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Abstract

In this paper we introduce a p-median problem based clustering heuristic for selecting efficient beam angles for
intensity modulated radiation therapy. The essence of the method described here is the clustering of beam angles
according to probability that an angle will be observed in the final solution and similarities among different angles
and the selection of a representative angle from each of thep resulting cluster cells. We conduct experiments using
several combinations of modeling parameters to find the conditions where the heuristic best performs. We found a
combination of such parameters that outperformed all otherparameters on three of the four tested instances.
Keywords
IMRT, Beam Angle Optimization, p-Median.

1. Introduction
Intensity modulated radiation therapy (IMRT) is an advanced form of three-dimensional conformal radiation ther-

apy (3DCRT) [7] for cancer patients. In IMRT, radiation is delivered via a linear accelerator (LINAC) [10]. The
LINAC is mounted on a movable arm, called thegantry, that is able to make a complete 360 degree rotation around
the patient. The gantry rotates around a point called theisocenter. The LINAC is equipped with amultileaf collimator
(MLC), a device with pneumatic “leaves” that move back and forth to block portions of the radiation beam. The
multileaf collimator allows the beam to be shaped, thereby partitioning each of the 360 beams intosub-beams, also
known aspencil beamsor beamlets[4].

IMRT planning is an “inverse problem,” where an ideal dose deposition is specifieda priori as a mathematical
objective function. Treatment parameters are then iteratively adjusted and the results are mathematically simulated.
The goal of IMRT is to deliver a lethal dose of radiation to thecancer cells while limiting the amount of radiation that
deposits in nearby critical and normal healthy tissues in order to reduce damage [3, 8].

There are several different volumes to be considered when planning to treat a tumor. The first is the planning target
volume (PTV) that includes the actual tumor volume and further margins for uncertainties such as patient motion or
anatomy changes during the course of the treatments. Physicians delineate on each CT slice the PTV as well as organs
that may be incident to the radiation beam. These organs are often called critical structures or organs-at-risk (OAR).
Any remaining tissue is delineated as normal tissue (NOR).

Physicians specify theprescription, characterized by a lower and upper preference bound on absorbed dose in the
tumor. The lower bound on the tumor ensures that there are nocold spots, defined as dosepoints in the anatomy that
are receiving significantly lower than the prescribed dose.Furthermore, certain hot spot control parameters may be
specified for OAR and NOR tissue. These specify how to penalize dosepoints in OAR and NOR tissue that receive
unusually high dosage. These parameters may vary with the structure type and are determined by the susceptibility
and severity of radiation damage to that structure. For instance, a significant amount of damage to the spinal cord
may result in paralysis or loss of critical body functions. Therefore, the tolerance assigned to the spinal cord is
comparatively lower than most other structures [4].
2. Optimization Model

Assuming a finite number of anglesa and sub-beamss, we can calculate the dose contribution of sub-beam(a,s)
to the dose pointp. In three dimensions the dose points result from discretizing the irradiated area into small cubes
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called voxels. In two dimensions the dose points may be visualized as squares or pixels. We letω(p,a,s) be the rate
in Grays per second (Gy/t) at which radiation along sub-beams in anglea is deposited into dose pointp, where
ω(p,a,s) ≥ 0,∀(p,a,s). The calculation of this value is beyond the scope of this paper, but the value captures the
effects of scattering, attenuation, and several other physical processes on the deposited dose. The total amount of dose
deposited in a particularp is

Dp = ∑
(a,s)

ω(p,a,s)x(a,s).

There are three optimization problems within the realm of IMRT treatment planning – beam angle optimization
(BAO) problem [1, 2, 8], fluence map optimization (FMO) problem [8] and beam segmentation problem [5, 6]. Finding
the optimal beam angles can be computationally challenging, researchers often focus on heuristic approaches for
selecting efficient beam angles, and it is referred to a beam angle selection problem (BASP). BASP is the primary
focus of this paper. It involves choosing the most effectivebeams to use in an intensity modulated radiation therapy
(IMRT) treatment. The fluence map optimization (FMO) problem seeks an optimal fluence vectorx given certain
constraints on the dose deposited in the anatomy. In this paper we focus on BASP but we use FMO in the process
of developing a heuristic for BASP. Therefore we develop an optimization model that simultaneously optimizes both
BASP and FMO below. The objective function is to capture the nature of how a treatment planner decides between
good and bad treatments. The function we use can be found in [8] and we present here involves several parameters,
outlined in Table 1.

Notation Definition Prostate Pancreas
ΘL Cold spot control parameter on PTV 0.97 0.97
ΘH Hot spot control parameter on PTV 1.05 1.05
φi Hot spot control parameter on thei-th OAR 0.3 0.2
LT Lower reference bound on PTV 0.94 0.95
UT Upper reference bound on PTV 1.15 1.07
UN Upper reference bound on normal structure 0.78 0.83
λ+

T Penalty term for hot spots on PTV 1.0 1.0
λ−

T Penalty term for cold spots on PTV 1.0 1.0
λN Penalty term for normal structure 1.0 1.0

Table 1: Optimization model parameters

Delivering a treatment from all possible 360 gantry angles is not clinically feasible. Current clinical constraints
require that IMRT treatments consist of less than 9 gantry angles (the actual number depends on the problem). Exper-
iments have verified that treatment quality does not increase substantially with more beam angles per treatment. Thus,
the beam angle selection problem is how to selectk angles so that the subsequentk-angle treatment is effective. We
can model BASP as an integer program with the following, given thatA is acandidateset of beam angles to choose
from:

min f (A ′,x) (1)

subject to:

A
′ ⊂ A ,

|A ′| ≤ k,

Dp = ∑
a∈A ′

n

∑
s=1

x(a,s)ω(p,a,s), ∀p∈ {T ∪C∪N}

LT ≤ ATx≤UT ,

0 ≤ x(a,s) ≤ M(a,s), ∀a∈ A ′,s∈ {1, . . . ,n}.

Here we are deciding whichk beams from a candidate set (and an associated fluence vectorx for the chosen beams)
will satisfy the constraints and best minimize the objective. This problem is combinatorial in nature, exceeding current
calculation capabilities. Therefore there is a need for heuristic methods in solving the IMRT beam angle selection
problem.
3. Set Clustering Heuristic
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p-Median Problem

The essence of the method described here is the clustering ofbeam angles according to probability and similarity
information and the selection of a representative angle from each of thek resulting cluster cells. Thep-median
problem is commonly stated as a binary optimization problem, originally found in [9]. LetΩ(ai) be a probability
function designed to capture the likelihood of observing angle ai in a final treatment plan. Furthermore, leth(ai,a j)
be a function that captures the similarity between beam anglesai anda j . We define the following binary allocation
variable:

ξi j =

{

1 if anglea j is allocated withai

0 otherwise,

and with these definitions the binary integer program is stated as:

min ∑
i j

Ω(a j)h(ai ,a j)ξi j

subject to ∑
i

ξi j = 1, for j = 1, . . . ,n, (2)

∑
i

ξii = k, (3)

ξii ≥ ξi j , ∀i, j = 1, . . . ,n, (4)

ξi j ∈ {0,1}. (5)

Here we have simply inserted the BASP probability and similarity information into thep-median model. The
k resulting beam angles represent the original angles betterthan any other set ofk beams in the candidate setA
(according to the similarity and probability information).

Modeling Probability

In order to apply thep-median model to the beam angle selection problem, we need todecide a measure of probability
Ω(a) that captures the likelihood of using any given candidate angle a∈ A in a treatment plan usingk < |A | beams.
Calculating the probabilities for each angle is a special case of sensitivity analysis, where we are trying to determine
the effect or contribution of each beam angle in the optimal LP fluence solution.

There are only a small number of probability distributions suggested in the literature [2]. We discuss three ap-
proaches for modeling probability. The first suggestion is to generate a uniform probability distribution where each
angle is equally likely to be used in a final plan, i.e.,Ω(a) = 1

|A | , ∀a∈ A . The second approach is called “balanced"
probability model. The balanced probability function was introduced in [2]. The goal of the method is to remove de-
pendence on a specific solver, by generating a balanced probability distribution and attempting to make it as uniform
as possible. This distribution is obtained by using a special lexicographic optimization technique:

lexmin(z(x),SORT(x)) , (6)

where SORT is a mapping that reorders the components ofx in a non-increasing order. This optimization formulation
is solved in an iterative manner.

Finally, we introduce a new approach “Total Weight Probability”. The total weight probability function (TW) is
obtained after solving for the optimal fluencex(a,s). The total weight probability is simply a sum of the fluency values
over the sub-beams for each angle, calculated as

Ω(a) = ∑
s

x(a,s).

The essence of the TW method is the assumption that if this value is high for some angle in the fluence optimization
problem, it indicates that the selected angle is important to maintaining the constraints of the fluence optimization
problem, and hence is more likely to be used in a finalk beam plan.

Modeling Similarity (Difference)

We measure similarity between beam angles based upon different characteristics that describe each beam angle. Angle
location is perhaps the most obvious characteristic of any given angle and angle distance is a measurement of similarity
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or difference between any two given beam angles. Lettingαmax = max{α1,α2} andαmin = min{α1,α2}, the angle
distance function is as follows:

A(α1,α2) =

{

( π
180◦ )[(360◦−αmax)+ αmin], if (αmax−αmin) > 180◦

( π
180◦ )(αmax−αmin), otherwise.

To derive more descriptive characteristics about each angle, we analyze how the angles are used in two situations:
the way they are used in an optimal FMO solution and the way they are used in a uniform (unit) dose solution. The
optimal FMO solution is the solution to (1) when we open all candidate beam anglesA . The uniform (unit) dose
solution is obtained by assigning each sub-beam a fluence value of 1. Hence, the fluence vectorx in this case is simply
a unit vector. Because of this, dose information for the unitsolution may be obtained directly from the dose deposition
matrix A. From these two different solutions we derive several statistics describing each beam angle. Each statistic
defines a quality characteristic for each angle. There are several dose-based statistics for both unit and FMO solutions,
and fluence-based statistics for the FMO solution only.

Characteristic Vectors: Once each statistic has been calculated we create vectors that contain the statistic values
for each angle in observation. Allowing the notationgi j to represent the value of thej-th characteristic of anglei, we
define characteristic vectors for each anglea as follows:

ca = (ga1,ga2, . . . ,gam),

wherem is the total number of statistics we are considering. We measureca by a norm||ca||, and this norm induces
the metric:

h(ai,a j) = ||cai −ca j ||.

Using the characteristic vectors allows us to measure an angle’s effectiveness with respect to a wide variety of user-
defined performance measurements, including measurementsof the apparent effect of each angle on the quality of
treatment.
4. Proposed Methodology

In order to apply thep-median model to the beam angle selection problem, we first must collect data about how
each candidate angle is used in the unit (uniform) and optimal LP solutions, so that we may generate the characteristic
vectors. We then apply preprocessing techniques to the datasets as well as the probability information. After this we
are ready to use thep-median model with the chosen characteristic vectors and probability weights to obtain a pruned
collection of angles. Finally we obtain an optimal fluence map using only the pruned angles, and evaluate the resulting
plan using various measures of performance.

Data Collection

In order to collect data about each beam angle in a candidate setA , we analyze two different solutions to the fluency
map optimization problem (FMO). In FMO, the objective function in [8] is modified so thatx, the fluency vector, is the
decision variable for a fixed candidate set of beam anglesA . We consider two different solutions to the FMO problem.
The first solution is a unit solution:x(a,s) = 1, ∀(a,s). Since the mappingAxdetermines the amount of dose deposited
in the anatomy, dose-based statistics for the unit solutionare obtained directly fromA. We collect 19 attributes from
the uniform dose solution: sum of dose deposited to all voxels, maximum dose and minimum dose on the PTV, average
dose on the PTV, OAR, and NOR, to name a few. The second solution is an optimal linear programming solution to
the FMO problem with an assumption that the FMO solution willprovide enough information for finding good angles.
We collect 29 statistical values (or attributes) from an LP solution: maximum dose and minimum dose on the PTV,
average dose on the OAR, to name a few. Both dose-based and fluency-based statistics may be obtained from this
solution. With these definitions of the statistics that we want to consider, we can alter what type of statistics are in the
characteristic vector setX that we pass to thep-median model.

Preprocessing

Data Standardization: Recall that in any data setX, the rows correspond to the angles and the columns correspond
to the statistics. In any such data matrix, the data in the columns may have different units, and even when they have
the same units there may be much variation in the data scaling, sometimes even by several orders of magnitude. For
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this reason, we standardize the data in each data set before any further calculation by finding thez-scoreof each data
element in each column ofX. This generates az-score vector, consisting of a value for each of thej elements of the
i-th column, given by

zi j =
xi j − µ̂i

σ̂i
, (7)

where µ̂i and σ̂i are estimators of the mean and standard deviation of thei-th column, respectively. The original
columns ofX are replaced by their respectivez-score vectors, generating a new standardized data setX

′. This helps to
avoid the skewing of results by using improperly skewed input data.

Principal Component Analysis (PCA): Some statistics (or attributes) in the original sets can be highly correlated,
due to the similarity of many of the calculations. We apply a statistical technique known as principal component
analysis (PCA) to remedy this issue. PCA removes unnecessary correlation and shrinks the data set so that only
the most important indicators are left for further analysis. This method refines the data so that the results are not
improperly skewed due to highly correlated input data. Thistechnique is a data reduction method often applied in data
mining. In data mining it is used as a feature selection technique to reduce large data sets into the most significant
features.

Probability Scaling The probability information must be scaled in some way as to balance the influence of the
probability and similarity information in finding a set of beam angles. We begin with the modified datasetX

′ (after the
z-score standardization and optional PCA technique have been performed) and find the non-zero distances (using the
value ofd as used in thep-median objective function) between all pairs of the characteristic vectors. Defining ˆµd and
σ̂d as estimators of the mean and standard deviation of the non-zero distances, respectively, we compute thez-score
vector of the single column of probability information (ZP). The final probability vector is calculated by

Ωi = µ̂d +(σ̂d ×Z
P
i ).

The original probabilities are scattered using the original z-score information but are rescaled to fit within the range of
the distances between the characteristic vectors. This ensures that there is a proper balance of influence between the
probability and similarity information in thep-median model.
5. Numerical Results

We test our method on two sets of patient data: prostate cancer and a pancreas tumor. The prostate cancer data
contains two main organs of interest: prostate and rectum. Using 4mm precision on the grids, the tumor region has
5,246 voxels, the rectum has 1,936 voxels, and the remaininghealthy tissues have over 461,000 voxels on 38 CT
slices. The pancreas tumor contains five organs of interest:pancreas, liver, left kidney, right kidney, and spinal cord.
The voxel counts are 1,244, 50,391, 9,116, 5,920, and 489, respectively on 90 CT slices. We consider both 12 and 36
candidate beam angle setA , i.e., there are 36 equally spaced beams (A36 = {10iπ/180 : i = 0,1,2, . . . ,36}). In the
prostate case we aim to select six beam angles from each candidate set. For the pancreatic tumor case, four angles
will be selected for the final treatment. Once we obtain the resulting sets of beam angles from thep-median model,
we evaluate the solutions using two visual performance measures of the final fluence map solutions: dose volume
histogram (DVH) and radiation dose distribution plots. Details of these can be found in [8]. We noticed that the best
quality plans (according to visual analysis) resulted fromthe same combination of parameters. This combination was
using all statistic values with PCA and the TW probability distribution function. We also tested cases with 12 initial
candidate beam angles versus 36 initial beam angles. We observed that increasing the candidate beam angles improved
the solution quality. The DVH graph and a dose plot for the pancreatic tumor case with 36 initial beam angles are
shown in Figures 1.
6. Conclusion
In conclusion, we observed good and consistent results withthe proposed heuristic method for solving the IMRT beam
angle selection problem under certain modeling conditions. In general, we make the following recommendations.
First, we recommend using pre-processing data with PCA and using the TW probability distribution function. This
combination obtained good results in many test cases and oneof them was presented in this paper (the pancreas
case with 36 candidate beams). We have also noticed that increasing the initial candidate beam angles improved the
treatment plan quality. Increasing the number of candidatebeams increases the time required to solve the fluence map
optimization problem, so this recommendation should be followed with that in mind. A balance between an accurate
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representation of problem geometry and solution time is desired. Following these recommendations obtained good
results on the tested patient data in our experiments.
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