability if needed, where the
parameter ε approximates the numerical tolerance of zero.

Results under the parametrization c + λδc mirror those for the right-hand
side parametrization; the main difference being that the roles of the primal and
dual reverse. In this case we indicate the dependence on λ by using z∗(λ) instead
of z∗(θ). The following theorem presents the results for changes in one of θ or
λ. See [1, 11, 13, 21, 24, 25] for various proofs.

Theorem 1 Let δb and δc be directions of perturbation for b and c, and let
(B̂, N̂) be the maximal partition for the unperturbed linear programs. Then the
following hold:
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1. (B̂, N̂) remains the unique maximal partition under the parametrization
b+ θδb as long as

θ− = min{θ′ : Ax = b+ θ′δb, x ≥ 0, xN̂ = 0}
< θ < max{θ′ : Ax = b+ θ′δb, x ≥ 0, xN̂ = 0} = θ+,

provided that one of θ− or θ+ is nonzero.

2. Either θ− = θ+ = 0 or θ− < 0 < θ+.

3. The largest interval containing zero over which z∗(θ) is linear is [θ−, θ+].

4. The dual optimal set, {(y, s) : AT y + s = c, s ≥ 0, sB̂ = 0}, is invariant
for θ ∈ (θ−, θ+), provided that θ+ and θ− are nonzero.

5. Assume θ− and θ+ are nonzero. Let (B̂′, N̂ ′) and (B̂′′, N̂ ′′) be the respec-
tive maximal partitions for θ = θ− and θ = θ+. Then, B̂′ ⊂ B̂, N̂ ′ ⊃ N̂ ,
B̂′′ ⊂ B̂, and N̂ ′′ ⊃ N̂ .

6. If θ− and θ+ are nonzero and θ ∈ (θ−, θ+), then

dz∗(θ)
dθ

= max{δbT y : AT y + s = c, s ≥ 0, sB̂ = 0}.

7. (B̂, N̂) remains the unique maximal partition under the parametrization
c+ λδc as long as

λ− = min{λ′ : AT y + s = c+ λ′δc, s ≥ 0, sB̂ = 0}
< λ < max{λ′ : AT y + s = c+ λ′δc, s ≥ 0, sB̂ = 0} = λ+,

provided that one of λ− or λ+ is nonzero.

8. Either λ− = λ+ = 0 or λ− < 0 < λ+.

9. The largest interval containing zero over which z∗(λ) is linear is [λ−, λ+].

10. The primal optimal set, {x : Ax = b, x ≥ 0, xN̂ = 0}, is invariant for
λ ∈ (λ−, λ+), provided that λ− and λ+ are nonzero.

11. Assume λ− and λ+ are nonzero. Let (B̂′, N̂ ′) and (B̂′′, N̂ ′′) be the respec-
tive maximal partitions for λ = λ− and λ = λ+. Then, B̂′ ⊃ B̂, N̂ ′ ⊂ N̂ ,
B̂′′ ⊃ B̂, and N̂ ′′ ⊂ N̂ .

12. If λ− and λ+ are nonzero and λ ∈ (λ−, λ+), then

dz∗(λ)
dλ

= min{δcTx : Ax = b, x ≥ 0, xN̂ = 0}.
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Theorem 1 shows that the maximal partition characterizes the linearity of z∗

about θ = 0. Compared to the basis approach in (3) and (4), the calculation
guaranteeing the identification of the entire linearity interval requires the solu-
tion to two linear programs. Theorem 1 also distinguishes the roles of the primal
and dual. The fourth and tenth statements show that one of the primal or the
dual optimal sets is invariant over the interior of a linearity interval. For ex-
ample, under the parametrization of b the dual optimal set remains intact, and
hence, any basis within the maximal partition corresponds with a vertex of the
dual optimal set independent of the θ in (θ−, θ+). Similarly, as c is parametrized
over the interior of its linearity interval, the primal optimal set is unchanged,
and any basis within the maximal partition corresponds with a vertex of the
primal optimal set. To be precise, let (B,N) be any optimal partition for θ = 0,
for which there is a dual optimal solution (y, s) so that

AT y + s = c, s ≥ 0, sB = 0.

Assuming that θ− and θ+ are nonzero, we have from Theorem 1 that if θ ∈
(θ−, θ+), then there is a primal solution x such that

Ax = b+ θδb, x ≥ 0, xT s = 0.

In the case that (B,N) is basic, we say that the basis is dual optimal for θ ∈
(θ−, θ+). Similarly, if c is parametrized, then for any x such that

ABxB = b, x ≥ 0, xN = 0,

we know that there are y and s so that

AT y + s = c+ λδc, s ≥ 0, xT s = 0,

provide that λ ∈ (λ−, λ+). Again, if (B,N) is basic, we say that the basis is
primal optimal for λ ∈ (λ−, λ+).

The interplay between the basic and the maximal partitions is of special in-
terest at a break point. As an illustration, consider the example for θ = 3. There
are two optimal basic partitions, which we denote by (B′, N ′) = ({1, 2}, {3, 4})
and (B′′, N ′′) = ({1, 4}, {2, 3}). The maximal partition is (B̂, N̂) = ({1, 3}, {2, 4}).
In this case we have

0 = min{θ : Ax = b+ (3 + θ)δb, x ≥ 0, xN̂ = 0}
= max{θ : Ax = b+ (3 + θ)δb, x ≥ 0, xN̂ = 0}.

This shows the linearity interval for the perturbed right-hand side of b+ 3δb is
the singleton [0, 0] = {0}, and we say that the maximal partition is incompatible
with parametrizations away from b + 3δb along δb. However, the basic optimal
partitions give

−1 = min{θ : Ax = b+ (3 + θ)δb, x ≥ 0, xN ′ = 0} (7)
0 = max{θ : Ax = b+ (3 + θ)δb, x ≥ 0, xN ′ = 0}
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and

0 = min{θ : Ax = b+ (3 + θ)δb, x ≥ 0, xN ′′ = 0}
∞ = max{θ : Ax = b+ (3 + θ)δb, x ≥ 0, xN ′′ = 0}.

So (B′, N ′) is compatible with δb as θ decreases and (B′′, N ′′) is compatible with
δb as θ increases. In the case of θ decreasing we note that (B′, N ′) does not
identify the entire linearity interval. If θ increases, then the last linear program
being unbounded shows that the linearity interval is unbounded. From the
example we see that different partitions are compatible with different directions
of perturbation. A theory of compatibility is developed in [13] and [15].

Combining Theorem 1 with the study of what occurs at a break point gives
a complete analysis of z∗ as either θ or λ traverse through all possible values for
which the primal and dual are feasible, in which case the parameters could move
through multiple linearity intervals. The question that remains is how to move
from one linearity interval, through a break point, and to the adjoining interval.
From the above example we see that we can always move into a linearity interval
with a basis, even from a break point. However, identifying a compatible basis
in a degenerate problem is not simple. From Theorem 1 we see that the maximal
partition provides a definitive technique that rests on solving a linear program.
Suppose the maximal partition (B̂, N̂) is incompatible with δb, a fact that would
be known upon calculating θ+ to be zero in the first statement of Theorem 1.
The adjoining linearity interval is of the form [0, θ′], where θ′ > 0. We let
(B̂′, N̂ ′) be the unique maximal partition for θ ∈ (0, θ′). To find (B̂′, N̂ ′) we
solve

max{δbT y : AT y + s = c, s ≥ 0, sB̂ = 0}.

From [1] we have that

B̂′ = {i : si = 0 for all optimal (y, s)} and N̂ ′ = {1, 2, . . . , n}\B′′. (8)

Subsequently we have from the fifth and sixth statements of Theorem 1 that
the solution to this problem is the right-sided derivative of z∗ at θ = 0.

The change in the maximal partition denoted in (8) leads to the following
algorithm to calculate z∗. As with (5) and (6) the linear programs can be stated
in terms of the objective function for stability reasons, and it is this presentation
that we use.

1. Calculate z∗(0) = min{cTx : Ax = b, x ≥ 0} and initialize θ− to be zero.

2. Calculate D+ = max{δbT y : Ay + s = c, s ≥ 0, bT y = z∗(θ−)}. If the
problem is unbounded, then stop.

3. Calculate max{θ : Ax = b + θδb, x ≥ 0, cTx = z∗(θ−) + θD+} and let
θ+ be the optimal value (possibly infinity). Note that we always have
θ− < θ+ since we are moving through a linearity interval.

4. Let z∗(θ) = z∗(θ−) + θD+ for either θ ∈ (θ−, θ+], if θ+ < ∞, or θ ∈
(θ−, θ+), if θ+ =∞.
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5. If θ+ <∞, then let θ− = θ+ and return to step 3. Otherwise, stop.

We only state the algorithm for parametrizations in b. The algorithm for changes
in c is analogous.

The study of parametrizations in one of b or c naturally continues with
questions of simultaneous changes in b and c. In fact, the general question is
to study the essence of optimality as the data (A, b, c) is parametrized along
(δA, δb, δc). An entire thesis on this topic is beyond the scope of this article, and
we point readers to the bibliography, which includes works outside those cited
herein so that it can support continued study. One result from [13] is particularly
germane to our discussion of characterizing z∗. Consider what happens if A
remains constant and b and c change simultaneously. In this situation we study

z∗(θ) = min{(c+ θδc)Tx : Ax = b+ θδb, x ≥ 0}.

Let (x∗, y∗, s∗) be a primal-dual solution for θ = 0 such that x∗
B̂
> 0 and s∗

N̂
> 0.

As long as δb and δc are compatible with (B̂, N̂), we have that

z∗(θ) = z(0) + θ
(
δcB̂x

∗
B̂

+ δbT
N̂
yN̂

)
+ θ2

(
δcB̂A

+

B̂
δbN̂

)
,

where A+

B̂
is any generalized inverse of AB̂ . The first order term is the sum of the

primal and dual derivatives in the case that they are parametrized individually.
The second order term shows that the curvature of z∗ under simultaneous change
is δcB̂A

+

B̂
δbN̂ , which is invariant with respect to the choice of the generalized

inverse.
Parametric linear programming has been used outside of typical query ques-

tions of the type “What if ...?” Parametric analysis on matching problems has
been used in [19] to identify undesirable job assignments for the United States
Navy. It was also used in [3] to design a regional network for efficient and equi-
table liver allocation, and in [20] to prune radiotherapy treatments by restricting
the search space. Each of these applications is based on the fact that the collec-
tion of Pareto optimal solutions to a bi-objective linear programming problem
can be expressed parametrically. For example, consider the bi-objective linear
program

min
{(

cTx
dTx

)
: Ax = b, x ≥ 0

}
.

Due to the convexity of the problem we know that each Pareto optimal solution
is also a solution to

min{(c+ λ(d− c))x : Ax = b, x ≥ 0},

for some, not necessarily unique, λ ∈ (0, 1), see [4]. The analysis above shows
that we can calculate the linearity intervals of this problem and the rate at which
the objective value changes over each linearity interval by solving a series of
linear programs. If we let (Bk, Nk) be the finite sequence of maximal partitions
at the break points in (0, 1), then any variable whose index is not in⋃

k

Bk

8



is zero in every Pareto solution. This conveniently allows us to mathematically
identify the variables that can be removed without altering the Pareto set. This
works only for the bi-objective case, which somewhat limits its applicability. A
host of related applications is found in [5].
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