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Abstract

We investigate the structure and cryptographic applications of the Dis-
crete Lambert Map (DLM), the mapping  — z¢g®mod p, for p a prime
and some fixed g € (Z/pZ)*. The mapping is closely related to the Dis-
crete Log Problem, but has received far less attention since it is considered
to be a more complicated map that is likely even harder to invert. How-
ever, this mapping is quite important because it underlies the security of
the ElGamal Digital Signature Scheme. Using functional graphs induced
by this mapping, we were able to find non-random properties that could
potentially be used to exploit the ElGamal DSS.

1 Introduction

In addition to encrypting and decrypting sensitive information, cryptography
can also be used to help a message’s recipient verify the identity of the sender.
These protocols are known as digital signature schemes. Much like other cryp-
tosystems, the security of these digital signature schemes relies on the difficulty
of exploiting their underlying mathematical structure. Thus, problems gener-
ally considered to be computationally intractable, such as integer factorization
and the Discrete Logarithm Problem (DLP), often serve as the basis for such
schemes.

1.1 Motivation

One such scheme that is particularly important to our topic is the ElGamal Dig-
ital Signature Scheme (DSS). Suppose Alice needs to send a message M to Bob.



In order for Bob to be sure that Alice was indeed the sender of the message, Al-
ice must sign the message in such a way that Bob can easily verify her identity.
To accomplish this using the ElGamal DSS, Alice starts by choosing a large
prime p and a secret signing key x € Z, selected randomly from {0,...,p — 2}.
Alice then computes « a primitive root mod p, a generator of the cyclic group
(Z/pZ)*, and releases the public key (p, a,y), where y = o* (mod p).

To actually sign M, Alice selects a nonce k from {0,...,p — 2} where
ged(k,p — 1) = 1. Alice’s signature (r,s) is then computed such that r = o
(mod p—1) and s = k~1(M — zr) (mod p).

Bob then receives M from Alice, and wishes to verify her identity based on
both the message’s signature and Alice’s public key. Bob starts the verification
process by computing v; = 3”7 (mod p) and vy = o™ (mod p). If vy = vy
(mod p), then Bob concludes that Alice was the sender of the message.

In order to forge Alice’s signature, Frank must be able to find some v; and
vy such that v; = y"r® = o (mod p), where M is the message on which Frank
wants to forge Alice signature. Frank knows Alice’s public key (p,a,y), but
without Alice’s secret signing key z, he cannot compute a valid s. This leaves
Frank with a few options. The first option is to fix r and rearrange the equation
in order to solve for s. This gives the equation

r* = (y") "™ (mod p).

However, solving this equation for s would involve calculating discrete log-
arithms. Thus, this attack is not feasible since the DLP is considered to be a
sufficiently hard problem. Another variation of the El1Gamal DSS involves fixing
s and solving for 7. This gives the equation

y"r* = a™ (mod p).

Although solving this equation is similar to solving the DLP, it is actually
a slightly different problem. Whereas the DLP is based on the difficulty of
inverting the map

x +— g”mod p,

for a fixed g in {1,...,p— 1} and a prime p, the security of this variation of the
ElGamal DSS is based on the difficulty of inverting the map

x — xg”mod p.

Due to this map’s resemblance to the Lambert W function [2], we will refer
to this map as the Discrete Lambert Map (DLM). Although the DLP has been
studied at great lengths, the DLM has received virtually no attention. This lack
of previous work might be due to the fact that many people consider inverting
the DLM to be more difficult than the DLP, but because of the implications
that the DLM has for the security of the ElGamal DSS, we believe that it is



important to study and analyze its behavior. As a result of our graph-theoretic
and statistical methods for analyzing the DLM, we discovered various non-
random structures in the functional graphs produced by the mapping. For
example, we fully understand fixed points and how power residues determine
which nodes can map to one another. However, it remains to be determined
whether these structures can be exploited to break the ElGamal DSS, or whether
they are simply patterns that occur frequently in random graphs.

1.2 Previous Work

While previous work on the discrete logarithm problem is abundant, the discrete
Lambert problem has not seen much investigation. Since the function = +— zg”
(mod p) takes the form of a more embellished version of discrete exponentiation,
it is assumed to be a more difficult problem to invert. However, its presence
in the ElGamal DSS and the relevance of methods used to study similar maps
using functional graphs make it a promising object of exploration.

Much analysis has been done on the study of mapping the discrete logarithm
using functional graphs. The first to examine the graphs statistically was Lindle
[6], who was later followed by Hoffman on statistical parameters and compar-
isons with random functional graphs [5]. Hoffman’s code for generating relevant
data for statistical analyses of permutations has been adopted and modified for
use in our statistical investigations.

Friedrichsen, Larson and McDowell [4] studied the structure of the self-power
map, z — z% (mod p), which also appears in a version of the ElGamal DSS,
using the methods set forth by Hoffman, Cloutier and Holden [1]. Their findings
provided inspiration and served as a model for our own proceedings.

2 Background and Methods

2.1 Functional Graphs

Functional graph. A functional graph is a directed graph in which each
vertex, or node, has exactly one edge directed out from it. A functional graph
can therefore be realized as a function mapping its domain onto itself.

The functional graph of the Discrete Lambert Map f(z) = x¢® (mod p)
consists of nodes {1, ...,p — 1} and directed edges from z to f(x).

By studying the Discrete Lambert Map in functional graph form, we can
more readily observe the basic behavior of the function through graph theoretic
properties of the visual mapping. Some characteristics of interest regard the
number and size of connected components, properties of cycles and fixed points,
as well as terminal and image nodes.



Figure 1: z — 212* (mod 19)

Node. An image node is a node x such that x = f(y) for some node y.
A terminal node is a node z for which there does not exist a node w where
f(w) = z. In graph theory terms, image nodes have arrows pointing in to them,
while terminal nodes do not.

Connected component. A connected component is a set of nodes connected
by edges. Components are disjoint and partition the set of all nodes.

Cycle. An n-cycle is a set of n nodes {zg,z1 = f(x0), ..., Tn-1 = f(@n_2)}
such that x, = f(zn,—1) = 9. A l-cycle is also known as a fized point, i.e. a
node that maps to itself.

In Figure 1, nodes 4,9,10,13 form a 4-cycle, and nodes 3,16,17 form a
3-cycle. The fixed points are 6,12, 18.

Tail. A tail is a set of nodes whose directed path leads into a cycle.

m~ary graph. An m-ary graph is a functional graph where, for a fixed m, all
image nodes in the graph have in-degree m.

2.2 Number Theory and Group Theory

The domain of the Discrete Lambert Map is the set of integers {1,...,p — 1},
closed under multiplication modulo p, where p is prime, also known as the
algebraic group (Z/pZ)*. This group is cyclic, which means there exists an



element g € (Z/pZ)* such that {g,¢°,...,g?"'} = {1,2,...,p—1}. g is known as
a generator, or a primitive root.

Theorem 1. Let ¢ denote the Euler totient function. If p is prime, then there
exist ¢(p — 1) primitive roots modulo p.

Proof. See Theorem 2.36 of [7]. O

Order. The order of an element g € (Z/pZ)*, denoted ordp(g), is the smallest
positive integer n € {1,...,p — 1} such that ¢" = 1 (mod p). The order of g
divides p — 1, the order (size) of the group (Z/pZ)*. Primitive roots must have
order p — 1.

Power Residue. An element g is an n'" power residue if there exists a €
(Z/pZ)* such that g = a™ (mod p). When n = 2, we call g a quadratic residue.
There are % quadratic residues in (Z/pZ)*.

Subgroup. A subgroup H of a group G is a subset of G that itself satisfies
the group properties:

e Closure: For all g,h € G, gh € G.

e Identity: For all g € G, there exists an identity element e € G such that
eg =ge =g.

e Inverse: For all g € G, there exists h = g~ ! € G such that gh = e.
o Associativity: For all z,y,z € G, (zy)z = z(yz).
The order of subgroup divides the order of the group.

Coset. Let H be a subgroup of a group G. For x € G, xH is the set of
elements obtained by left multiplication of every element of H by x, known as
a left coset of H. Similarly, Hx is a right coset obtained by right multiplication
by z. (Here (Z/pZ)* is a commutative group under multiplication, so t H=Hx.)

We will utilize the notion of cosets in the formulation of a result about the
connected components of the Discrete Lambert Map.

2.3 Statistics

After determining the basic behavior of the functional graphs induced by the
DLM, we use statistical methods to compare characteristics of the DLM graphs
to the expected characteristics of a random functional graph. In this regard, the
paper by Flajolet and Odlyzko was extraordinarily useful in helping us determine
which graph characteristics would be worthy of examination. The following are
the characteristics that we deemed important to analyzing the behavior of the
graphs.



Total Sums

Number of Connected Components. The number of connected com-
ponents in a functional graph.

Number of Cyclic Nodes. The number of nodes that are in a cycle of
any length.

Number of Image Nodes. The number of nodes that have preimages.

Number of Terminal Nodes. The number of nodes that have no preim-
ages.

Number of Fixed Points. The number of nodes that map to themselves.
Total Sums As Seen From a Node

Total Cycle Length. For each cycle, multiply the length of the cycle by
the number of nodes that reach the cycle by a connected path. Add the
results of the multiplications from each cycle.

Total Distance to Cycle. For each node, count the number of edges that
must be crossed before reaching a cyclic node. Add the results of the
additions for all nodes in the graph.

Maximal Values
Maximum Cycle Length. The number of nodes in the largest cycle.

Maximum Tail Length. The number of nodes in the longest tail.

After identifying the most relevant characteristics to examine, we chose twenty
primes for which to gather information. These twenty primes were chosen based
on the factorization of p — 1 for each prime p.

Safe Prime. A prime p is a safe prime if % is also prime.

The twenty primes chosen for examination were the first twenty safe primes
greater than 40,000. Primes around 40,000 were chosen based on the success
of previous work by Hoffman, who used a similar number of functional graphs
in his analysis [5]. After finding the candidate primes, we modified Hoffman’s
code to generate and gather data on the functional graphs induced by the DLM
for values of g from 2 to p — 2 for each prime. Since we already know the exact
structure of the DLM when ¢ = 1 and ¢ = p — 1, we excluded those values



of g from our analysis. We considered graphs induced by values of g with dif-
ferent orders separately since the order of g greatly influences the structure of
the functional graphs. Thus, safe primes were ideal since, excluding ¢ = 1 and
g =p— 1, g can only have one of two orders, % and p — 1, and the number
of graphs with those orders is equal. If we used prime that were not safe, there
could potentially be many, many orders, all of which might occur in different
amounts from g = 2 to ¢ = p — 2. This would unnecessarily complicate the

statistical process.

After generating and gathering date for the DLM graphs, we used the asymp-
totic formulas in Flajolet and Odlyzko’s paper to calculate the expected values
of these characteristics for a random functional graph [3]. However, instead of
generating the expected values using p — 1 nodes, we used our knowledge of
the structure, size, and minimum number of connected components to make
our expectations for a subgraph consisting of at least one connected component
which we could then multiply to get the total expected value for each of the
summed graph characteristics. A full description of this process can be found
in the results section.

The last step of the statistical methods was to import both the observed
and expected values for the graph characteristics into Minitab to process the
data and perform statistical tests. The three most important tests we will use
to process the data are the probability plot, the ¢-test, and tests for normality.

3 Results

3.1 Basic behavior

There are a few basic properties of the functional graph of z — xg¢® (mod p)
that are evident upon close inspection:

1. For every value of g, 1 — g.

2. For any prime p and every value of g, p — 1 is a fixed point.
3. When g =1, every = € (Z/pZ)* is a fixed point.

4. In general, the graphs are not m-ary.

In addition to the values of 1 and p — 1, we can determine the images of
other nodes based on the properties of g.

3.2 Images of p — 2 and 7%1
Proposition 1. For any prime p, when g = 2, then (p—2) — (p—1) (mod p).



Proof. Setting g = 2, we see that (p—2) — (p—2)(2)?P=2) (mod p). Simplifying
the right hand side of this equation, we see that

(-2 =

= —1=p-—1(mod p).
O
Proposition 2. For any prime p, when g =p — 2, then (p — 2) — 1 (mod p).

Proof. Setting g = p — 2, we see that (p—2) — (p—2)(p —2)®?=?) (mod p). We
see that the right hand side can be written as follows:

(p—2)p—2)""2 =(p—-2)PY =1 (mod p).

Proposition 3. If g is a quadratic residue, then p%l — p—;l (mod p).

Proof. By Euler’s criterion (see Theorem 11.3 of [8]), we know that g(pgl) =1
(mod p) if and only if g is a quadratic residue mod p. When ¢ is a quadratic
residue mod p, we have:

-1 (p—l)(g)@ (p—l)(l) (r—1)

5 5 (mod p).

. ) ) . —1 1
Proposition 4. If g is not a quadratic residue, then 5= — % (mod p).

Proof. Similar to the preceding proof, by a corollary to Euler’s criterion, if g
is not a quadratic residue (also called a quadratic non-residue) mod p, then
g@;l) = —1 (mod p). Thus, examining the discrete Lambert map, when g is

not a quadratic residue mod p, we have:

(p_l)»%(p_l)(g)# (p_l)(—].) (p+1)

5 5 (mod p).

3.3 Fixed Points

We investigate the occurrence of fixed points in the functional graphs of the
Discrete Lambert Map. Given a value of g for a known prime p, we can determine
precisely the nodes that are fixed points.

Lemma 1. Given such a functional graph, x is a fized point if and only if
g% =1 (mod p).



Proof.
(=)

Assume z is a fixed point. Thus, x = zg® (mod p). Multiplying on the left
by the multiplicative inverse of x, we have:

-1

x 7 zg® (mod p)

x

1 = ¢* (mod p)
(<)

Assume ¢g* = 1 (mod p). This gives us z¢g® = z(1) = « (mod p). Thus, the
map x — xg® mod p maps z to itself since we have shown that z = x¢® (mod p)
when ¢g* =1 (mod p). Therefore, z is a fixed point. O

Proposition 5. Given a functional graph of x — xg* (mod p), the fixed points
are precisely the multiples of the order of g.

Proof. Suppose = € (Z/pZ)* is a fixed point. Then by our Lemma, ¢g* =

(mod p). Since the order of g is the smallest integer n such that ¢” = 1 (mod p),
it must be that the order of g divides x. Thus,  must be a multiple of n, the
multiplicative order of g. O

We observe that the multiples of n are also the logarithms of the n** power
residues mod p, where the base of the logarithm is a primitive root of (Z/pZ)*.

Corollary 1. The number of fized points of a functional graph of x +— xg®
(mod p) is the number of n*" power residues mod p, where n is the multiplicative
order of g.

Proof. Since the fixed points are precisely the logarithms of the n!* power
residues, they must be equinumerous. O

Corollary 2. If g is a primitive root, the only fixed point is p — 1.

Proof. We know that the fixed points are the logarithms of the n!* power
residues mod p, where n is the multiplicative order of g. Since g is a primi-
tive root, we know that its multiplicative order is p — 1. We also know that
1 is the only (p — 1)*! power residue modulo p since g?~! = 1 (mod p), along
with all the multiples of p — 1 since the exponents are computed modulo p — 1.
Thus, since 1 is the only n** power residue when ¢ is a primitive root, and the
logarithm of 1 is p — 1, the only fixed point of the graph is p — 1. O

3.4 The Functional Graph of p — 1

Similar to when g = 1, the functional graph of x — z(p — 1)* (mod p) exhibits
an entirely predictable and organized structure, as visualized in Figure 2.

Proposition 6. Let f denote the Discrete Lambert Map of p. Let g = p — 1.
If x is odd, then f(x) = p — x, the additive inverse of x (mod p). If x is even,
then f(x) = x is a fized point.
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Figure 2:  — x10% (mod 11)

Proof. Suppose x is odd. Write = 2k + 1,k € Z. Since (p — 1)?> = 1 (mod p),
we have:

fl@) = xg"

(2K +1)(p — 1)+

(26 + 1)((p— 12 (p— 1)
(2K +1)(p— 1)

%p — 2k +p—1
—2k—1=—-2=p— 2 (mod p).

Suppose z is even. Write x = 2k, k € Z. Then
f(z) = z29® = (2k)(p — 1)%* = (2K)((p — 1)*)* = 2k = = (mod p).
Thus, = is a fixed point. O

Proposition 7. Let g = p — 1. Then the functional graph of f : © — xzg”
(mod p) is a binary graph that has exactly % connected components. Fur-
thermore, each connected component consists of precisely one odd terminal node
mapped to one even node, which is a fixed point.

Proof. By previous proofs, we have shown that if x is odd, then its image is p—zx,
and if x is even, then it is a fixed point. This results in precisely the configuration
described above. Since each connected component consists of exactly two nodes,

there must be %71 connected components. O

3.5 Investigations of Power Residues

Proposition 8. Let g € (Z/pZ)* be an n** power residue. Then, x € (Z/pZ)*
is an n'" power residue if and only if xg® (mod p) is also an n'"* power residue.

Proof. (=) Suppose x,g € (Z/pZ)* are nth power residues. Then there exist
a,b € (Z/pZ)* such that a™ = g (mod p) and b™ = = (mod p). Then

zg” = b"(a™)®" = b"(a®")" = (ba®" )™ (mod p).

10



Hence, xg” is also an nth power residue mod p.

(<) Suppose xg* (mod p) is an nth power residue. Then, we can write xzg* = 2"
(mod p) for some z € (Z/pZ)*. Since we also know that g is an nth power
residue, we can write g = y™ (mod p) for some y € (Z/pZ)*. Then we have as
follows:

gt = 2"
zg*(g™") = (97"
v o= )
= ()
= (2y")" (mod p).
Thus, « is also an n" power residue mod p. O

Theorem 2. If p, n are positive integers, and ged(g,p) = 1, then g is an
nt" power residue modulo p iff g% = 1 (mod p), where d = ged(n,p — 1).
Furthermore, there are exactly d incongruent residues modulo p.

Proof. See Proposition 9.17 of [8]. O

Let g € (Z/pZ)* have multiplicative order n. Since ged(g,p) = 1 and
ged(E=L,p — 1) = =1 then g(r—1/%5

n

= ¢" = 1 (mod p) implies that g

. _1th .
is an pn—l power residue.

The combination of these two properties demonstrate that in the functional
graph of the Discrete Lambert Map z — z¢” (mod p), where g has multiplicative

p—1?
n

h
order n, all the power residues are mapped to (and from) each other.

3.6 Properties of Connected Components

Our previous observations about the behavior of certain power residues lead us
to findings about the properties of connected components in a given functional
graph. Here we give an upper bound on the number of nodes in a connected
component of a graph, as well as characteristics of the nodes in a connected
component. For the following results, let n denote the multiplicative order of

g € (Z/pZ)".
Proposition 9. Given any g, n is an upper bound on the number of nodes in

.. _1th .
a connected component containing a pT power residue.

. . . _1th
Proof. This follows almost immediately from the fact that all p—nl power
residues are mapped to each other. There exist n of these residues, and at
the most extreme, they are all in a single connected component. Thus n is the
. . . . _1th
maximum number of nodes in a connected component which contains a 2=t
power residue. O

11



Figure 3: z — 2127 (mod 19)

H 1 7 8 11 12 18
2H 2 14 16 3 5 17
4H B 9 13 6 10 15

o _1th . .
If g has order n, then it is a % power residue. There exist n of these

h
residues and they are all powers of g. Thus, all %t power residues form the
multiplicative subgroup of (Z/pZ)* generated by g.

Lemma 2. Let H denote the multiplicative subgroup generated by g, and let
x € (Z/pZ)*. Theny € xH if and only if yg¥ € xH.

Proof. (=) If y € xH, then y = xg" (mod p) for some 1 < k < n. Thus
yg¥ = xg¥g¥ = xg"*tY (mod p) € zH, since g*+Y € H.

(<) Suppose yg¥ € xH. Then yg¥ = xg' (mod p) for some 1 < I < n. This
implies that y = 2¢g'g™¥ = 2¢'~¥ (mod p), where ¢' =¥ € H. O

. _1th .

Since all pn—l power residues map to each other, and all elements of the
same coset of the subgroup of these residues map to each other, each connected
component of functional graph of x — x¢® (mod p) must consist entirely of
p—lth

elements of the subgroup H generated by g (precisely the power residues)
or elements of a coset xH for some x ¢ H. Furthermore, these cosets partition
the entire set of nodes {1,...,p — 1}. This is illustrated in Figure 3, where the
disjoint cosets are represented by different colorings.

Proposition 10. Given any g, n is an upper bound on the number of nodes in
any given connected component in the functional graph of x — xg® (mod p).

12



Proof. Let g € (Z/pZ)* have multiplicative order n. Let H denote the mul-

e . . _1th .
tiplicative subgroup generated by g which contains all pTl power residues
modulo p. We have already proved that the maximum number of nodes in a
connected component containing an element of H is n.

Consider x € (Z/pZ)* such that z is not a %th power residue, and thus
not in a connected component with elements of H. Then x = x -1 is an element
of the left coset xH, and by previous proof, all the elements of the left coset
xH must map to each other. Since the size of H is equal to the size of H, any
connected component containing elements of the coset zH for some x € (Z/pZ)*
can have at most n nodes. Thus n is the maximum number of nodes in any
connected component of the functional graph. O

Corollary 3. If the functional graph of the given form has only one connected
component, g must be a primitive Toot.

Proof. A functional graph which consists of exactly one connected component
must have all p — 1 elements in the same connected component. Given that the
order of g is an upper bound on the size of the component, and g can have order
at most p — 1, the order of ¢ must be p — 1, which implies that g is a primitive
root modulo p. O

Corollary 4. Given any g and any prime p, pn;l is a lower bound for the

number of connected components in the functional graph x — xg* (mod p).

Proof. We know from Proposition 11 that n is an upper bound on the number
of nodes in any connected component of the functional graph « — xg¢® (mod p).
Consider the case where each connected component of the functional graph con-
tains exactly n nodes, the maximum amount. In this scenario, the number of
connected components is precisely %, which is the minimum amount possible
since if any connected component contained fewer than n nodes, the remaining
nodes would have to be contained in one or more additional connected compo-
nents. O

3.7 Cycles

Although cycles in the functional graphs of the Discrete Lambert Map are seem-
ingly random in occurence and size, there is some pattern evident in their nodes
when they do appear.

Lemma 3. Let £ (z) denote the function f(z) = xg* (mod p) applied n times
(e.g. @ (2) = [(f(2))). Then ) (x) = wg® @+ D@+t fT0E) (mod p).

Proof. We prove this by induction. Let f(O)(z) =z, and fV)(z) = f(z) = zg®.

13



Suppose f*)(z) = P A AR R O A CO) (mod p). Then

fE @) = (W)
- f(k)(x)gf"“)(m)

= gt/ @H P @+ @)  FPV (@)

= g @OH D@+ V@B @)

mod p).
O

Proposition 11. If the functional graph of x — xg® contains an n-cycle, then
the sum of the nodes in the n-cycle is divisible by the order of g.

Proof. Suppose z, f(z),...f"~V(z) are the n nodes of an n-cycle. Then
= f0(z) = agH T @H D@+ 106 (mod p).

This implies that

1 = g H @HP @+ 41" @) (104 p).

Thus the order of g must divide z + f(z) + f®(z) + ... + f*~V(z), the sum of
the nodes in the n-cycle. O

Corollary 5. If g is a primitive root, and the functional graph of r — xg®
contains a 2-cycle, then the sum of the nodes in the 2-cycle is p — 1.

Proof. Suppose z, f(x) compose a 2-cycle. By our previous theorem, = + f(x) |
p—1, the order of g. However, since p— 1 is always a fixed point, z, f(z) # p—1
and so z, f(z) < p—1. This implies that 2+ f(z) cannot be a multiple of p—1,
therefore x + f(z) =p — 1. O

Proposition 12. If the order of g divides g+ 1, then g — 1, and g and 1 form
a 2-cycle.

Proof. We know that 1 always maps to g. Let n denote the order of g. Suppose
n divides g+ 1, and write g+ 1 = nk for some k € Z. Then f(g) = gg? = g9 =
g™ = (¢™)* =1 (mod p). Thus g also maps to 1, and they form a 2-cycle. [

4 Statistical Analysis

After analyzing the structure of the Discrete Lambert Map, we used statisti-
cal methods to compare the Discrete Lambert Map-induced graphs to random
functional graphs. As stated in the introduction, we began this process by first
selecting the twenty safe primes we would use and determining which graph
characteristics were most important to examine based on previous work and re-
sults from literature [5, 3]. The next step was to generate data for all the graphs
for g = 2 through g = p — 2 for each of the forty primes; however, within each
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prime, we wanted to average the data collected for graphs that were produced
by values of g with similar orders. Since each prime is a safe prime, and since
we are excluding g = 1 and g = p — 1, we are left with only quadratic residues
and primitive roots, which have order % and p — 1, respectively. Although
Cloutier, Hoffman, and Lindle’s code provided a good starting point for our own
data collection program, we had to modify it quite a bit so that the right values
of g were used and so that the overall totals and observed averages could be
broken down based on the order of g. After our program was up and running,
we gathered the observed averages for the graph characteristics for each order

of each prime.

Our code also calculated the expected means for each of the graph char-
acteristics we selected for each order or each prime. The paper by Flajolet
and Odlyzko contains asymptotic approximations for all of our characteristics
of interest. However, since we already know much of the structure of the DLM-
induced graphs, we did not simply plug p — 1 into these approximations since
that would give us the expected values for any functional graph on p — 1 nodes.
Instead, since we know that n, the order of g, is an upper bound on the num-
ber of nodes in any connected component of the graph, we plugged n into the
approximations and then multiplied the result by %, the minimum number
of connected components. Essentially, we were taking advantage of the fact
that a DLM-induced functional graph on p — 1 nodes acts more like % func-
tional graphs on n nodes. This slight modification helped us to better predict
the behavior of the DLM-induced graphs since the observed means would be
compared to expected means that did not take into account configurations that
simply could not exist in DLM-induced graphs. It is also important to note that
although the Flajolet and Odlyzko paper did have asymptotic approximations
for maximum cycle length and maximum tail length, we were not able to find a
way to predict the observed average maxima, which would require a sampling
distribution of the maximum. Thus, we excluded the maxima from our sta-
tistical analysis. Also, since we were only considering values of g with order

P

p — 1 and order %1, we know that the fixed points of the quadratic residues

will always be % and p — 1, while the primitive roots will have p — 1 as their
only fixed point. With that said, our expectation for the number of fixed points
is based on the number of cosets in the graph; therefore, our expected and ob-
served values were always identical. As a result, we did not perfrom statistical

tests on the average number of fixed points.

Once our expected values were calculated, we used Excel to find the stan-
dard deviation and variance for each characteristic for each order of each prime.
Although previous iterations of the code calculated standard deviation and vari-
ance internally, the additional complication of breaking the data down by order
made that portion of the code obsolete, so we opted to use Excel’s built-in func-
tiona to calculate those statistics.
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After collecting the observed data, calculating the expected data, and finding
the standard deviations and variances, we used the statistical software Minitab
to compare our observed and expected means using ¢-tests. These tests pro-
duced t and p values that provide a measure of how statistically similar two
data sets are based on the mean and standard deviation. For this paper, we will
consider a p-value of 0.05 or less to be statistically significant. A p-value of 0.05
or less means that there is less than a 5% chance that the differences in the data
set were due to chance. Although the individual ¢ and p values are important,
we were more concerned with the distribution, mean, and standard deviation
of the sets of t-values for each graph characteristic for the primitive roots and
the quadratic residues separately. By looking at these two categories separately,
we can easily tell whether those orders make a difference in the statistics. The
t-values themselves measure how many standard deviations away from the mean
specific data points fall, and it is a well-known result that ideally, the mean of a
set of t-values is 0 with a standard deviation that approaches 1 as the number
of samples approches infinity. Since we are considering such large collections of
graphs, the standard deviation should be very close to 1. To see data tables
with all of the averaged information we collected, please see Appendix A. We
used probability plots in Minitab to measure how close each set of ¢t-values was
to this ideal mean and standard deviation. Initially, our expected and observed
values did not line up very well. In Figure 4, we see that the t-values for com-
paring the expected and observed total cycle lengths for primitive roots do not
have the expected mean and standard deviation. The low p-value of less than
0.001 indicates that this discrepancy is likely not due to chance and that there
is a statistical difference between the observed and expected behavior of the
t-values. The same is true for the t-values of the quadratic residues, which can
be seen in Figure 5.

We attributed this huge discrepancy between our observed and expected re-
sults to inccurate predictions. Since Flajolet and Odlyzko’s paper listed only
one term for the asymptotic forms for the average values of the graph charac-
teristics, we decided to try computing a second term to improve our predictions
[3]. For most of the characteristics, the paper listed the generating function
that they used to create the asymptotic forms. In these instances, we used
a special package in Maple that converted the normalized generating functions
to their asymptotic forms and then added the second term to our approximation.

In the case of the average tail length, the paper did not list its generating
function. Therefore, we used a result from another paper about the generating
function used to count the average tail length for binary functional graphs [1].
Using the function S from that paper, we created the function 7, which marks
the edges along one tree, where

7(z,u) = 2! 4+ uzr(z,u)et®),

where t(z) is the number of trees. We then used Maple to solve this function for
7 and plugged it into a larger generating function that would count the average
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Figure 4: Plot of the t-values associated with comparing the observed and ex-
pected means of total cycle length for all primtive roots.
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Figure 5: Plot of the t-values associated with comparing the observed and ex-
pected means of total cycle length for all quadratic residues.
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tail length. This gave us

1

A O L

-7(u, 2),

where the first term marks all the possible components except one, the second
term marks all the possible trees in a component except one, and the last term
marks the tree of interest. Differentiating this function with respect to v and
then evaluating it at u = 1 yields the correct generating function

LambertW(—z)?2
(1 + LambertW(—2z))*’

(1]

(2) =

where LambertW is the Lambert W function. After we found this generating
function, we followed the same method that we used with the other generating
functions, and used Maple to compute a second term for the asymptotic approx-
imation of the average tail length. To see all of the two-term approximations,
please see Appendix C.

After adding the second term to our expansion, virtually all of ¢-values im-
proved and our expected and observed values were much closer. In Figure 6,
we are now plotting the new t-values that were calculated with the improved
expected means of the cycle length of primitive roots. As you can see from
the sufficiently high p-value of 0.143, the mean and standard deviation of the
t-values are not sufficiently different from the expected mean of 0 and standard
deviation of 1. The same is true for quadratic residues, as is seen in Figure 7.

Unfortunately, this addition of the second term did not improve the distri-
bution for the t-values of all the characteristics. For example, the ¢-values for
the terminal and expected nodes are still off by a good amount. This might be
due to the fact that there is a guaranteed fixed point, p—1, in each graph, which
is obviously going to always be a terminal node, and the generating functions
for the expected value of terminal and expected nodes do not take that into
account. Excluding the image and terminal nodes t¢-distribution, every other
t-distribution for both quadratic residues and primitive roots for each graph
characteristic fell within the fail to reject region, with the one exception of the
distribution of the t-values for comparing average total tail length for quadratic
residues. It is not clear why this distribution is not statistically close to its ex-
pected mean and standard deviation, but it is possible that this is an example
of non-randomness that is occuring in the DLM-induced graphs. We attempted
to make our expected values more accurate by computing a second term for
the normalizing factor of the generating functions, but that hardly changed the
expected values. To see all the probability plots for each characteristic and for
both quadratic residues and primitive roots, please see Appendix B.
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Figure 6: Plot of the t-values associated with comparing the observed and im-
proved expected means of total cycle length for all primtive roots.
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Figure 7: Plot of the t-values associated with comparing the observed and im-
proved expected means of total cycle length for all quadratic residues.
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5 Conclusion

The work presented in this paper is result of only initial investigations of the
structure of the Discrete Lambert Map. Through studying the functional graphs
of this map, we were able to determine fairly precisely the behavior of certain
graph-theoretic characteristics based on information about the chosen value of
g, which, for cryptographic purposes, will help us evaluate the presumed diffi-
culty of inverting this function. We observed that for g =1 and g = p — 1, the
graphs are entirely predictable, which confirm that these are not good choices
for a secure cryptosystem. For other values of g, we know the images of certain

1

nodes, such as 5= and p — 2. We also noted properties of the nodes in a cycle,

as well as specific instances of 2-cycles.

The order of g is also crucial to our understanding of the behavior of the
function, as it gives us the fixed points of the map as well the maximum size and
minimum number of connected components in the functional graph. Knowing
that a connected component consists entirely of elements of the same coset of
g € (ZpZ)* allow us to view these graphs as compositions of smaller subgraphs,
each of which corresponds to a coset. This proved relevant for our methods of
statistical analysis, since we could then account for the known minimum number
of connected components in comparing our DLM functional graphs to random
functional graphs.

From the statistical side, t-tests performed on observed and expected aver-
age values for graph characteristics such as number of connected components,
cyclic nodes, total cycle length and total tail length showed that differences
between DLM functional graphs and random functional graphs in these charac-
teristics were not statistically significant. This suggests that in these aspects,
DLM-induced graphs appear similar to random functional graphs. For some
parameters of interest, such as number of image nodes, terminal nodes, and
tail length, our DLM graphs produced data which did not seem to fit expected
values well. This may have been a result of non-random behavior of the DLM,
but can more likely be attributed to inaccurate expectations of random graph
data. Since our expected values came from literature about general random
functional graphs, they did not account for the known fixed points that occur
in DLM functional graphs. This may have produced the discrepency we saw in
the statistical analysis.

Other aspects of the functional graphs are not easily explained, such as the
in-degree of nodes and the occurrence and length of cycles. For example, with
the exception of ¢ = 1 and ¢ = p — 1, the graphs do not appear to be m-
ary in any way, but we have been unable to prove a general result. While we
have a lower bound on the number of connected components, it is not evident
when this minimum occurs, or how to construct an upper bound for the number
of components. We have also observed other structural patterns for which we
do not have a definitive explanation, and future work could involve further
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investigation and formalization of these phenomena:

1) Graphs generated by values of g with equal and small multiplicative orders
mod p have structurally similar connected components.

2) For specific values of g, the functional graphs created by the Discrete
Lambert Map contain cycles composed solely of primitive roots.

A considerable amount of future work lies in statistical analysis of the DLM.
For example, the expected means for the number of image and terminal nodes
need to be refined by taking into account the known fixed points. We observed
an abnormal mean and standard deviation for the t-values associated with com-
paring those predictions to the observed data, which led us to believe that the
asymptotic approximations in Flajolet and Odlyzko’s paper were not sufficient
in predicting the values for those graph characteristics. In addition, a formula for
computing expected means for characteristics such as maximum tail length and
maximum cycle length currently does not exist. Approximations for estimated
variances are also lacking for each of our graph characteristics. There are some
methods in literature that might prove useful in deriving these approximations,
but there have yet to exist explicit formulations. These expected variances can
then be statistically compared to the observed variations using ANOVA tests.
The statistical analysis could also be expanded to include primes other than safe
primes in order to see if the factorization of p — 1 influences the characteristics
of the induced graphs. Futher improvements can also be made on the code used
to generate the data. Currently, the standard deviations need to be computed
manually outside of the code, but with a few slight modifications, the code could
itself produce that data.
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A Data Tables

This section includes all of the observed and expected data for the graph char-
acteristics, as well as the ¢t and p values associated with testing the observed
and expected means against one another. The expected values in these tables
were computed using the two-term asymptotic expansion, with the exception of
the terminal and image nodes expected values, which were left the same since
the second term caused them to become much worse.

Number of Connected Components
Prime Order Graphs | Obs Avg | Exp Avg St Dev Var t-stat p -val
40127 20063 20062 | 11.23273 | 11.177 | 3.495364 | 12.21757 2.26 0.024
40499 20249 20248 | 11.19553 | 11.18622 | 2.609219 | 6.808026 0.51 0.612
40739 20369 20368 | 11.17596 [ 11.19213 | 2.590197 | 6.70912 -0.89 0.373
40787 20393 20392 [ 11.17144 ] 11.19331 [ 2.61968 | 6.862723 -1.19 0.233
40823 20411 20410 | 11.19015 | 11.19419 | 2.58423 | 6.678247 -0.22 0.823
40883 20441 20440 [ 11.20083 | 11.19566 | 2.601074 | 6.765586 0.28 0.776
41387 20693 20692 | 11.23777 | 11.20791 | 2.627239 | 6.902385 1.63 0.102
41507 20753 20752 | 11.23453 | 11.21081 | 2.61189 | 6.821971 131 0.191
41519 20759 20758 | 11.20561 | 11.2111 | 2.602855 | 6.774856 -0.3 0.761
41543 20771 20770 | 11.21767 | 11.21168 | 2.600053 | 6.760275 0.33 0.74
41579 20789 20788 | 11.20242 | 11.21254 | 2.610721 | 6.815865 -0.56 0.576
41759 20879 20878 | 11.20447 | 11.21686 | 2.58445 | 6.67938 -0.69 0.489
41843 20921 20920 11.1869 | 11.21887 | 2.609873 | 6.811435 -1.77 0.076
41879 20939 20938 | 11.25065 [ 11.21973 | 2.611636 | 6.820643 1.71 0.087
41927 20963 20962 [ 11.22488 | 11.22088 | 2.607007 | 6.796484 0.22 0.824
42023 21011 21010 | 11.19448 | 11.22316 | 2.610886 | 6.816723 -1.59 0.111
42179 21089 21088 11.2317 | 11.22687 | 2.621732 | 6.873479 0.27 0.789
42299 21149 21148 | 11.25506 | 11.22971 | 2.606954 | 6.796208 1.41 0.157
42359 21179 21178 | 11.28119 | 11.23113 | 2.61506 | 6.838536 2.79 0.005
42443 21221 21220 | 11.26956 | 11.23311 | 2.607718 | 6.800195 2.04 0.042
40127 40126 20062 | 5.949507 | 5.935071 | 1.916821 | 3.674202 1.07 0.286
40499 40498 20248 5.94918 | 5.939685 | 1.92016 | 3.687016 0.7 0.482
40739 40738 20368 5.981 5.942639 | 1.931664 | 3.731326 2.83 0.005
40787 40786 20392 | 5.931346 | 5943228 | 1.924653 | 3.70429 -0.88 0.378
40823 40822 20410 | 5.941401 [ 5.943669 | 1.943921 | 3.77883 -0.17 0.868
40883 40882 20440 | 5.947701 | 5.944404 | 1.91652 | 3.673048 0.25 0.806
41387 41386 20692 | 5.961483 [ 5.95053 | 1.930109 | 3.725319 0.82 0.414
41507 41506 20752 [ 5.942704 | 5.951978 [ 1.914681 | 3.666002 -0.7 0.485
41519 41518 20758 | 5.956306 | 5.952122 | 1.930348 | 3.726244 0.31 0.755
41543 41542 20770 [ 5.968127 | 5.952411 [ 1.927563 | 3.715498 1.18 0.24
41579 41578 20788 5.94593 | 5.952844 | 1.930673 | 3.727498 -0.52 0.606
41759 41758 20878 | 5.948606 | 5.955004 | 1.938585 | 3.758112 -0.48 0.633
41843 41842 20920 | 5.944073 | 5.956009 | 1.932891 | 3.736069 -0.89 0.372
41879 41878 20938 | 5.966281 [ 5.956439 | 1.939137 | 3.760254 0.73 0.463
41927 41926 20962 | 5.962933 | 5.957012 | 1.920272 | 3.687444 0.45 0.655
42023 42022 21010 | 5.964112 [ 5.958155 | 1.940634 | 3.766061 0.44 0.656
42179 42178 21088 | 5.977049 | 5.960008 | 1.946931 | 3.790539 1.27 0.204
42299 42298 21148 | 5.973946 [ 5961429 | 1.933751 | 3.739391 0.94 0.347
42359 42358 21178 [ 5.963925 | 5.962137 | 1.936406 | 3.749667 0.13 0.893
42443 42442 21220 | 5.959001 | 5.963128 | 1.937432 | 3.753644 -0.31 0.756
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Number of Cyclic Nodes

Prime Order Graphs | ObsAvg | Exp Avg St Dev Var t-stat p -val
40127 20063 20062 [ 355.5924 | 354.382 | 131.6946 | 17343.47 1.3 0.193
40127 40126 20062 | 249.6274 | 250.724 | 128.8308 | 16597.37 -1.21 0.228
40499 20249 20248 [ 357.2966 | 356.024 | 130.533 [ 17038.86 1.39 0.165
40499 40498 20248 | 252.6404 | 251.885 | 130.3355 [ 16987.34 0.82 0.41
40739 20369 20368 [ 356.8789 | 357.0793 | 131.0907 | 17184.77 -0.22 0.827
40739 40738 20368 [ 253.3772 | 252.6313 | 130.6463 [ 17068.46 0.81 0.415
40787 20393 20392 [ 356.0126 | 357.29 | 131.2882 [ 17236.59 -1.39 0.165
40787 40786 20392 [ 253.2665 | 252.7803 | 132.3613 [ 17519.51 0.52 0.6

40823 20411 20410 [ 357.2524 | 357.448 | 131.1337 [ 17196.06 -0.21 0.831
40823 40822 20410 [ 254.2715| 252.892 | 132.5435 [ 17567.77 1.49 0.137
40883 20441 20440 [ 357.9445 | 357.7111 | 132.7968 | 17634.99 0.25 0.802
40883 40882 20440 [ 253.5366 | 253.078 | 131.3474 | 17252.13 0.5 0.618
41387 20693 20692 359.9552 | 359.9134 | 132.137 | 17460.18 0.05 0.964
41387 41386 20692 [ 255.3635 | 254.6352 | 132.8781 [ 17656.58 0.79 0.43
41507 20753 20752 [ 360.7228 | 360.4357 | 134.3856 | 18059.48 0.31 0.758
41507 41506 20752 [ 253.4441 | 255.0046 | 132.6159 [ 17586.97 -1.7 0.09
41519 20759 20758 [ 360.4336 | 360.4879 | 133.4573 [ 17810.86 -0.06 0.953
41519 41518 20758 [ 256.0999 | 255.0415 | 133.7712 | 17894.74 1.14 0.254
41543 20771 20770 | 360.5166 | 360.5923 | 132.4567 | 17544.79 -0.08 0.934
41543 41542 20770 [ 255.5311 | 255.1153 | 132.6163 | 17587.07 0.45 0.651
41579 20789 20788 [ 360.9208 | 360.7488 | 134.2905 [ 18033.93 0.18 0.853
41579 41578 20788 253.586 | 255.226 [ 132.6531 | 17596.84 -1.78 0.075
41759 20879 20878 [ 360.4141 | 361.5303 | 133.3345 [ 17778.08 -1.21 0.226
41759 41758 20878 [ 256.1443 | 255.7786 | 133.6274 | 17856.29 0.4 0.693
41843 20921 20920 [ 362.7241 | 361.8944 | 134.1375 [ 17992.86 0.89 0.371
41843 41842 20920 [ 256.1609 | 256.036 | 134.0547 [ 17970.65 0.13 0.893
41879 20939 20938 [ 361.7813 | 362.0503 | 133.8673 [ 17920.45 -0.29 0.771
41879 41878 20938 256.0287 | 256.1463 | 133.6683 | 17867.2 -0.13 0.899
41927 20963 20962 [ 363.6237 | 362.2581 | 133.6965 [ 17874.76 1.48 0.139
41927 41926 20962 | 256.1655 | 256.2933 | 132.9362 | 17672.02 -0.14 0.889
42023 21011 21010 [ 362.7877 | 362.6734 | 133.0626 [ 17705.66 0.12 0.901
42023 42022 21010 [ 256.4947 | 256.5869 | 133.6966 | 17874.78 -0.1 0.92
42179 21089 21088 [ 363.2387 | 363.3472 | 133.793 [ 17900.58 -0.12 0.906
42179 42178 21088 [ 258.2918 | 257.0633 | 135.2315 | 18287.57 1.32 0.186
42299 21149 21148 [ 363.2545 | 363.8647 | 132.5776 | 17576.82 -0.67 0.503
42299 42298 21148 256.957 | 257.4292 | 134.8165 | 18175.49 -0.51 0.61
42359 21179 21178 [ 365.7958 | 364.1231 | 135.3907 | 18330.65 1.8 0.072
42359 42358 21178 [ 257.8609 | 257.612 | 135.3907 [ 18330.63 0.27 0.789
42443 21221 21220 365.6761 | 364.4846 | 135.3082 | 18308.31 1.28 0.2

42443 42442 21220 [ 257.6276 | 257.8676 | 134.6595 | 18133.19 -0.26 0.795
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Number of Terminal Nodes

Prime Order Graphs | ObsAvg | Exp Avg St Dev Var t -stat p -val
40127 20063 20062 [ 14762.43 | 14761.53 | 45.59554 | 2078.953 2.78 0.005
40127 40126 20062 | 14762.04 | 14761.53 | 45.66224 | 2085.04 1.57 0.116
40499 20249 20248 [ 14898.28 | 14898.38 | 46.11516 | 2126.608 -0.31 0.757
40499 40498 20248 | 14899.66 [ 14898.38 | 45.91716 | 2108.386 3.96 0

40739 20369 20368 | 14987.23 | 14986.67 | 45.98598 | 2114.71 1.74 0.082
40739 40738 20368 | 14989.44 [ 14986.67 | 46.49471 | 2161.758 8.5 0

40787 20393 20392 | 15004.29 [ 15004.33 | 46.36748 | 2149.943 -0.13 0.896
40787 40786 20392 15004.4 | 15004.33 | 46.19099 [ 2133.608 0.22 0.829
40823 20411 20410 | 15017.02 [ 15017.57 | 45.14228 | 2037.825 -1.77 0.077
40823 40822 20410 | 15018.53 [ 15017.57 | 46.12181 | 2127.221 2.97 0.003
40883 20441 20440 | 15040.09 [ 15039.65 | 45.88905 | 2105.805 1.38 0.168
40883 40882 20440 15040.5 | 15039.65 | 46.34672 | 2148.019 2.62 0.009
41387 20693 20692 | 15224.53 | 15225.06 | 45.7847 | 2096.239 -1.65 0.099
41387 41386 20692 [ 15225.67 | 15225.06 | 46.39823 | 2152.796 1.88 0.06
41507 20753 20752 | 15270.01 | 15269.2 | 46.95264 | 2204.55 2.48 0.013
41507 41506 20752 | 15270.36 [ 15269.2 | 46.84779 | 2194.715 3.57 0

41519 20759 20758 | 15274.89 [ 15273.62 | 46.46534 | 2159.028 3.93 0

41519 41518 20758 | 15275.13 | 15273.62 | 46.67358 | 2178.423 4.65 0

41543 20771 20770 | 15281.99 [ 15282.45 | 46.41985 | 2154.803 -1.42 0.155
41543 41542 20770 | 15283.73 [ 15282.45 | 47.64238 | 2269.796 3.88 0

41579 20789 20788 | 15295.01 [ 15295.69 | 46.83155 | 2193.194 -2.08 0.037
41579 41578 20788 15296.5 | 15295.69 | 46.69699 [ 2180.609 2.48 0.013
41759 20879 20878 [ 15361.92 | 15361.91 | 46.47234 | 2159.678 0.03 0.974
41759 41758 20878 | 15363.08 [ 15361.91 | 46.89271 | 2198.926 3.62 0

41843 20921 20920 [ 15391.49 | 15392.81 | 46.99637 | 2208.659 -4.07 0

41843 41842 20920 15392.5 | 15392.81 | 46.51539 | 2163.681 -0.96 0.339
41879 20939 20938 [ 15406.52 | 15406.06 | 47.0134 | 2210.26 1.44 0.149
41879 41878 20938 | 15407.96 [ 15406.06 | 47.20175 | 2228.005 5.84 0

41927 20963 20962 | 15423.63 | 15423.71 | 46.41091 | 2153.972 -0.27 0.783
41927 41926 20962 | 15424.04 | 15423.71 | 46.87373 | 2197.147 0.99 0.321
42023 21011 21010 | 15459.66 [ 15459.03 | 47.14316 | 2222.477 1.93 0.054
42023 42022 21010 [ 15459.25 | 15459.03 | 46.57621 | 2169.343 0.69 0.492
42179 21089 21088 | 15516.36 [ 15516.42 | 47.16138 | 2224.196 -0.19 0.852
42179 42178 21088 [ 15517.17 | 15516.42 | 46.29377 | 2143.113 2.36 0.018
42299 21149 21148 | 15561.63 [ 15560.56 | 47.00392 | 2209.368 3.29 0.001
42299 42298 21148 [ 15561.78 | 15560.56 | 47.09649 | 2218.08 3.74 0

42359 21179 21178 | 15583.21 | 15582.64 | 46.84488 | 2194.442 1.78 0.075
42359 42358 21178 [ 15582.89 | 15582.64 | 47.37204 | 2244.11 0.77 0.443
42443 21221 21220 | 15613.61 | 15613.54 | 46.99878 | 2208.885 0.23 0.821
42443 42442 21220 | 15612.54 [ 15613.54 | 46.71666 | 2182.446 -3.13 0.002
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Number of Image Nodes

Prime Order Graphs | ObsAvg | Exp Avg St Dev Var t -stat p -val
40127 20063 20062 [ 25363.57 | 25364.47 | 45.59554 | 2078.953 -2.78 0.005
40127 40126 20062 | 25363.96 | 25364.47 | 45.66224 | 2085.04 -1.57 0.116
40499 20249 20248 [ 25599.72 | 25599.62 | 46.11516 | 2126.608 0.31 0.757
40499 40498 20248 | 25598.34 [ 25599.62 | 45.91716 | 2108.386 -3.96 0

40739 20369 20368 | 25750.77 | 25751.33 | 45.98598 | 2114.71 -1.74 0.082
40739 40738 20368 | 25748.56 [ 25751.33 | 46.49471 | 2161.758 -8.5 0

40787 20393 20392 | 25781.71 | 25781.67 | 46.36748 | 2149.943 0.13 0.896
40787 40786 20392 25781.6 | 25781.67 | 46.19099 | 2133.608 -0.22 0.829
40823 20411 20410 | 25804.98 [ 25804.43 | 45.14228 | 2037.825 1.77 0.077
40823 40822 20410 | 25803.47 [ 25804.43 | 46.12181 | 2127.221 -2.97 0.003
40883 20441 20440 | 25841.91 [ 25842.35 | 45.88905 | 2105.805 -1.38 0.168
40883 40882 20440 25841.5 | 25842.35 | 46.34672 | 2148.019 -2.62 0.009
41387 20693 20692 | 26161.47 | 26160.94 | 45.7847 | 2096.239 1.65 0.099
41387 41386 20692 [ 26160.33 | 26160.94 | 46.39823 | 2152.796 -1.88 0.06
41507 20753 20752 | 26235.99 | 26236.8 | 46.95264 | 2204.55 -2.48 0.013
41507 41506 20752 | 26235.64 | 26236.8 | 46.84779 | 2194.715 -3.57 0

41519 20759 20758 | 26243.11 | 26244.38 | 46.46534 | 2159.028 -3.93 0

41519 41518 20758 | 26242.87 | 26244.38 | 46.67358 | 2178.423 -4.65 0

41543 20771 20770 | 26260.01 [ 26259.55 | 46.41985 | 2154.803 1.42 0.155
41543 41542 20770 | 26258.27 | 26259.55 | 47.64238 | 2269.796 3.88 0

41579 20789 20788 | 26282.99 [ 26282.31 | 46.83155 | 2193.194 2.08 0.037
41579 41578 20788 26281.5 | 26282.31 | 46.69699 | 2180.609 -2.48 0.013
41759 20879 20878 [ 26396.08 | 26396.09 | 46.47234 | 2159.678 -0.03 0.974
41759 41758 20878 | 26394.92 [ 26396.09 | 46.89271 | 2198.926 -3.62 0

41843 20921 20920 [ 26450.51 | 26449.19 | 46.99637 | 2208.659 4.07 0

41843 41842 20920 26449.5 | 26449.19 | 46.51539 | 2163.681 0.96 0.339
41879 20939 20938 [ 26471.48 | 26471.94 | 47.0134 | 2210.26 -1.44 0.149
41879 41878 20938 | 26470.04 | 26471.94 | 47.20175 | 2228.005 -5.84 0

41927 20963 20962 | 26502.37 | 26502.29 | 46.41091 | 2153.972 0.27 0.783
41927 41926 20962 | 26501.96 | 26502.29 | 46.87373 | 2197.147 -0.99 0.321
42023 21011 21010 | 26562.34 | 26562.97 | 47.14316 | 2222.477 -1.93 0.054
42023 42022 21010 [ 26562.75 | 26562.97 | 46.57621 | 2169.343 -0.69 0.492
42179 21089 21088 | 26661.64 [ 26661.58 | 47.16138 | 2224.196 0.19 0.852
42179 42178 21088 [ 26660.83 | 26661.58 | 46.29377 | 2143.113 -2.36 0.018
42299 21149 21148 | 26736.37 | 26737.44 | 47.00392 | 2209.368 -3.29 0.001
42299 42298 21148 [ 26736.22 | 26737.44 | 47.09649 | 2218.08 -3.74 0

42359 21179 21178 | 26774.79 | 26775.36 | 46.84488 | 2194.442 -1.78 0.075
42359 42358 21178 [ 26775.11 | 26775.36 | 47.37204 | 2244.11 -0.77 0.443
42443 21221 21220 | 26828.39 | 26828.46 | 46.99878 | 2208.885 -0.23 0.821
42443 42442 21220 | 26829.46 | 26828.46 | 46.71666 | 2182.446 3.13 0.002
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Total Cycle Length

Prime Order Graphs | ObsAvg | Exp Avg St Dev Var t-stat p -val
40127 20063 20062 [ 3588366 | 3575046 | 1843359 [ 3.4E+12 1.02 0.306
40127 40126 20062 [ 5039640 | 5063713 | 3636356 | 1.32E+13 -0.94 0.348
40499 20249 20248 [ 3628179 | 3624814 | 1842761 | 3.4E+12 0.26 0.795
40499 40498 20248 | 5129644 | 5134169 | 3683992 | 1.36E+13 -0.17 0.861
40739 20369 20368 [ 3646927 | 3657043 | 1854242 | 3.44E+12 -0.78 0.436
40739 40738 20368 [ 5176393 | 5179795 | 3714295 [ 1.38E+13 -0.13 0.896
40787 20393 20392 [ 3664784 | 3663501 | 1863364 | 3.47E+12 0.1 0.922
40787 40786 20392 [ 5194746 | 5188936 | 3747489 [ 1.4E+13 0.22 0.825
40823 20411 20410 [ 3671640 | 3668346 | 1880266 | 3.54E+12 0.25 0.802
40823 40822 20410 [ 5206857 | 5195796 | 3774066 | 1.42E+13 0.42 0.675
40883 20441 20440 [ 3684762 | 3676427 | 1875334 | 3.52E+12 0.64 0.525
40883 40882 20440 [ 5212867 | 5207235 | 3744592 [ 1.4E+13 0.22 0.83
41387 20693 20692 3737485 | 3744537 | 1902566 | 3.62E+12 -0.53 0.594
41387 41386 20692 [ 5298354 | 5303655 | 3810383 [ 1.45E+13 -0.2 0.839
41507 20753 20752 3748891 | 3760814 | 1934448 | 3.74E+12 -0.89 0.375
41507 41506 20752 [ 5265121 | 5326699 | 3792792 | 1.44E+13 -2.34 0.019
41519 20759 20758 [ 3768897 | 3762443 | 1936730 [ 3.75E+12 0.48 0.631
41519 41518 20758 [ 5318433 | 5329005 | 3870088 [ 1.5E+13 -0.39 0.694
41543 20771 20770 | 3774139 | 3765702 | 1928669 | 3.72E+12 0.63 0.528
41543 41542 20770 [ 5353179 | 5333619 | 3873061 [ 1.5E+13 0.73 0.467
41579 20789 20788 [ 3782008 | 3770592 | 1951088 | 3.81E+12 0.84 0.399
41579 41578 20788 [ 5280380 | 5340542 | 3804112 [ 1.45E+13 -2.28 0.023
41759 20879 20878 [ 3783250 | 3795074 | 1931137 [ 3.73E+12 -0.88 0.376
41759 41758 20878 [ 5391318 | 5375199 | 3911840 [ 1.53E+13 0.6 0.552
41843 20921 20920 [ 3824283 | 3806517 | 1951283 [ 3.81E+12 1.32 0.188
41843 41842 20920 [ 5375391 | 5391399 | 3914893 [ 1.53E+13 -0.59 0.554
41879 20939 20938 [ 3797183 | 3811425 | 1937939 [ 3.76E+12 -1.06 0.288
41879 41878 20938 [ 5370662 | 5398346 | 3900073 [ 1.52E+13 -1.03 0.304
41927 20963 20962 [ 3833690 | 3817972 | 1943707 | 3.78E+12 1.17 0.242
41927 41926 20962 | 5416767 | 5407614 | 3926305 | 1.54E+13 0.34 0.736
42023 21011 21010 [ 3847730 | 3831076 | 1942465 [ 3.77E+12 1.24 0.214
42023 42022 21010 [ 5409982 | 5426166 | 3906746 | 1.53E+13 -0.6 0.548
42179 21089 21088 [ 3851687 | 3852404 | 1970213 [ 3.88E+12 -0.05 0.958
42179 42178 21088 | 5438371 | 5456357 | 3934515 | 1.55E+13 -0.66 0.507
42299 21149 21148 [ 3855273 | 3868836 | 1957198 [ 3.83E+12 -1.01 0.314
42299 42298 21148 [ 5451236 | 5479619 | 3984335 [ 1.59E+13 -1.04 0.3

42359 21179 21178 [ 3872637 | 3877061 | 1971914 [ 3.89E+12 -0.33 0.744
42359 42358 21178 [ 5496089 | 5491263 | 3938029 [ 1.55E+13 0.18 0.858
42443 21221 21220 3904246 | 3888585 | 2002972 | 4.01E+12 1.14 0.255
42443 42442 21220 [ 5518656 | 5507577 | 3991537 | 1.59E+13 0.4 0.686
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Total Tail Length

Prime Order Graphs | ObsAvg | Exp Avg St Dev Var t -stat p -val
40127 20063 20062 3538070 | 3534920 | 1103402 | 1.22E+12 0.4 0.686
40127 40126 20062 5008379 | 5010212 | 2179624 | 4.75E+12 -0.12 0.905
40499 20249 20248 [ 3587373 | 3584316 | 1106108 | 1.22E+12 0.39 0.694
40499 40498 20248 | 5053873 [ 5080171 | 2177074 | 4.74E+12 -1.72 0.086
40739 20369 20368 | 3622108 [ 3616305 | 1117894 | 1.25E+12 0.74 0.459
40739 40738 20368 | 5099666 | 5125478 | 2220861 | 4.93E+12 -1.66 0.097
40787 20393 20392 3630983 | 3622715 | 1117001 | 1.25E+12 1.06 0.29
40787 40786 20392 5118274 | 5134555 | 2230210 | 4.97E+12 -1.04 0.297
40823 20411 20410 | 3625544 | 3627524 | 1113730 | 1.24E+12 -0.25 0.8

40823 40822 20410 | 5124993 [ 5141367 | 2227101 | 4.96E+12 -1.05 0.294
40883 20441 20440 | 3631847 | 3635545 | 1129483 | 1.28E+12 -0.47 0.64
40883 40882 20440 [ 5138259 | 5152726 | 2213059 | 4.9E+12 -0.93 0.35
41387 20693 20692 3709924 | 3703151 | 1137139 | 1.29E+12 0.86 0.392
41387 41386 20692 5257904 | 5248474 | 2318493 | 5.38E+12 0.59 0.559
41507 20753 20752 3712990 | 3719308 | 1142770 | 1.31E+12 -0.8 0.426
41507 41506 20752 5287264 | 5271358 | 2293700 | 5.26E+12 1 0.318
41519 20759 20758 | 3720874 [ 3720925 | 1150644 | 1.32E+12 -0.01 0.995
41519 41518 20758 | 5267223 | 5273648 | 2296121 | 5.27E+12 -0.4 0.687
41543 20771 20770 | 3722466 | 3724160 | 1151156 | 1.33E+12 -0.21 0.832
41543 41542 20770 | 5270870 [ 5278230 | 2291850 | 5.25E+12 -0.46 0.644
41579 20789 20788 | 3730686 | 3729014 | 1158719 | 1.34E+12 0.21 0.835
41579 41578 20788 | 5295373 [ 5285104 | 2303448 | 5.31E+12 0.64 0.52
41759 20879 20878 [ 3773622 | 3753316 | 1167715 | 1.36E+12 2.51 0.012
41759 41758 20878 | 5302561 | 5319522 | 2330791 | 5.43E+12 -1.05 0.293
41843 20921 20920 [ 3757532 | 3764675 | 1160001 | 1.35E+12 -0.89 0.373
41843 41842 20920 | 5339714 [ 5335609 | 2317687 | 5.37E+12 0.26 0.798
41879 20939 20938 [ 3769686 | 3769547 | 1157981 | 1.34E+12 0.02 0.986
41879 41878 20938 | 5332805 [ 5342509 | 2306934 | 5.32E+12 -0.61 0.543
41927 20963 20962 3766448 | 3776046 | 1164557 | 1.36E+12 -1.19 0.233
41927 41926 20962 5361303 | 5351713 | 2336719 | 5.46E+12 0.59 0.552
42023 21011 21010 | 3783271 [ 3789054 | 1164996 | 1.36E+12 -0.72 0.472
42023 42022 21010 [ 5361492 | 5370136 | 2317710 | 5.37E+12 -0.54 0.589
42179 21089 21088 | 3807929 [ 3810226 | 1170797 | 1.37E+12 -0.28 0.776
42179 42178 21088 [ 5375722 | 5400120 | 2348305 | 5.51E+12 -1.51 0.131
42299 21149 21148 | 3829275 | 3826538 | 1170531 | 1.37E+12 0.34 0.734
42299 42298 21148 [ 5415993 | 5423222 | 2339281 | 5.47E+12 -0.45 0.653
42359 21179 21178 | 3825265 | 3834703 | 1178816 | 1.39E+12 -1.17 0.244
42359 42358 21178 [ 5429767 | 5434785 | 2387286 | 5.7E+12 -0.31 0.76
42443 21221 21220 | 3844412 | 3846143 | 1185613 | 1.41E+12 -0.21 0.832
42443 42442 21220 | 5444164 [ 5450988 | 2349245 | 5.52E+12 -0.42 0.672
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B Probability Plots

This section includes the probability plots for the t-value distribution for both
primitive roots and quadratic residues for each graph characteristic. If the p-
value indicates that a mean of 0 and a standard deviation of 1 is not a good
fit for the distribution, we instead included the results of a normality test for ¢-
values in question, along with the results of a ¢-test on the previously computed
t-values to see if the mean for those values could indeed be 0. We also included
this test on some of the more borderline cases.
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Probability Plot of Connected Components - PR
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Probability Plot of Cyclic Nodes - PR
Normal - 95% CI
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Probability Plot of Total Cycle Length - PR
Normal - 95% CI
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Probability Plot of Terminal Nodes - PR
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Probability Plot of Image Nodes - PR
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Probability Plot of Tail Length - PR
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C Asymptotic Approximations

This table shows the second terms that we calculated for each of the asymptotic
approximations. The first terms can be found in Flajolet and Odlyzko’s paper
[3]. Note that the second terms for the Image Nodes and Terminal Nodes ap-
proximations were calculated using the expanded normalizing factor found on
the bottom row of this table. We expanded the normalizing factor in hopes that
it would compensate for the large second terms in the approximations of those
characteristics, but it turned out that it made little difference. Thus, it was not

used in the calculations for any of the other second terms.

First Two Terms for Asymptotic Approximations

Connected Components

~ 2logn + v, where vy ~ 0.6351814227

Cyclic Points

Terminal Nodes

TN 1
~NV T2 T3
3
1 5.532822049n 2
n+ 12n—1

~ e

Image Nodes

3
~ (1 — e~y 4 250694758802

Cycle Length

/TN n

Tail Length

Normalizing Factor

~VE-F
=

— en
~ 12nvV27n

27mn

36




	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	7-29-2011

	Structure and Randomness of the Discrete Lambert Map
	JingJing Chen
	Mark Lotts
	Recommended Citation


	11-02cover.pdf
	11-02direct.pdf

