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Abstract

In this paper we introduce a p-median problem based clugtdréuristic for selecting efficient beam angles for
intensity modulated radiation therapy. The essence of tathoad described here is the clustering of beam angles
according to probability that an angle will be observed ia fimal solution and similarities among different angles
and the selection of a representative angle from each op tlesulting cluster cells. We conduct experiments using
several combinations of modeling parameters to find the itiond where the heuristic best performs. We found a
combination of such parameters that outperformed all gtheameters on three of the four tested instances.
Keywords
IMRT, Beam Angle Optimization, p-Median.

1. Introduction

Intensity modulated radiation therapy (IMRT) is an advahicem of three-dimensional conformal radiation ther-
apy (3DCRT) [7] for cancer patients. In IMRT, radiation islidered via a linear accelerator (LINAC) [10]. The
LINAC is mounted on a movable arm, called thentry, that is able to make a complete 360 degree rotation around
the patient. The gantry rotates around a point calledgbeenter The LINAC is equipped with aultileaf collimator
(MLC), a device with pneumatic “leaves” that move back andhfdo block portions of the radiation beam. The
multileaf collimator allows the beam to be shaped, theredyitioning each of the 360 beams indob-beamsalso
known aspencil beam®r beamlet44].

IMRT planning is an “inverse problem,” where an ideal dospatition is specifie priori as a mathematical
objective function. Treatment parameters are then itezhtiadjusted and the results are mathematically simulated
The goal of IMRT is to deliver a lethal dose of radiation to tdaacer cells while limiting the amount of radiation that
deposits in nearby critical and normal healthy tissues @epto reduce damage [3, 8].

There are several different volumes to be considered whaamphg to treat a tumor. The first is the planning target
volume (PTV) that includes the actual tumor volume and frrtinargins for uncertainties such as patient motion or
anatomy changes during the course of the treatments. Rénysidelineate on each CT slice the PTV as well as organs
that may be incident to the radiation beam. These organsftme called critical structures or organs-at-risk (OAR).
Any remaining tissue is delineated as normal tissue (NOR).

Physicians specify therescription characterized by a lower and upper preference bound orrlzdagdose in the
tumor. The lower bound on the tumor ensures that there amlibspots defined as dosepoints in the anatomy that
are receiving significantly lower than the prescribed ddserthermore, certain hot spot control parameters may be
specified for OAR and NOR tissue. These specify how to pemaasepoints in OAR and NOR tissue that receive
unusually high dosage. These parameters may vary with thetgte type and are determined by the susceptibility
and severity of radiation damage to that structure. Forimst, a significant amount of damage to the spinal cord
may result in paralysis or loss of critical body functionshefefore, the tolerance assigned to the spinal cord is
comparatively lower than most other structures [4].

2. Optimization Model

Assuming a finite number of anglesand sub-beams we can calculate the dose contribution of sub-b¢ars)

to the dose poinp. In three dimensions the dose points result from discrggizhe irradiated area into small cubes
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called voxels. In two dimensions the dose points may be limdas squares or pixels. We I8, 55 be the rate
in Grays per second (Gy/t) at which radiation along sub-bsamanglea is deposited into dose poim, where
Wpas = 0,7(p,a;s). The calculation of this value is beyond the scope of thisepaput the value captures the
effects of scattering, attenuation, and several otheriplalgrocesses on the deposited dose. The total amount ef dos
deposited in a particulgyis
Dp= Z WpasXas):
(@s)

There are three optimization problems within the realm oRMtreatment planning — beam angle optimization
(BAO) problem[1, 2, 8], fluence map optimization (FMO) pretrl [8] and beam segmentation problem [5, 6]. Finding
the optimal beam angles can be computationally challengiegparchers often focus on heuristic approaches for
selecting efficient beam angles, and it is referred to a beagteaselection problem (BASP). BASP is the primary
focus of this paper. It involves choosing the most effectigams to use in an intensity modulated radiation therapy
(IMRT) treatment. The fluence map optimization (FMO) prableeeks an optimal fluence vectogiven certain
constraints on the dose deposited in the anatomy. In thisrpae focus on BASP but we use FMO in the process
of developing a heuristic for BASP. Therefore we develop ptinoization model that simultaneously optimizes both
BASP and FMO below. The objective function is to capture thtire of how a treatment planner decides between
good and bad treatments. The function we use can be found anfBwe present here involves several parameters,
outlined in Table 1.

Notation | Definition Prostate| Pancreas
oL Cold spot control parameter on PTV 0.97 0.97
Oy Hot spot control parameter on PTV 1.05 1.05
[0} Hot spot control parameter on tith OAR 0.3 0.2
Lt Lower reference bound on PTV 0.94 0.95
Ut Upper reference bound on PTV 1.15 1.07
Un Upper reference bound on normal structufe 0.78 0.83
A Penalty term for hot spots on PTV 1.0 1.0
AT Penalty term for cold spots on PTV 1.0 1.0
AN Penalty term for normal structure 1.0 1.0

Table 1: Optimization model parameters

Delivering a treatment from all possible 360 gantry anggerat clinically feasible. Current clinical constraints
require that IMRT treatments consist of less than 9 gantglean(the actual number depends on the problem). Exper-
iments have verified that treatment quality does not in@sadstantially with more beam angles per treatment. Thus,
the beam angle selection problem is how to selkehgles so that the subsequirgngle treatment is effective. We
can model BASP as an integer program with the following, gitleat 4 is acandidateset of beam angles to choose
from:

min f (2',x) 1)
subject to:
a4 c A4,
] < Kk
n
Dp = XasWpas: VPE {TUCUN}
acq's=1
Lt < Arx<Ur,
0 < Xas <Mas), Vae 4';se {1,...,n}.

Here we are deciding whidhbeams from a candidate set (and an associated fluence xéatdine chosen beams)
will satisfy the constraints and best minimize the objextiVhis problem is combinatorial in nature, exceeding cutrre
calculation capabilities. Therefore there is a need foriséa methods in solving the IMRT beam angle selection

problem.
3. Set Clustering Heuristic
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p-Median Problem

The essence of the method described here is the clusterihgamh angles according to probability and similarity
information and the selection of a representative anglenfeach of thek resulting cluster cells. Th@-median
problem is commonly stated as a binary optimization problerginally found in [9]. LetQ(a;) be a probability
function designed to capture the likelihood of observingla®; in a final treatment plan. Furthermore, g, a;)
be a function that captures the similarity between beamesaglanda;. We define the following binary allocation
variable:
| 1 ifanglea, is allocated withg;
&ij _{ 0 otherwise,

and with these definitions the binary integer program isestais:

min %Q(aj)h(aﬁaj)aij

subjectto y&j =1 forj=1,...,n, (2)
%Eii =K, (3

&i > &jj, Vi,j=1,....n, (4)

&j €{0,1}. (5)

Here we have simply inserted the BASP probability and sintylanformation into thep-median model. The
k resulting beam angles represent the original angles betéer any other set df beams in the candidate sét
(according to the similarity and probability information)

M odeling Probability

In order to apply the>-median model to the beam angle selection problem, we negetide a measure of probability
Q(a) that captures the likelihood of using any given candidatgea c 4 in a treatment plan using< |4| beams.
Calculating the probabilities for each angle is a speciakaa sensitivity analysis, where we are trying to determine
the effect or contribution of each beam angle in the optinfafluence solution.

There are only a small number of probability distributionggested in the literature [2]. We discuss three ap-
proaches for modeling probability. The first suggestioroigi¢nerate a uniform probability distribution where each
angle is equally likely to be used in a final plan, i®(a) = ﬁ, Va € 4. The second approach is called “balanced”
probability model. The balanced probability function wasdduced in [2]. The goal of the method is to remove de-
pendence on a specific solver, by generating a balancedlglibpdistribution and attempting to make it as uniform
as possible. This distribution is obtained by using a spétécographic optimization technique:

lexmin(z(x), SORT(X)) (6)

where DRT is a mapping that reorders the components iof a non-increasing order. This optimization formulation
is solved in an iterative manner.

Finally, we introduce a new approach “Total Weight Probigydil The total weight probability function (TW) is
obtained after solving for the optimal fluenkgs). The total weight probability is simply a sum of the fluencyues
over the sub-beams for each angle, calculated as

Q(a) = Zx(a.s)-

S

The essence of the TW method is the assumption that if thisevialhigh for some angle in the fluence optimization
problem, it indicates that the selected angle is importamhéintaining the constraints of the fluence optimization
problem, and hence is more likely to be used in a finlaéam plan.

Modeling Similarity (Difference)

We measure similarity between beam angles based upondtiffelnaracteristics that describe each beam angle. Angle
location is perhaps the most obvious characteristic of argngangle and angle distance is a measurement of similarity
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or difference between any two given beam angles. Letingk= max{a1,02} andamin = min{az,az}, the angle
distance function is as follows:

_ [ (155)[(360" — tmax) + Otmin],  if (Ctmax— Gimin) > 180°
A(ay,az) = { (725 ) (Ctmax— Otmin), otherwise.

To derive more descriptive characteristics about eacheamgg analyze how the angles are used in two situations:
the way they are used in an optimal FMO solution and the way #ine used in a uniform (unit) dose solution. The
optimal FMO solution is the solution to (1) when we open alhdidate beam angleg. The uniform (unit) dose
solution is obtained by assigning each sub-beam a fluenae wéll. Hence, the fluence vectain this case is simply
a unit vector. Because of this, dose information for the solitition may be obtained directly from the dose deposition
matrix A. From these two different solutions we derive several stias describing each beam angle. Each statistic
defines a quality characteristic for each angle. There aerakdose-based statistics for both unit and FMO solutions
and fluence-based statistics for the FMO solution only.

Characteristic Vectors: Once each statistic has been calculated we create vecttrsdhtain the statistic values
for each angle in observation. Allowing the notatigpto represent the value of thjeth characteristic of angle we
define characteristic vectors for each argkes follows:

Ca = (Ua1,0a2,-- -, Jam),

wheremis the total number of statistics we are considering. We nmesas, by a norm||c;||, and this norm induces
the metric:

h(a,aj) = [|ca — Ca|-

Using the characteristic vectors allows us to measure ale'argffectiveness with respect to a wide variety of user-
defined performance measurements, including measureroktite apparent effect of each angle on the quality of
treatment.
4. Proposed M ethodology

In order to apply thgp-median model to the beam angle selection problem, we first cnllect data about how
each candidate angle is used in the unit (uniform) and optifda@olutions, so that we may generate the characteristic
vectors. We then apply preprocessing techniques to theseétdas well as the probability information. After this we
are ready to use the-median model with the chosen characteristic vectors aodalility weights to obtain a pruned
collection of angles. Finally we obtain an optimal fluencepraaing only the pruned angles, and evaluate the resulting
plan using various measures of performance.

Data Collection

In order to collect data about each beam angle in a candidat, sve analyze two different solutions to the fluency
map optimization problem (FMO). In FMO, the objective fupatin [8] is modified so thax, the fluency vector, is the
decision variable for a fixed candidate set of beam angléd/e consider two different solutions to the FMO problem.
The first solution is a unit solutiorx(a, s) = 1, ¥(a,s). Since the mappingxdetermines the amount of dose deposited
in the anatomy, dose-based statistics for the unit sol@ferobtained directly from. We collect 19 attributes from
the uniform dose solution: sum of dose deposited to all \&@xebximum dose and minimum dose on the PTV, average
dose on the PTV, OAR, and NOR, to name a few. The second solistian optimal linear programming solution to
the FMO problem with an assumption that the FMO solution prilvide enough information for finding good angles.
We collect 29 statistical values (or attributes) from an loRuison: maximum dose and minimum dose on the PTYV,
average dose on the OAR, to name a few. Both dose-based andyflbased statistics may be obtained from this
solution. With these definitions of the statistics that wentita consider, we can alter what type of statistics are in the
characteristic vector s&t that we pass to thp-median model.

Preprocessing

Data Standardization: Recall thatin any data s&t, the rows correspond to the angles and the columns corrdspon
to the statistics. In any such data matrix, the data in themaok may have different units, and even when they have
the same units there may be much variation in the data s¢alomgetimes even by several orders of magnitude. For
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this reason, we standardize the data in each data set befpfaréher calculation by finding the-scoreof each data

element in each column 6f. This generates ascore vector, consisting of a value for each of fredements of the

i-th column, given by

Xij —
Gi

: ()

wherelj andg; are estimators of the mean and standard deviation of-thecolumn, respectively. The original
columns ofX are replaced by their respectizescore vectors, generating a new standardized daf& s&his helps to
avoid the skewing of results by using improperly skewed trgata.

zj =

Principal Component Analysis (PCA): Some statistics (or attributes) in the original sets canigkly correlated,

due to the similarity of many of the calculations. We applytatistical technique known as principal component
analysis (PCA) to remedy this issue. PCA removes unnegessarelation and shrinks the data set so that only
the most important indicators are left for further analysighis method refines the data so that the results are not
improperly skewed due to highly correlated input data. Tachnique is a data reduction method often applied in data
mining. In data mining it is used as a feature selection teglento reduce large data sets into the most significant
features.

Probability Scaling The probability information must be scaled in some way asaarce the influence of the
probability and similarity information in finding a set of é&@ angles. We begin with the modified data¥etafter the
z-score standardization and optional PCA technique have pedormed) and find the non-zero distances (using the
value ofd as used in th@-median objective function) between all pairs of the chimastic vectors. Definingyy and

04 as estimators of the mean and standard deviation of the eanelistances, respectively, we compute #iseore
vector of the single column of probability informatio&f). The final probability vector is calculated by

Qi =g+ (G x Zf).

The original probabilities are scattered using the origmscore information but are rescaled to fit within the range of
the distances between the characteristic vectors. Thizesnshat there is a proper balance of influence between the
probability and similarity information in the-median model.
5. Numerical Results

We test our method on two sets of patient data: prostate camcka pancreas tumor. The prostate cancer data
contains two main organs of interest: prostate and rectusingJ4Amm precision on the grids, the tumor region has
5,246 voxels, the rectum has 1,936 voxels, and the remalméadthy tissues have over 461,000 voxels on 38 CT
slices. The pancreas tumor contains five organs of intepasicreas, liver, left kidney, right kidney, and spinal cord
The voxel counts are 1,244, 50,391, 9,116, 5,920, and 48Peatively on 90 CT slices. We consider both 12 and 36
candidate beam angle s@t i.e., there are 36 equally spaced bearfiss(= {10i1t/180:i = 0,1,2,...,36}). In the
prostate case we aim to select six beam angles from eachded@diet. For the pancreatic tumor case, four angles
will be selected for the final treatment. Once we obtain tiseilteng sets of beam angles from thenedian model,
we evaluate the solutions using two visual performance nreasof the final fluence map solutions: dose volume
histogram (DVH) and radiation dose distribution plots. &istof these can be found in [8]. We noticed that the best
quality plans (according to visual analysis) resulted fithen same combination of parameters. This combination was
using all statistic values with PCA and the TW probabilitgtdbution function. We also tested cases with 12 initial
candidate beam angles versus 36 initial beam angles. Wevalddbat increasing the candidate beam angles improved
the solution quality. The DVH graph and a dose plot for thegoeatic tumor case with 36 initial beam angles are
shown in Figures 1.
6. Conclusion
In conclusion, we observed good and consistent resultsthétbroposed heuristic method for solving the IMRT beam
angle selection problem under certain modeling conditioimsgeneral, we make the following recommendations.
First, we recommend using pre-processing data with PCA aithuhe TW probability distribution function. This
combination obtained good results in many test cases andftieem was presented in this paper (the pancreas
case with 36 candidate beams). We have also noticed tha@isiag the initial candidate beam angles improved the
treatment plan quality. Increasing the number of candidatens increases the time required to solve the fluence map
optimization problem, so this recommendation should bled with that in mind. A balance between an accurate
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Figure 1: Pancreas data with 36 initial candidate beam arigie final beams were (90,150,170,300)

representation of problem geometry and solution time isrelés Following these recommendations obtained good
results on the tested patient data in our experiments.
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