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A Decomposition of the Pure Parsimony
Problem

A. Holder, T. Langley

Rose-Hulman Institute of Technology, Terre Haute, IN 47803

Abstract. We partially order a collection of genotypes so that we can
represent the problem of inferring the least number of haplotypes in
terms of substructures we call g-lattices. This representation allows us
to prove that if the genotypes partition into chains with certain struc-
ture, then the NP-Hard problem can be solved efficiently. Even without
the specified structure, the decomposition shows how to separate the
underlying integer programming model into smaller models.

1 Introduction

The pure parsimony problem is to infer a maximally parsimonous collec-
tion of genetic donations that can combine to form a new population’s
diversity over portions of the chromosome. The problem was presented
in 1990 by Clark in [1], although not in terms of an optimization prob-
lem. Gusfield posed the question as a combinatorial optimization problem
in [2], and it was further suggested to the mathematical programming
community in [3]. The problem has received significant attention as an
integer program (IP), with the first model being proposed in [4]. Although
this model’s size grows exponentially in the number of heterozygus posi-
tions in the genotype, it tends, but is certainly not guaranteed, to solve
efficiently as long as the problem is within memory limitations. Several
have suggested alternative, polynomial-size integer programs [5–8]. Al-
though the problem is APX-Hard [8], the case in which each genotype
has no more than two heterozygus positions is polynomial [9]. The sup-
portive literature is large and growing, and we point interested readers to
the bibliography in [10] and the more recent work in [6].

Our objectives are twofold. First, we provide a polynomial bound on
the pure parsimony problem and establish conditions under which this
bound is indeed the optimal solution, and hence, we identify a sub-class
of problems that is solvable in polynomial time. This result is independent
of the number of heterozygus positions in the genotype. The underlying
mathematics is based on a partial ordering of the genotypes that parti-
tions them into a collection of substructures that we term g-lattices. If
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each g-lattice is a chain, that is, each g-lattice is linearly ordered, then
the top elements are used to decide whether or not the problem decou-
ples into smaller problems whose solutions are easy to calculate and whose
solutions aggregate to form the overall solution. If the problem doesn’t
decouple into chains, then the g-lattice decomposition is used to heuristi-
cally solve the problem. The fact that the general problem is APX-Hard
supports such tactics, especially in light of the recent growth in geno-
typic information [11]. Our results show that on average we can find a
polynomial solution of size 1.53 times the number of genotypes, and we
can further reduce this to 1.09 times the number of genotypes if we solve
the smaller IPs for each g-lattice. In comparison, the minimum solution
calculated by the model in [4] was 0.55 times the number of genotypes,
but this calculation required a 239% increase in solution time.

This article continues with an introduction to our notation and a
formal statement of the pure parsimony problem. This is followed by Sec-
tion 3 in which we discuss the decomposition imposed by the partial or-
dering. Our polynomial upper bound is established here. We describe our
heuristic based on the g-lattice decomposition in Section 4. Our numerical
results are presented in Section 5, which is followed by a conclusion that
discusses future directions.

2 Notation and Problem Statement

Diploid organisims, such as humans, receive half of their genetic code from
each parent. The vast majority of each genome is largely the same, but
the locations that differ provide the diversity observed in a population.
These locations are called single nucleotide polymorphisms (SNPs), and
a sequence of these is called a genotype. The parental sequences that
combine to give the genotype are called haplotypes. If the haplotypes agree
at a SNP, then the SNP is homozygus. Otherwise, the SNP is heterozygus.

Haplotype locations have one of two possible states, which we denote
by −1 or 1. The child’s genotype is the direct sum of two sequences built
over these values. So, if one haplotype is h′ = (1, 1,−1,−1) and another
is h′′ = (−1, 1, 1,−1), then the resulting genotype is

h′ + h′′ = (1, 1,−1,−1) + (−1, 1, 1,−1) = (0, 2, 0,−2) = g.

Notice that a different pair, in particular (−1, 1,−1,−1) and (1, 1, 1,−1),
could have formed the same genotype.

In general, we consider a collection of m genotypes constructed over
the alphabet {−2, 0, 2}. We further assume that each genotype contains n
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SNPs, so each genotype g is in {−2, 0, 2}n. Similarly, each haplotype is in
{−1, 1}n. We note that this notation is not unique and other encodings
are common. A SNP is heterozygus if it has a value of 0, and in the
presence of heterozygus SNPs, the haplotypes are not uniqely defined.
This means that inferring the haplotypes requires additional assumptions,
and one such assumption is that of parsimony, which assumes that small
collections of haplotypes are favorable. The problem of inferring a most
parsimonious solution is called the pure parsimony problem, and this is
the problem we consider. Other objectives, such as the construction of a
perfect phylogeny, are also common [12–14].

We say that haplotypes h′ and h′′ mate to form genotype g if h′+h′′ =
g. In this case we also say that h′ (and h′′) resolves g. Two genotypes
are incompatible if there is no haplotype that can resolve both. A set of
haplotypes H resolves a set of genotypes G if every genotype in G has a
pair of mates in H. In this terminology, the pure parsimony problem is to
find a smallest set of haplotypes that resolves the known set of genotypes.
We refer to such a set as a minimum or optimal solution for the set of
genotypes.

3 A Polynomial-Time Upper Bound Based on Ordering
Genotypes

The first observation that ordering the genotypes can provide a closed
form solution to the pure parsimony problem is found in [15], where it
is shown that if m genotypes, each with at least one heterozygus SNP,
form a chain under a partial ordering, then an optimal solution contains
m + 1 haplotypes. The goal of this section is to apply similar methods
to structures other than chains. This leads to a polynomial-time upper
bound on solution size.

Following [15], we partially order {−2, 0, 2} with � defined by −2 � 0,
2 � 0 and 0 � 0, which leaves −2 and 2 incomparible. Similarly, we
order {−2, 0, 2}n with componentwise comparisons. If G is a collection of
genotypes, we call each connected component of G under � a g-lattice.
We remark that these structures need not have a greatest or least element
and so may not be lattices in the usual sense. If a set of genotypes G forms
a chain under this ordering, then it was shown in [15] that a minimum
solution has size |G|+ 1 if the minimal element in the chain has at least
one heterozygus SNP. A trivial modification of the proof reduces this by
1 if the minimal element of the chain has no heterozygus SNPs.
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Theorem 1. Suppose G is a collection of m genotypes that form a chain
under �. Then a minimum solution to G has size m + 1 if the mini-
mal element in the chain has at least one heterozygus SNP. Otherwise a
minimum solution has size m.

The key to the proof in [15] is the fact that any two haplotypes that
can resolve two different genotypes in the chain cannot themselves mate
to form a genotype higher up in the chain. So to construct a minimum
solution, we start by constructing the minimal element. We then must
include at least one new haplotype to form each additional element of the
chain. The fact that one is enough is a consequence of Lemma 2 below. The
proof in [15] does not consider the case in which the minimal element has
no heterozygus SNPs, and therefore two haplotypes are needed to form
the minimal element. So a minimum solution contains m + 1 haplotypes.
In the case with no heterozygus SNPs, the minimal element is formed by
adding a single haplotype to itself, which reduces the count to m.

Unfortunately, this method of proof does not extend to structures
other than chains. For example, suppose G1 = {(2, 2, 0), (0, 2, 0), (2, 0, 0)},
G2 = {(2, 2, 0), (0, 2, 0), (2, 0, 0), (0, 0, 0)} and let h1 = (1, 1, 1), h2 =
(1, 1,−1), h3 = (−1, 1,−1), h4 = (1,−1, 1). Then h1+h2 = g0, h1+h3 =
g1 and h2 + h4 = g2, so {h1,h2,h3,h4} is a minimum solution for G1

(such a solution cannot contain 3 haplotypes since the genotypes all
share a 0). But then g3 = h3 + h4, which sits above both g1 and g2.
So {h1,h2,h3,h4} is also a minimum solution for G2.

The important point here is that unlike with chains, a pair of haplo-
types, each able to resolve a different genotype, can mate to form a third
genotype that is above both of the original two. This complicates finding
optimal solutions with structures other than chains. However, the idea
leads to the following general upper bound.

Theorem 2. Let G be a collection of m genotypes and suppose that q
minimal elements of G have at least one heterozygus SNP. Then no more
than m + q haplotypes are needed to resolve G.

The proof uses the following two results.

Lemma 1. Let g1 and g2 be genotypes with g1 � g2. Then any haplotype
compatible with g1 is also compatible with g2.

Proof. Suppose g1 = h0 + h1 and g1 � g2. We construct a haplotype h2

such that g2 = h0 + h2. In particular, define

h2
i =

{
h1

i if g1
i = g2

i

−h1
i if g1

i 6= g2
i

.
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Then, if g1
i = g2

i we have g2
i = h0

i +h1
i = h0

i +h2
i . If g1

i 6= g2
i , then g2

i = 0
and g1

i is 2 or −2 since g1 � g2. So h0
i = h1

i and g2
i = h0

i −h1
i = h0

i +h2
i .

Therefore g2 = h0 + h2.

Lemma 2. Suppose G = {g1,g2, . . . ,gk} is a collection of genotypes such
that g1 � gi for 2 ≤ i ≤ k. Then, if g1 has a heterozygus SNP, no more
than k + 1 haplotypes are needed to resolve G. If g1 has no heterozygus
SNPs, then no more than k haplotypes are needed to resolve G.

Proof. Suppose g1 = h0 +h1. Then by Lemma 1 there exist hi, 2 ≤ i ≤ k,
such that gi = h0 + hi. So the collection H = {h0,h1, . . . ,hk} resolves
G. If g1 has a heterozygus SNP, then h0 6= h1 so |H| = k + 1. Otherwise
h0 = h1 and |H| = k.

Proof of Theorem 2. Let G be a collection of m genotypes. Suppose
{g1,g2, . . . ,gl} is the set of minimal elements of G and suppose with-
out loss of generality that {g1,g2, . . . ,gq} is the set of minimal elements
with at least one heterozygus SNP. Choose a partition {G1,G2, . . . ,Gl} of
G in such a way that gi is the least element of Gi for all i, that is, gi � g
for all g in Gi. By Lemma 2, Gi can be resolved with |Gi|+ 1 haplotypes
for 1 ≤ i ≤ q and with |Gi| haplotypes for q + 1 ≤ i ≤ l. So G can be
resolved with no more than

q∑
i=1

(|Gi|+ 1) +
l∑

i=q+1

|Gi| = m + q

haplotypes.

We refer to the approximate solution implied by Theorem 2 as the
gl-solution to the pure parsimony problem. The minimal elements of G
under � can be calculated as follows. Select a genotype g and compare
it to the remaining m − 1 genotypes componentwise. If we find g′ such
that g′ � g, then g is not a minimal element. Otherwise, g is a minimal
element. So, identifying the minimal elements requires no more than m2n
comparisons, which establishes the following result.

Theorem 3. If G is a collection of m genotypes, each consisting of n
SNPs, the complexity of calculating the minimal elements is at worst
O(m2n).

Theorems 2 and 3 establish a polynomial-time upper bound on a so-
lution to the pure parsimony problem. Theorem 1 says that this bound
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is optimal when G is a chain under �. But how far from optimal can the
bound be in general? The smallest possible solution to the pure parsimony
problem on m-genotypes is min{n :

(
n
2

)
≥ m}. As an example, consider

the set

G = {(2, 2, 0, 0), (2, 0, 2, 0), (2, 0, 0, 2), (0, 2, 2, 0), (0, 2, 0, 2), (0, 0, 2, 2)},

which is optimally and uniquely resolved by

H = {(−1, 1, 1, 1), (1,−1, 1, 1), (1, 1,−1, 1), (1, 1, 1,−1)}.

Notice that the elements of G are pairwise incomparable, and hence, form
6 single-element chains. Each element contains a heterozygus SNP, so
the gl-solution has size 2 · 6, the largest possible solution for a set of six
genotypes. Extending this example, we see that for any integer q, there
is a G of size

(
q
2

)
whose unique minimum solution has size q, but whose

gl-solution has size 2 ·
(
q
2

)
. Since the minimum solution is as small as

possible, the gl-solution is capable of achieving the worst possible error.
However, this is a contrived example, and we will analyze how this bound
performs on real biological data in Section 5.

4 Developing a Heuristic Based on g-Lattice
Decompositions

In this section, we leverage the g-lattice decomposition of G to find optimal
solutions to a special case and to develop an algorithm for approximating
solutions by decomposing the general IP into smaller IPs.

Theorem 4. Let G be a collection of genotypes such that any two maxi-
mal elements from different g-lattices of G are incompatible. Then the size
of a minimum solution to G is the sum of the sizes of minimum solutions
to the g-lattices of G.

Proof. Suppose g1 and g2 are maximal elements of two disjoint g-lattices
of G. If g1 and g2 are incompatible, there exists a SNP location where
one has a 2 and the other has a −2. Without loss of generality, suppose
g1

i = 2 and g2
i = −2. Then any genotype g with g � g1 must have a 2 at

SNP i. Similarly, any genotype g′ � g2 must have a −2 at SNP i. So g
and g′ are incompatible. So if the maximal elements of different g-lattices
are pairwise incompatible, so are all pairs of elements from different g-
lattices. Therefore the sets of haplotypes resolving the components are
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disjoint.

An immediate corollary gives an optimal solution when G decomposes
into incompatible chains.

Corollary 1. Suppose G is a collection of m genotypes that decomposes
into chains, q of which have minimal elements with at least one het-
erozygus SNP. Then if the maximal elements of the chains are pairwise
incompatible, a minimum solution to G′ contains m + q haplotypes.

The proof follows directly from Theorems 1 and 4, and combining this
with Theorem 3, we establish the following.

Corollary 2. If a collection of genotypes decomposes into chains with
pairwise incompatible maximal elements, then the complexity of calculat-
ing a solution to the pure parsimony problem is no worse than O(m2n).

We use this analysis to design an algorithm that heuristically solves
the problem, even in the case in which maximal elements are not pairwise
incompatible. This technique requires the full g-lattice decomposition in-
stead of just the minimal elements of G, see Algorithm 1.

Algorithm 1 terminates with a collection of disjoint g-lattices together
with their maximal and minimal elements. As shown in Theorem 4, if
the maximal elements between g-lattices are pairwise incompatible, then
the pure parsimony problem can be solved by adding the individual so-
lutions of the smaller problems defined on each g-lattice. This leads to
Algorithm 2 for the case in which the problem doesn’t decompose into
g-lattices with pairwise incompatible maximal elements. This algorithm’s
estimate of the optimal solution is

∑
t zt, which we call the mgl-solution.

This tactic reduces the gl-solution by solving what are hopefully smaller
IPs, but this solution is not generally polynomial since each IP is itself a
pure parsimony problem. The ability to vary B gives control over which
IPs are solved versus which are deemed to costly in terms of computa-
tion. For lattices larger than B, we instead use the gl-solution. Numerical
results based on this algorithm are presented in the next section.

5 Numerical Results

Early numerical work on the pure parsimony problem was often accom-
plished with simulated data, which was somewhat precocious in light of
the HapMap project [11], which catalogs the genotypes of several indi-
viduals across numerous populations (see www.hapmap.org). Most recent
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Algorithm 1 Patitioning G into g-lattices
1: procedure g-lattice
2: k ← 1 and A0 ← ∅.
3: Find a minimal element of G under � and label it gk.

4: Find the largest Sk ⊂ G such that gk � g if g ∈ S. Let

S
k

= {g ∈ Sk : g′ � g if g′ ∈ Sk}.

5: Ak ← Ak−1 ∪ Sk.
6: if Ak 6= G then
7: k ← k + 1.
8: Return to 3.
9: else

10: Proceed to 12.
11: end if
12: t← 1 and Kt ← {1, 2, . . . , k}.
13: Select i ∈ Kt and let

Jt = {j ∈ Kt : Si ∩ Sj 6= ∅}.

14: Let Lt =
S

j∈J S
j , Lt = {g

j
: j ∈ Jt}, and L

t
=

S
j∈J S

j
.

15: Kt+1 ← Kt\Jt.
16: if Kt+1 = ∅ then
17: Stop.
18: else
19: t← t+ 1.
20: Return to 13.
21: end if
22: end procedure

Algorithm 2 Method of solving each g-lattice problem.
1: procedure Solve g-lattice
2: t← 1.
3: if |Lt| ≤ B then
4: Let zt be the solution of the pure parsimony problem on Lt solved by an

integer program.
5: else
6: Let zt ← |Lt|+ |Lt|−αt, where αt is the number of genotypes in Lt without

a heterozygus SNP.
7: end if
8: if t indexed the last lattice then
9: Stop.

10: else
11: t← t+ 1.
12: Return to x.
13: end if
14: end procedure
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computational work is based on these growing databases [5, 6], and all of
our numerical work was done on chromosome 10 in the 2008-03 databases
over the CHB (Han Chinese in Beijing, China) and YRI (Yoruban in
Ibadan, Nigeria) populations. The CHB population has 45 individuals
and 211, 862 SNPs, and the YRI population has 90 has individuals and
204, 146 SNPs.

Our computing environment was a laptop with linux, 3GiB of mem-
ory, and dual 2.6 GHz processers. Freeware was used throughout, which
readily makes the computations reproducible. The algorithm that par-
titions the genotypes into lattices was written in Octave. We used the
IP model in [4] and adapted Gusfield’s Perl script minthap.pl (posted at
wwwcsif.cs.ucdavis.edu/~gusfield/) so that it exported models na-
tive to lp solve (see lpsolve.sourceforge.net/5.5/), which was used
with default settings to solve all IPs. A time limitation of 900 seconds was
imposed on all IP solves. All code can be downloaded at (holderfamily.
dot5hosting.com/aholder/research).

Our experimental design was based on a series of 50 solves with a
varying number of consecutive SNPs. The data is not perfect, and several
SNPs have an undetermined value for some individual. Undetermined
SNPs were ignored and not included in the count of consecutive SNPs. For
example, for both databases we solved 50 problems with 10 consecutive
SNPs, 50 problems with 20 consecutive SNPs, ..., and 50 problems with
100 consecutive SNPs. The first step of each solve was to locate the next
collection of consecutive SNPs and idenfity the unique genotypes (several
individuals could share a common genotype). All calculations were done
on unique genotypes.

Problems with 10, 20 and 30 SNPs were solved in three ways:

1. to optimality unless the IP time limitation was invoked,
2. by the mgl-solution with B = 25, and
3. by the gl-solution.

Tables 1 and 2 detail the solution characteristics for the 10, 20, 30 and 40
SNP cases. IP problems with more than 30 SNPs routinely grew beyond
our computational abilities, which is likely due to the fact that the IP
models grew exponentially in the number of heterozygus SNPs. An im-
portant direction for future work is to replace the IP model with one of
the polynomially sized IP formulations. For the 40 SNP cases we failed
to compute the minimum solutions but were able to calculate the mgl-
solutions.
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Table 1. Average solution information for the CHB database for the cases of 10, 20,
30 and 40 SNPs. Time is in seconds and only records the IP solution time. The column
labeled “opt” indicates the number of mgl-solutions out of the 50 that were guaranteed
to be optimal (none of the gl-solutions were optimal). The average solution of the pure
parsimony problems is in the column labeled “min.”

n m gl-sol mgl-sol opt time min time

10 9.42 10.96 7.08 28 0.01 5.74 0.01
20 14.32 18.36 13.08 12 1.61 9.14 20.83
30 19.10 25.68 20.26 1 117.36 10.48 161.97
40 25.18 36.32 31.50 1 395.96

Table 2. Average solution information for the YRI database for the cases of 10, 20, 30
and 40 SNPs. Time is in seconds and only records the IP solution time. The column
labeled “opt” indicates the number of mgl-solutions out of the 50 that were guaranteed
to be optimal (none of the gl-solutions were optimal). The average solution of the
pure parsimony problems is in the column labeled “min.” The ∗ (∗∗) indicates that 2
(23) problems were unable to solve within the time restriction; these problems are not
included in the average.

n m gl-sol mgl-sol opt time min time

10 23.68 26.68 20.62 20 0.01 10.62 0.02
20 45.42 59.84 50.74 0 33.84 22.81∗ 45.70
30 59.60 87.42 79.82 0 305.87 32.85∗∗ 513.93
40 69.78 108.02 100.20 0 983.77
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We forewent IP solutions in any form if there were more than 50 SNPs.
However, the gl-solutions were calculated in a few moments for all cases.
See Table 3 for solution information.

Table 3. Average solution information for the CHB and YRI databases for the cases
of 50 through 100 SNPs.

CHB SNP 50 60 70 80 90 100

m 28.40 30.02 32.78 34.02 36.14 37.18

gl-sol 41.66 45.00 50.66 53.58 57.90 60.84

YRI SNP 50 60 70 80 90 100

m 73.54 79.98 83.16 84.86 85.62 86.38

gl-sol 119.92 136.50 146.92 153.24 157.74 161.00

An observation about the cases with a larger number of SNPs is that
the gl-solution tends toward the upper bound of 2m. This is not surpris-
ing since the probability of pairwise incompatibility grows as the number
of SNPs increases. Although none of these instances were guaranteed to
be optimal, we did calculate the gl-solution for the CHB dataset with all
211, 862 SNPs and with all undetermined SNPs interpreted as heterozy-
gus. This ensures that the maximal elements of each g-lattice have the
least amount of incompatibilities with the maximal elements from other
g-lattices. In this case, the problem did decompose into 45 incompatible
single element chains, which proves that the pure parsimony solution is
2m = 90 genotypes no matter how the undetermined SNPs are decided.
Again, this is not a surprising result, but it does support the observation
that the gl-solution should tend to 2m as the number of SNPs increases.

6 Conclusions

Although the pure parsimony problem is generally APX-Hard, we have
identified a sub-class of polynomial-time problems. The algorithm used to
compute this solution gives a polynomial bound on the general problem,
and the mathematical insights support a reduction of this bound by de-
composing the problem into disjoint g-lattices. While the gl-solution was
not found to be optimal in any of our test cases, the mgl-solution was. So
on real data, the problem’s decomposition makes sense in some cases.

There are many avenues to consider beyond this work. First, the IP
formulation should be changed to one whose size grows polynomially. The
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promising results in [6] show that this could lead to much improved so-
lution times. Second, the gl and mgl-solutions may be useful beyond the
goal of pure parsimony. In particular, there may be biologial insights into
the g-lattice structure that support its use. Third, the g-lattice partition
might be useful in guiding a branch-and-bound/price procedure, which
could improve solution time. Fourth, we suspect that the structure of the
g-lattices indicates whether or not a problem is computationally difficult.
Fifth, wider scale numerical work should be conducted to asses the ap-
propriatness of these techniques over a spectrum of populations.

Acknowledgment: The authors are thankful for David Rader’s support
and insightful conversations.
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6. Catanzaro, D., Godi, A., Labbé, M.: A class representative model for pure par-
simony haplotyping. Technical report (2008) To appear in INFORMS Journal on
Computing.

7. A Survey of Computational Methods for Determining Haplotypes. In: Com-
putational Methods for SNPs and Haplotype Inference: Proceedings of DI-
MACS/RECOMB Satellite Workshop. (2004)

8. Lancia, G., Pinotti, M., Rizzi, R.: Haplotyping populations by pure parsimony.
complexity, exact and approximation algorithms. INFORMS Journal on Comput-
ing 16(4) (2004) 348–359

9. Lancia, G., Rizzi, R.: A polynomial case of the parsimony haplotyping problem.
Operations Research Letters 34 (2006) 289–295

10. Gusfield, D., Orzack, S.H.: Combinatorial methods for haplotype inference. In
Aluru, A., ed.: Handbook of Computational Molecular Biology. (2006)

11. Consortium, T.I.H.: Integrating ethics and science in the international hapmap
project. Nature Reviews Genetics 5 (2004) 467–475 www.hapmap.org.

12. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and effi-
cient solutions. Proceedings of RECOMB 2002: The Sixth Annual International
Conference on Computational Biology (2002) 166–175

13. Chung, R.H., Gusfield, D.: Perfect phylogeny haplotyper: Haplotype inferral using
a tree model. Bioinformatics 19(6) (2003) 780–781



13

14. Ding, Z., Filkov, V., Gusfield, D.: A linear-time algorithm for perfect phylogeny
haplotyping. Journal of Computational Biology 13 (2006) 522–553

15. Blain, P., Davis, C., Holder, A., Silva, J., Vinzant, C.: Diversity graphs. In Butenko,
S., Chaovalitwongse, W., Pardalos, P., eds.: Clustering Challenges in Biological
Networks. World Scientific (2008)


	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	8-2009

	A Decomposition of the Pure Parsimony Problem
	Allen Holder
	Thomas M. Langley
	Recommended Citation


	09-02cover.pdf
	09-02body.pdf

