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Abstract

Cryptographic algorithms are based on a wide variety of difficult problems in mathematics.
One of these problems is finding a solution to a system of multivariate quadratic equations (MQ).
A generalization of this problem is to find a solution to a system of higher order non-linear
equations. Both of these problems are NP-hard over any field [2, p. 202]. Many cryptosystems
such as AES, Serpent, Toyocrypt, and others can be reduced to some form of the MQ problem. In
this paper we analyze the relinearization and XL algorithms for solving overdetermined systems
of non-linear equations, as well as two variations of the XL algorithm.

We then introduce the Toyocrypt stream cipher and show how it can be reduced to a system
of non-linear equations. We analyze an attack introduced by Courtois [7] using a variation
of XL. We also implemented the attack for a smaller version of Toyocrypt, and made many
interesting observations that have not been explained by our analysis.



1 Introduction

Claude Shannon said in his famous 1949 paper that ciphers should be constructed “in such a way
that breaking it is equivalent to...the solution of some problem known to be laborious, [such as]
solving a system of simultaneous equations in a large number of unknowns [15].” The problem
of finding one solution (but not necessarily every solution) to a system of quadratic multivariate
polynomial equations is known as the MQ problem, and is NP-hard over any field [2].

We consider a non-linear system in n variables and m equations. The MQ problem has been
studied for the underdefined case and is polynomial in n when sufficiently underdefined [4]. We
will show that the problem becomes polynomial in n if it is adequately overdefined as well. Thus
the hardest case of MQ) is when m =~ n.

1.1 A Motivating Example

The idea of an algebraic attack on a cryptosystem can be motivated by a simple example. Suppose
Alice wants to send a secret message to Bob. One possible method is for Alice and Bob to use
an affine cipher. They agree on a secret key which is composed of two integers « and f§ with
ged(a@,26) = 1. To send a message to Bob, Alice encrypts her message one letter at a time by
converting each letter to a number (for example, a = 0 and z = 25) and then encrypting each
number with the linear function ¢(z) = ax +  mod 26. Alice can send this encrypted message over
an untrusted channel, and for the purposes of this example, we may assume that no one is able to
decrypt the message besides Bob who has the secret key. '

When Bob receives the encrypted message, he first computes v = ! mod 26. He can then
decrypt the message one letter at at time using d(y) = (y — ).

As an example, let o = 3 and § = 5. The plaintext letter e corresponds to the integer “4”, so
the ciphertext would be ¢(4) =3-4+45 = 17 mod 26. If Alice sends the message “17” to Bob, Bob
computes v = 9 (since ary =3 -9 = 27 = 1 mod 26). Then d(17) = (17 —5) -9 = 108 = 4 mod 26,
which Bob interprets as the letter e.

Now suppose that we have intercepted the message [20, 25, 18, 10, 11, 23, 20] encrypted with
this scheme, but with an unknown key. If we also happen to have discovered through fortune or
subterfuge that the plaintext corresponding to the ciphertext “18” was “6” and that the plaintext
corresponding to the ciphertext “23” was “17” (i.e. ¢(6) = 18 and ¢(17) = 23), then can we figure
out the rest of the message?

We do not know the secret key, but we do know

18=6a+p
23=17Ta+p

mod 26

This can be modeled by the linear system

EHIGEHE

We can solve this system using Gaussian elimination to obtain « = 17 and f = 20. v =
a ! mod 26 = 23. Then d(20) = (20 — 20) - 23 = 0, so the first letter of the message is “a”.
Similarly we decrypt the rest of the message to get [alge br al.

!The affine cipher has numerous weaknesses, so Alice and Bob should not expect any degree of privacy over an
untrusted channel with this cipher.



This is the basic premise of algebraic attacks on cryptosystems. We will model the cryptosystem
as a (possibly non-linear) function. By some means we will obtain some input/output pairs for
the function which results in a system of equations. We can then try to solve the system and
determine the secret key. For linear systems like the example above, this is trivial (given enough
equations relative to unknowns) but the problem becomes much more challenging when the function
is non-linear.

This kind of attack is called a “known-plaintext” attack. Although it may seem unlikely that
an attacker could obtain the plaintext and corresponding ciphertext necessary to launch such an
attack, there are many cases where it is feasible. For example the message header may be constant
or predictable. In some cases it may be enough to know the language in which the message is
written (see Section 5.1).

2 Linear Feedback Shift Registers (LFSR)

2.1 Stream Ciphers

Now we introduce linear feedback shift registers (LFSR) as a basic component of more sophisticated
encryption schemes such as stream ciphers. Later we will describe Toyocrypt, a stream cipher that
is vulnerable to an algebraic attack based on the same concept as the attack above. Stream ciphers
are a type of symmetric key cipher in which plaintext bits are XORed with a pseudo-random bit
stream, called the keystream. Stream ciphers are used in applications that require encryption of
large quantities of data very quickly, which makes them a good candidate for algebraic attacks
where a large amount of known plaintext is required.

2.2 Galois LFSRs

The pseudo-random bit stream used in stream ciphers is often obtained using a LFSR because of
their speed when implemented in hardware. There are many varieties of LFSRs; we will consider a

n
Galois LFSR. Let L be a Galois LFSR of length n, and let C' = Z ciz' be polynomial in GF(2)[x],
i=0
with deg(C) = n, i.e. ¢; € GF(2), ¢, = 1. Alternatively, we may view C as a vector in GF(2)™:
C = [ep—1, ..., €1, 0], note that the leading coeflicient is dropped in the vector notation because it
is always 1. C'is called the feedback polynomial for L. For most cryptographic purposes and for
the purposes of this paper we want C' to be a primitive polynomial so that the LFSR achieves its
maximum possible period of 2" — 1 [13].

The contents of the shift register is known as the state, and at any time ¢ > 0, the contents
can be represented as a vector L(t) € GF(2)". Individual bits of the state at time ¢ are denoted
by L;i(t), i =0,1,....,n— 1. C is used to generate the next state of the shift register every time it
is clocked. In this notation, we write L(t) =< Lo(t), L1(t), ..., Ln_1(t) >. We define the transition
function

CLK : GF(2)" x GF(2)" — GF(2)"
(C,L(t)) — L(t + 1)



where

Lo(t + 1) == C()Lnfl(t)

Li(t+1)=Li—1(t) + ¢iLp—1(t), i=1,2,..,n—1

and addition is performed mod 2. Figure 1 shows visually how the next state of a Galois LFSR is
computed.

Cn-1 Cj Co—><.>

Ln-1 L Lo
Figure 1: A Galois LFSR, adapted from [17]

The primary weakness of using the output of an LFSR as a pseudo-random bit stream is that
given L, ;1 for 2n states, we can easily discover the feedback polynomial and then determine past
and future states of the LESR [18, p. 47]. We describe this attack below because the same idea is
used in the attack on Toyocrypt.

2.3 Basic LFSR Attack

Consider a 4-bit Galois LSFR. Suppose we know the values of L3(0), L3(1),...,L3(7) € GF(2).
Using the recurrence relation given by CLK, we have (known values are in bold):

L3(4) = L2(3) + c3L3(3)
= (L1(2) + c2L3(2)) + c3L3(3)
= ((Lo(1) + c1Li3(1)) + c2L3(2)) + c3L3(3)
= ¢oL3(0) + ¢1L3(1) + c2L3(2) 4 ¢3L3(3)

Similarly, we can get algebraic equations for L3(5), L3(6), and L3(7):
L3(5) = C()L3(1) + 01L3(2) + 02L3(3) + 63L3(4)
L3(6) = CoL3(2) + 61L3(3) + 02L3(4) + 63L3(5)
L3(7) = C()L3(3) + 61L3(4) + 02L3(5) + 03L3(6)
Substituting in the known values, we obtain a linear system of equations which can be easily

solved, for example using Gaussian elimination. This allows us to recover the feedback polynomial.
As we will show, knowing the feedback polynomial allows us to reconstruct the initial state of the



LFSR, and thus the entire output sequence. It is not necessary for the known output bits to be
consecutive as in this example, so this attack applies to more general situations.

We will now show how the initial state can be recovered if we know just n (not necessarily
consecutive) output bits and the feedback polynomial. For simplicity, we will use some results from
the previous example. Assume that we know L3(4), L3(5), L3(6), and L3(7) but no other state
bits. We can continue to rewrite L3(4), keeping in mind that we are now assuming knowledge of
co, €1, ¢2, and cg but not L3(0), L3(1), L3(2), or L3(3).

L3(4) =coL3(0) + c1L3(1) + c2L3(2) + c3L3(3)
=coL3(0) + €1(L2(0) + c3L3(0)) + c2(La2(1) + esL3(1)) + c3(L2(2) + c3L3(2))
(C() + Clc3)L3( ) + ClLQ( ) + CzLQ( ) + CngLg(l) + C3L2(2) + C§L3(2)

:(Co +cCc2 +C3 + C203)L3(0) + (Cl + C3)L2(0) + (Cz + 03)L1 (0) + CgLo(O)

after taking all coefficients mod 2 and reducing variable exponents to 1 due to the fact that ¢? = ¢;
over GF(2).
Similarly, we can write L3(5), L3(6), and L3(7) in terms of the initial LE'SR state:

L3(5) =(c3 + c1c3 + c2¢3) L3(0) + (co + c2 + ¢3 + c2¢3) L2 (0) + (c1 + ¢3)L1(0) + c2 + ¢3Lo(0)
L3(6) =(c1 + c2 + ¢3 + cocsg + c2¢3)L3(0) + (c3 + c1c3 + c2¢3) Lo (0)

+ (co + c2 + c3 + c2c3)L1(0) + (c1 + ¢3)Lo(0)
L3(7) =(c3 + c1c2)L2(0) + (c1 + ¢2 + ¢3 + coc3 + c2c3) Lo (0)

+ (c3 +c1c3 + e2¢3)L1(0) + (co + €2 + €3 + c2¢3) Lo (0)

We now have a linear system of four equations and four unknowns, so we can solve to find the
initial state of the LFSR. Once we have the initial state of the LFSR, we can generate the entire
output sequence by using the known feedback polynomial. Thus for LFSRs if we have no knowledge
of the feedback polynomial or the initial state, we can recover both if we know 2n bits of the output
stream. If we know the feedback polynomial in advance (as we will assume in a later attack), we
can recover the initial state of the LFSR if we know just n bits of the output stream. Thus it is not
sufficient to use a LFSR for generating pseudo-random bits for cryptographic applications because
knowing a few output bits allows us to recover the initial state, even without knowledge of the
feedback polynomial.

3 Algebraic Solutions to Non-Linear Systems

We first consider solving a system of non-linear equations algebraically (rather than numerically)
over any field. Throughout the rest of this paper, we will refer to a system of equations with m
equations in n variables, where n refers to the number of linear variables (i.e. z1,z9,...,Zy, nOt
all of which must appear in the system as linear terms) rather than the number of monomials in
the system. We say that the system is overdefined (overdetermined) if m > n and underdefined
(underdetermined) if m < n. We say an equation is homogeneous if every non-constant monomial
has the same degree. For example, wlxg—i—x% = b is a homogeneous equation while 1 +z9x3 +$§ =0
is a non-homogeneous equation. We refer to a system as homogeneous if every equation in the
system is homogeneous.



3.1 Relinearization
3.1.1 Linearization

For a non-homogeneous quadratic system over a general finite field GF(q), there are (") =n

1
";“1) distinct quadratic terms. ? Thus the total number of

monomials in the system is no more than n + (ngl) We will assuimne that each of these monomials
appear in the system.

The m quadratic equations form a non-homogeneous non-linear system, which cannot directly
be solved using Gaussian elimination. One approach to solving a non-linear system is to linearize
the non-linear monomials. We rewrite the system with new variables y; = z; and y;; = z;x;,1 <1 <
j < n, which does not change the number of monomials, but does convert the quadratic system to
a linear system that can be solved by Gaussian elimination. The linearized system has m equations
and n+ (";rl) unknowns, so we can find a solution (if one exists) when the linearized system has full
column rank. The solution to the linearized system contains values for the linearized y; variables
which correspond to the solution to the original system. It is not strictly necessary that every
possible monomial appears in the system; for example we could consider a homogeneous quadratic
system where every quadratic term appeared. Then the solution to the original z; variables would
be the square roots of the y;; variables. In either case, linearization requires O(n?) equations, which
may not be available in many cases.

For example, consider the non-linear system

possible distinct linear terms and (

2 5 9 3 6 . 7
10 7 5 6 10 >0 |3
9 0 8 1 6 xx; =1, mod 11
9 9 10 9 2 L2 8
T
After linearization, this system becomes
2 5 9 3 6 Zl 7
10 7 5 6 10 201 |3
9 0 8 1 6 yi | = | | mod
9 9 10 9 2 Y1z 8
Y22

3.1.2 Degree Four Relinearization

We will analyze relinearization method in the homogeneous case [12]. If we have m < (ngl) linearly

independent homogeneous equations, we would like a method that allows us to solve the system.
When every quadratic monomial is present, we can use linearization to find a parametric solution
int= (n—;l) —m free variables z;, 1 <1 < (ngl) —m. However during the linearization step we lose
information about the relationship between linearized variables. For example, the linearized system
does not enforce y;; = y;y;. All of the solutions to the original non-linear system are also solutions

*We are assuming that ¢ > 3. In this case the number of monomials is found using the formula for selection with
repetition (”'*':_1)7 where r = 1 to count linear monomials and r = 2 to count quadratic monomials. Over GF(2)
repetition is not allowed, so there are only (;) quadratic monomials.



to the linearized system, but the linearized system may contain extraneous solutions that do not
correspond to solutions of the original system. One method for eliminating extraneous solutions is
to check each solution to see if it satisfies every non-linear relationship, throwing out solutions that
do not.

If we had a few more original non-linear equations, we could drastically reduce the number
of solutions to the linearized system. Our goal is to introduce more equations that reflect the
information lost in the linearization step to reduce the number of extraneous solutions. For degree
four relinearization, we consider the product of four arbitrary z variables and notice z,zpz .2y =
(azp)(Zeq) = (Ta®e)(TpTa) = (Taza)(2pTc), Which can be rewritten as yop¥ed = Yackbd = YadYbe-
We would like to find (";“1) —m linearly independent equations of this form so that we may uniquely
determine a solution to the y;;’s.

There are only three possible forms for the degree four relinearization equations:

L. Yijyr = YikYii
2. YijYik = YikVij
3. YiiYij = YijVYij

where 7, 7, k, and [ are distinct indices.
For equations of the first type, we can write y;;yx = Yikyji = yay;x which leads to the three
equations

€q1 ‘= YijYkl = YikYjl
€q2 = Yij Ykl = YilYjk
€q3 ‘= YikYji = YilYjk

but we see that eq1 —eqz is 0 = y;ryj1 — Yiy;x Which is the same as eg3. Thus only two of the three
equations are linearly independent, so each choice of four variables leads to two new equations of
the first type. There are 2(2) linearly independent equations of the first type. For any set of three
unique indices, we can make three linearly independent equations of the second type by changing
the z; variable that appears twice for a total of 3(2) equations. Similarly there are (g) linearly
independent equations of the third type. Thus the number of potential relinearization equations
depends only on the number of original variables. The analysis assumes that the relinearization
equations are all linearly independent; we will comment on this assumption below.

After using Gaussian elimination on the linearized original system, we can express each y;; as
a linear combination of free z; variables and a constant term, 0 < ¢ < ¢. Thus the relinearization
equations may contain linear or quadratic monomials of the z; variables. There are ¢ linear mono-
mials and (tgl) quadratic monomials as above. We expect that in most cases, every possible linear
and quadratic monomial in the z;s will appear in the relinearization equations. If we get lucky and
some monomials are missing, we will need fewer linearly independent relinearization equations to
solve the second system. However for the purposes of this analysis we do not consider this favor-
able case. The result is a new quadratic system where the z;’s are the linear variables, and every
monomial appears.

This system has a unique solution (or no solution) when the number of relinearization equations
is at least the number of possible monomials in the z; variables, that is, when 2(2) + 3(2) + (g) >
t+ (t"';). Solving this inequality for m in terms of n (recall ¢ = (";1) —m) gives



1 1 3 1 1 1 3 1
[n2+n—|——\/6n4—6n2+81-‘ <m < {n2+n—|—+ 6n4—6n2—|—81J

2 2 2 6
n+1
2
a single linearization step. (";1) < L%?ﬂ +in+ 3+ 2V6nt —6n2 + 81J for all n, so in fact the
quadratic system can be solved by relinearization for small m or linearization for large m when

m > gnu%ﬁg— %\/m]

When m is large enough, we can solve the new quadratic system in ¢ (linear) variables using
linearization. The solution to this system gives values for the free variables of the first linearized
system, z;,0 < 1 < t. Substituting in the values for the z;’s, the first linearized system can be
solved. Since the solution to the first linearized system determines the y;; variables and y;; = z7,
we may simply find the square root of each y;;, which exists if the system has a solution. However,
many of these solutions to the first linearized system may not be solutions to the original non-linear
system because neither the linearized system nor the degree four relinearization equations enforce
degree two relationships such as z;x; = y;;. If a solution exists, each y;; will have two square roots
over a general finite field. There are n y; variables, so there are 2" solutions to the linearized
system that need to be checked. Checking a solution requires computing up to (Z) quadratic terms
(we do not need to check y;; terms) to see if they match the solution to the relinearization system.
We can filter through the 2" solutions by:

However, we are assuming that m < ( ) because otherwise we can solve the system using

1. Choose a square root 1 of y11 (or any other y;; if y11 = 0).
2. For 2 < i < n compute z; = y1;/x.

3. For 2 < ¢ < j < n compute z;z; and make sure it is the same as the value of y;; found by
solving the relinearization system.

4. If every y;; is correct, the solutions for both square roots of y11 are solutions to the non-linear
homogenous system, otherwise neither are and there is no solution to the system.

Although we are assuming that every quadratic monomial appears in the original system, this
is not always the case. If quadratic monomials are missing, we may view the system in two ways.
On one hand, the system has fewer than (";’1) monomials, so we have fewer free variables after the
first linearization step. However, this severely restricts the choices for the relinearization equations,
so there may not be enough to relinearize this smaller number of free variables. On the other
hand, we may think of the system as still having (";“1) —m free variables by assigning each missing
monomial to a z;. We may then use all of the relinearization equations, but these may not be enough
to solve the relinearization system in more free variables. It may be possible to solve a system when
quadratic monomials are missing, but this case has not been classified to our knowledge. Note that
the unfavorable situation caused by monomials missing from the original system is different from
the favorable case mentioned above of monomials missing from the relinearization equations.

We now consider the possibility of linear dependencies among the relinearization equations. In
[5], Courtois et al. give empirical evidence that degree four relinearization equations are linearly
independent except when the field is “very small”. Due to the simplicity of the relinearization



equations listed above, it is not difficult to see that, as written, these equations are linearly inde-
pendent. However it is not clear that these equations are always linearly independent when the
representation in the free z; variables is used. Certainly if there were dependencies when the re-
linearization equations were written in the y;; representation, there would be dependencies after
the substitution was made, but this does not necessarily hold in the reverse direction (at least over
“very small” fields). This interesting question could be investigated in future research.

We can determine how many original linearly independent equations are necessary for degree
four relinearization to work (for homogeneous systems) to see the savings compared to linearization.
We will assume that all (ngl) possible monomials appear in the original equations and then deter-
mine the minimum value of m for several values of n. We are still making the critical assumption
that the relinearization equations are linearly independent.

This table shows for various n the number of degree four relinearization equations available,
the smallest number of original equations needed for relinearization to succeed, and the number of
relinearization equations that are needed of the equations available for that choice of n. The last
column shows how many original equations would be needed for normal linearization to succeed.

n Relinearization Minimal m | Relinearization | Minimal m without
equations available equations needed relinearization

3 6 4 5 6

4 20 5 20 10

5 50 7 44 15

6 105 8 104 21

7 196 10 189 28

8 336 12 324 36

9 540 14 527 45

10 825 16 819 55

50 520,625 257 519,689 1275
100 8,332,500 970 8,329,320 5050

Table 1: Degree Four Relinearization Summary

From the table above we can see that degree four relinearization creates considerable savings in
terms of the number of original equations needed to solve the system over linearization.

3.1.3 Degree Four Relinearization Example

We will demonstrate degree four relinearization using a small homogeneous system in the original
variables z1, x2, and z3 over the field GF(11) (equations mod 11):

o,
Ty
2 5 9 3 6 57|z 7
107 5 6 10 0| | aws | _ |3
9 0 8 1 6 1 2 | = | medtd
9 9 10 9 2 7 || zams 8
2
T3

After linearization, this system becomes



[ y11 ]
25 9 3 6 5 Y12 7
107 5 6 10 0 vz | _ | 3
90 8 1 6 1 v | = |1 | med
9 9 10 9 2 7| | yos 8
L Y33 |

Since all four original homogeneous equations are linearly independent, we expect ¢t = ("42'1) -

m = 2 free variables. Solving these simultaneous equations mod 11, we obtain

(411 = 10+ 92,
Y12 =9+ 821
Y13 = 321 + 629
yoo = 10 + 1021 4 629
Y23 = 21

Y33 = 22

\

We need ¢ + (tgl) = 5 linearly independent relinearization equations to solve this system. Per
Table 1, there are six linearly independent degree four relinearization equations:

;

Y11Y23 = Y12Y13
Y22Y13 = Y12Y23
Y33Y12 = Y13Y23
Y11Y22 = Y12Y12
Y11Y33 = Y13Y13
\ Y22Y33 = Y23Y23

After substituting in the solutions from the linearization step and expanding the relinearization
equations become

(520 + Lag + 722 + Tz129 = 0
1021 4+ bzo + +2z120 + 3z§ =0
929 + 8z% + 22129 =0
221 + 529 + 42% + 102129 +8 =0
10z9 + Zz% + 62120 + 82% =0
(1022 + 102§ + 102122 + 625 = 0

Now we linearize again by substituting w; = 21, we = 20, w3 = z%, Wy = 2129, Ws = z% to get the
linearized system (of relinearization equations)

10



5 1 7 7 0 0
10 5 0 1 3 Zl 0
0 9 8 2 0 20 o
2 5 4 10 0 wy | = | g | modll
0 10 2 6 8 Z‘* 0

| 0 10 10 10 6 | > 0

which has full rank. Solving this system we find that wy = 21 = 8,ws = 29 = 9, w3 = 9, wy =
6, ws = 4. Substituting the values of z; and zy back into the original linearization solution, we find
that

Y11
Y12
Y13
Y22
Y23
Y33

O 00 = = =] Ot

We determine the values of the original variables 1, z2, 3 by finding the square roots (mod
11) of y11, y22, and y33 respectively. We find that ;1 = £4 mod 11, z9 = £1 mod 11, and z3 =
43 mod 11 are solutions to the linearized original system and the relinearization system.

To filter out extraneous solutions, we arbitrarily choose z; = 4 and then compute z2 = y12/21 =
10 mod 11 and z3 = y13/21 = 3 mod 11. To check that this is a solution, we also need to compute
the rest of the cross terms: z9ox3 = 8 = y93. Since all cross terms are correct, one solution to
the non-linear system is {1 = 4 mod 11, zo = 10 mod 11, z3 = 3 mod 11}. Since the system
is homogeneous, we can negate every x; to obtain a different solution, so {z; = 7 mod 11, zy =
1 mod 11, 23 = 8 mod 11} also solves the original system.

3.1.4 Generalized Relinearization

There is no reason we are restricted to degree four relinearization. This idea will be revisited with
the XL algorithm and its variants, but for now we will show that degree six relinearization can
have benefits over degree four relinearization, an idea introduced in [5].

Degree six relinearization works by linearizing and solving the original quadratic system as
described above. The y;; variables are expressed as t = (";“1) — m free z; variables, 0 < ¢ < t.
Rather than considering the product of two y;; terms, we now consider products of three y;; terms
which is really a product of six original z; variables. Since the 7;;s are expressed as a linear
combination of the free z; variables and a constant, these relinearization equations could contain
up to (f) + (tgl) + (t?) monomials in the z; variables.

There are nine different types of degree six relinearization equations which can be classified
according to how many times each original x variable appears in the product on one side of the
equation. One side of each degree six relinearization equation has the following form (which we
will associate to equations of that type):

L. YijYriYab

2. YiYikYab
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YiiYijYki
YiiYiiYjk
YiiYjjYkl
YiiYijYjk
YiiYjjYkk
YiiYijYsj

R A A A o

YiiYiilYjj
where 1, 7, k, [, a, and b are distinct indices.

Now we will count the number of degree six relinearization equations of each type. For products

of the first type, given a set of six distinct original variables, there are (g) choices for the first

4

term 5, ( ) choices for the second term yi; and (3) = 1 choice for the third term 4. Since

2
YabYed = YedYap aNd Yap = Ypa, and order does not matter, there are (g) (3) /3! = 15 “non-trivial”

permutations of products of the first type. From these 15 permutations we can create 14 “non-
trivial” equations, so there are 14(2) degree six relinearization equations of the first type. For
products of the second type we can rearrange the indices to get the following nine non-trivial
permutations:

( YiiYjkYab
YiiYjaYkb
YiiYjivbYak
YiaYivYjk
YijYikYab
YijYiaYkb
YijYibYka
YikYiaYjb

\ YikYibYja

Given 5 indices, there are (?) choices for the quadratic term, so there are 8(?) (g) equations of
the second type.

Similarly we can count the number of non-trivial equations of the other types. The total number
of non-trivial equations is 14(g) +8(7) (5) +3(;) (3) + (1) (3) +50) () +2() (1) (3) +4(5) + () +
(2)(3) = (Tn8 + 15n° + 25n* — 15n% — 32n2)/360.

The idea of degree six relinearization is that it should be more powerful than degree four
relinearization since there are more relinearization equations. However, there are more monomials in
the relinearization system, so we also require more linearly independent relinearization equations to
solve the system. We did observe that degree six relinearization is more powerful for a homogeneous
system in five original variables: degree four relinearization required seven original equations while
degree six relinearization required only six original equations. See Appendix A for systems that
demonstrate the power and linear dependencies of degree six relinearization. Thus it appears that
degree six relinearization works in cases when degree four relinearization does not, and in all cases
we observed that degree six relinearization worked whenever degree four relinearization worked.
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3.1.5 Linear Dependencies for Generalized Relinearization

Although there are many more possible equations for degree six relinearization than for degree four
relinearization, there are many dependencies among the degree six equations. These dependencies
have not been completely classified, but [5] identifies two sources of linear dependencies among
equations from generalized relinearization.

We call a relinearization equation special if exactly two y;; variables are different. For example,

Y12Y34Ys56 = Y13Y24Yse is special while y12y34ys56 = y13Y25v46 is not special. We can compare the
number of non-trivial equations to the number of special equations generated from each type above:

Type | Non-trivial equations | Special equations

1 14(¢) 6(5)
2 40(3) 20(;)
3 12(3) 12(3)
4 3(3) 3(3)
5 30(3) 18(})
6 12(3) 12(3)
7 4(3) 3(3)
8 (3) (5)

9 2(5) 2(5)

There are (n® + 5n° + 35nt — 65n3 + 24n?2) /120 special degree six relinearization equations.
Lemma 3.1. The set of special equations spans the set of non-trivial equations.

Proof. Let (a,b,....e, f) ~ (a',V,...,€¢, f') be permuted tuples each with an even number of elements
in {1, ..., n} and consider the non-trivial equation y,p...yer = Yo'ty .--Yer y- Without loss of generality,
we assume that the indices are sorted so that the first index of each y;; is no more than the second
index and that the first index of consecutive y;;’s are non-decreasing. Given a set of permuted
tuples p;, 1 < i < r and equations {p; = po, p2 = p3, ..., pr—1 = Pr}, we define a chain of equations
to be the equality p1 = ps = p3 = ... = p,_1 = p, that equates the first permutation with the
last. We will show that given a chain of equations, the equation p; = p, is linearly dependent
on the equations in the chain. We will use induction on the size of the tuples to show that any
permutation can be obtained by creating a chain of special equations, which shows that the set of
special equations spans the non-trivial equations.

Base Case: If there are four elements in each tuple, there are only two possibilities. Either the
permutations are the same, or they are off by exactly one permutation. If the both permutations
are pi, we can choose any special equation of the form p; = p; and then chain it with the special
equation p; = p1. In the second case, there is a special equation equating the two permutations
since every product of y;;’s with exactly two y;;’s permuted yields a special equation.

Induction Step: Assume that for tuples of size 2k that we can always create a special equation
chain from the first tuple to the second permuted version. We will show the result holds for tuples
of size n = 2(k + 1).

Since the two tuples contain the same indices, we can find ys and y,, such that (without loss of
generality) s = a’ and u = '. Use the special equation Yup¥stYuv---Yef = YabYsultv---Yey and reorder
as Yab¥stYuv---Yef = Ya't'YabYtv---Yef- Now the right side of the special equation has one term in
common with the second tuple. The remaining indices of both tuples are the same, so we consider
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the two new tuples (a,b,t,v,...e, f) ~ (¢, d', ..., e f') of size 2k. By the induction hypothesis, we can
create a chain connecting these two tuples. If we multiply both sides of each equation in the chain
by a4, each equation in the chain is still special and the chain links the two original permuted
tuples. ]

This shows that we need only consider special equations. However, there are further depen-
dencies among these equations. After the first linearization step, we express each y;; as a linear
combination of ¢t = (";l) — m % variables (plus a constant). Rather than writing a degree six
special relinearization equation as a product of three y;;s, we can instead think of it as a z;-linear
combination of degree four relinearization equations, where we multiply each degree four equation
by either zero or one z; variables. Since the y;;s are linear combination of the z;s, these equations
span the set of special degree six relinearization equations.

For example, if there are 2 free variables z; and zo, and ys6 = 1+ 21 — 229, Y12U34Y56 = Y13Y24Y56
can be written as the sum of yi2yss = y13y24, Y12y3421 = Y13Y2421, and —2y12y3422 = —2y13Y2422.

We call {degree four relinearization equations} | z; - {degree four relinearization equations} the
set of degree six z-equations. Since there were 2 (2) +3 (g) + (3) degree four relinearization equations
and there are t = (";1) — m z; variables, there are (2(}) +3(3) + (5))- (1 + (";1) —m) degree six
z-equations.

There are fewer degree six z-equations than degree six special equations when (2 (Z) + 3(?) +
(3)- (14 ("5") —m) < (n®+5n° + 35n? — 65n° + 24n?) /120. Solving this inequality for m, we find

3 2
119n +22‘j’1%7(’nﬁ’§9"+264 <m < ("'QH) because there are fewer

z-equations.? The point of using the smaller number of equations is to get a better estimate of the
number of linearly independent degree six relinearization equations.

We conjecture that similar results hold for higher degree relinearization. For example, if we
consider degree eight relinearization, we expect that there are fewer z-equations of the forms
YabYed = YacYody YabYedZi = Yac¥bdZi, a0d YapYed?iZj = YacYbaziz; than there are special equations
when m =~ n?.

The authors of [5] claims to have found other sources of linear dependence, but we did not in-
vestigate other potential dependencies. We also point out that even if we could show that equations
of the form above are linearly independent, there is the possibility of “random” linear dependence,
based on the linear combinations of particular y;;s; see Appendix B.

For example, suppose we have a system in five original variables and that after linearization we
have:

that we should use z-equations when

3Recall that when m > (”;1), there are no free variables after the first linearization and so there is no need for
relinearization.
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[ yo3 =1+ 21 + 22
Y3 = 21 — 22

Yos = 22 + 1
Y33 =21 — 1
Y11 = 22

Yo =21 +29 — 1
Y15 =22 — 1
Y13 = 21
yia =21 +1
[ Y34 =221 + 22 — 3

The relinearization equations yo3yss = Y25Y33, Y11Y25 = Y12Y15, and y13y14 = y11Y34 appear lin-
early independent. But after substituting in the linear combinations in terms of the free variables,
we find that the sum of the first two equations is the third equation. Thus even when all system-
atic linear dependencies have been identified, linear dependencies may still exist. The complete
categorization of the systematic dependencies is still an open question.

3.1.6 Generalization to Non-Homogeneous Case

We have seen that relinearization can be used to solve a system of homogeneous quadratic equa-
tions. There seems to be a relatively simple extension to a system of non-homogeneous quadratic
equations. The results in Table 1 show when relinearization works based on the number of free
variables after the first relinearization. If we introduce a linear monomial into the original system
(making it non-homogeneous), one way we can ensure that relinearization still works is to add one
more original equation as well to keep the number of free variables the same after linearization.
Thus for non-homogeneous systems, if 1 < [ < n linear monomials appear *, we need exactly [ more
original equations than the table above indicates. In the homogeneous case we solve for the original
x; variables by taking the square root of y;;. Over a general field this has two square roots, but
in the non-homogeneous system we directly solve for the value of y; = z; for any linear monomials
that appear in the original system.

An alternate approach may not require more original equations in the non-homogeneous case.
Introducing linear monomials into the original system increases the number of linearized variables
as well. However we also get (”;1) more relinearization equations of the form z;z; = y;;. Note
that unlike the approach above, this alternate approach depends on how many linear monomials
appear in the original system. The more linear monomials that appear in the original system, the
more of the new relinearization equations we can use. These extra relinearization equations (which
do not appear to contain any systematic linear dependencies) may allow us to solve the original
system with the same number of original equations as the homogeneous case, and in any case will
likely allow us to use fewer than the n extra original equations that we would need to solve the
non-homogeneous system using only the homogeneous relinearization equations.

This case has not been thoroughly analyzed and this would be an excellent area for future work.

4Unlike the situation for quadratic monomials, every linear monomial need not appear because they do not affect
the number of relinearization equations.
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3.2 XL
3.2.1 Basic XL

We now consider the XTI method for solving generic systems of non-linear equations [5]. The basic
XL method can be used to solve a system of overdetermined equations of degree d. The idea
is to multiply each original equation by every possible monomial of degree less than or equal to
D — d, where D is the XL parameter. We will denote by z* the set of all monomials of degree k&
in the n variables zy through z, 1. Each of the original m equations in n variables is of the form
filxo,z2, ..y xn_1) = bj. We will refer to [; = fi(z1,z2,...,2n) —b; = 0, and [ will be the set of these

m equations. We will denote by z*[ the set of all equations multiplied by every monomial of degree
D—d

k and will refer to U 2¥1 as the XL system.
k=0
For example, if n = 3, 22 = {zoz1, T0T2, T172, T3, 72, 3} and 22l = {zoz1l1, TOT2l1, T1T21,
,’E%ll, x%ll, x%ll, (I,‘oxllg, :E()(IIQZQ, (I,‘lxglg, }
The algorithm consists of four steps [5]:

1. Multiply Choose an XL parameter D and compute z[,0 <i < D — d.

2. Linearize Linearize the system of all of the equations from step 1. Order the monomials so
that monomials in one variable (i.e. powers of a particular z;) are eliminated last.

3. Solve If Gaussian elimination yields an equation in monomials in one variable, we can use
Berlekamp’s algorithm [13] to solve the equation over the finite field GF(q).

4. Repeat Go back to step 2 and solve for a different variable until every original z; has been
found.
., zP). In this

Over “large” fields (¢ > D) there are D monomials in one variable (z;, z7, ..

D—d : D .
case there are R =m - Z (n +Z_ B 1) equations and 17" = Z (n —Hf B 1) monomials (including
i=0 ! i=0 !

the constant monomial) in the XL system. The goal of XL (step 3) is to get an equation in these
D monomials (and a constant). In general the XL system can have at most D — 1 free variables.
Let I be the number of linearly independent equations in the XL system. Clearly I < R, the total
number of equations, and I < T since the rows of the XL system are in a T' — 1-dimensional vector
space. These conditions imply I < min(R,T —1). T — 1 is the number of non-constant monomials
and (T'—1)—1 is the number of free variables after performing Gaussian elimination on this system.
Then for XL to succeed over a large field we need (T'— 1) — I < D — 1 which can be simplified to
1>T-D.

We now consider XI. when the field is “small” (¢ < D). Over any finite field GF(q) we have
2?9 = z and since our equations have monomials of degree > ¢, we can reduce some terms. When
working over small fields, we will always reduce exponents to the range 1,...¢ — 1. Since the
monomials in one variable are now x;, x?, e :I?Zq_l, we can solve the XL system if there are at most
q — 2 free variables, so the new condition on I becomes I > T — (¢ — 1). We will be concerned
with the analysis when ¢ = 2. In this case we need I > T — 1, and since T' — 1 is the number of

non-constant monomials, this implies that the XL system can have no free variables. Since z; = w?,
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no x; appears in a monomial to a power larger than 1. The number of equations over GF'(2) is

D—d D
n n
=m- E d th b f lals is T = E .
R=m - (z) an e number of monomials is 2 (z)

Now we explain how to order the monomials of the XL system in step 2 of the X1, algorithm.
Rearrange the columns of the XL system so that monomials that are multiples of z; come first (in
any order). Next put any remaining monomials that are multiples of 25 (in any order). Continue
in this way until all monomials have been ordered. The important property of this order is that
when placing monomials that are multiples of z;, none of the monomials are multiples of any of
the variables {z1, z2, ..., zj—1}. In particular, at the last step of the ordering, the only remaining
monomials will be powers of z,,.

For example, consider a system with three variables over a large field, with D = 4. The
monomials in the resulting XL system are

2 .2 .2 2 2 2 2 2 2 3,3 .3
{xla T2, X3, T1X2,X1X3,L2XL3, X, Loy L3, L1X2L3, L1XL2, L1 T3, ToX1, TL3, T3XL1, T3L2, T, L, 153}

To order these monomials for the XL algorithm, first choose any monomials containing x; in any
order:
2 2 2 2 2 3
{2122, 2123, 27, T1T2T3, TV T2, TV T3, THT1, 321, TY, T1 }

Next add monomials in zy:
{27151327 Tr1T3, J?%, T1T2X3, 27%272, $%ZE37 11332717 J?%:El, ZE?, T1,X2,T2T3, J?%, J?%:E& $§$27 J?%}
Finally add the monomials in z3:
{J?l.TQ, T1T3, ZE%, T1T2X3, $%$2, J?%.Tg? .’L‘%:Bh :E%fl?l, fEi’, T1,T2,T2T3, J?%, I%.T;)H .’L‘%:EQ’ ZE%, J?%, Ig, 5173}

When the condition on [ is satisfied (I > T — D for large fields or I > T — (¢ — 1) for small fields),
this ordering makes step 4 of the XL algorithm unnecessary. Since there are D (or ¢ — 1) variables
in z, but at most D —1 (or g — 2) free variables, at least one of the monomials in z,, is determined
by free variables. By our ordering, it can only depend on free variables corresponding to other
powers of z,. This gives us an equation in one variable which can be solved using Berlekamp’s
algorithm. We can then compute every monomial in the single variable z,, so the set of monomials
in the two variables z,_; and x,, now become monomials (with constants) in one variable. There
are more than D (or ¢ — 1) of these monomials, so again at least one of them is determined by
monomials only in the variables z,,_; and z,. We can write a new equation in one variable (since
% is determined) and solve with Berlekamp’s algorithm to determine the value of x,_1. Continuing
in this way, we can find the value of every variable. Thus when the condition on I is satisfied, there
is no need to repeat any of the algorithm with step 4 and step 3 is guaranteed to work.

If the condition on [ is not satisfied, XL may still work if we get lucky. It would probably be
possible to order the monomials (depending on the system) so that step 3 succeeds, but this has
not been investigated.

We also note that relinearization equations of degree D are equivalent to a subset of equations
from the XL system with parameter D. Thus XL is at least as powerful as relinearization with the
same D. In particular when D = d, XL reduces to linearization. For an outline of the proof, see

[5]-

17



3.2.2 Results and Complexity

In this section we summarize the empirical findings in [5]. We only consider systems where m > n.
The XL system contains R equations in 7' (linearized) variables. To find one solution to the original
system, the complexity of XL is essentially the complexity of solving a linear system in T variables
via Gaussian reduction. Thus step 2 of the algorithm requires about T“ operations, where w is the
exponent of Gaussian reduction. This exponent is at most 2.376 in theory °, but in practice the
fastest implementation of Strassen’s algorithm [16] requires about 7/647'°%27 operations.

As we will see, the time complexity of XL increases with D, so we would like to know how large
D needs to be in several interesting cases. The following estimations for D are based on empirical
evidence over a large field from [5]. When m = n, empirical evidence shows XL requires D = 2" to
succeed, so XL only works for very small n in this case.® If we add just one more equation so that
m =n+1, we only need D = n. When m = n + 2, we only require D ~ /n. Thus we see that the
complexity of X1, decreases rapidly when we add even a single equation and m = n.

3.2.3 Analysis Over Small Fields

We can estimate D in terms of m and n over small fields using the asymptotic analysis of X1, in

[7]. If we assume that D << n and that most of the R equations are linearly independent (we

will justify these important assumptions), we have T = (g) so the complexity of XL is about

7/ 64(g)log2 ", In this case we expect to succeed when R > T'. Taking only the largest term in each

(n—D+d)--(n—D+1)

D(D_1)—~(D_d+1)

for D, we find D ~ —7;. Since T' = (g) when D << n, the complexity in this case is about
m

sum (over small fields), we need m (" ) > (), so we need m >

d .
~ Ba- Solving

(n/gl/d)w- In particular if m = en? where 0 < € < 1/2, we need D ~ {ﬁ-|, and we expect XL to

be polynomial in n.

A separate analysis of XL over small fields was conducted in [8]. As with the results for large
fields, the results are largely empirical, but the authors of that paper were able to explain some
of the linear dependencies. All empirical results are over GF(2) and the systems are quadratic
(d=2).

When D = 3 empirical evidence showed that I = min(T, R) — a where « = 0, 1, or 2. Tt is
unclear why these small number of linear dependencies arise in some cases, but it may be related
to the number of solutions of the system.

When D = 4 empirical evidence suggests that D = min(T, R— (7;) —m). This implies that there
are always (’;) + m systematic linear dependencies. Since the system is quadratic, each original
equation [; is a linear combination of monomials of degree at most 2. Also D —d = 2, so we are
multiplying original equations by all monomials of degree < 2. The linear dependencies are best
demonstrated with an example. Suppose [; = z123 + 24 and [; = x122 + z477.

The following equations are all included in the XL system for D = 4:

LI

2. J?lfljgli

5This exponent can be obtained by the Coppersmith-Winograd algorithm, but only for extremely large matrices

(3]
SClearly the complexity estimation above does not apply in this case, but the idea is that in any case, the
complexity of XL depends in some way on D.
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3. zax7l;
4. 1;

5. zx3l;
6. z4l;

We see that (1) + (2) + (3) = ;(l;) = ;(l;) = (4) + (5) + (6). This relationship exists for
every distinct pair of original equations, for a total of (”;) linear dependencies. Similarly, we get m
more linear dependencies due to the relationship /;(/;) = [; since we are working over GF'(2). This
explains the empirically observed ( ) + m linear dependencies.

When D =5 we get all of the linear dependencies from the D = 4 case, but we get even more
dependencies. The new dependencies are of the form l;(I;)x, = 1j({;)z) and ;({;)z = l;zg. There
are n( 2) +mn such dependencies for a total of [( 1) + ( ) ( ) (’f) ], which matches the empirical
results for D = 5 obtained in [8].

Based on these dependency estimates, we can summarize the empirical results obtained in [8].

D—4

We expect that for ¢ =2, d =2, and 4 = 2d < D <5 = 3d — 1 there are [(7) + ()] - Z (?)
linear dependencies. It is possible that more dependencies arise for larger D, but it is rzlo‘(u) clear
what form these dependencies would have if they exist. This estimation of linear dependencies
extends naturally to the case when d > 2.

For d < D < 2d we do not expect any systematic dependencies (at least of the form described
above) because the dependency equations were derived from products of /; equations. When D < 2d,
equations involving products of [;’s are not in the XL system because a product of I;’s has degree

D—2d
> 2d but each XL equation has degree < 2d. For 2d < D < 2d+n we expect [(T) + (gn)] Z (n)

7
i=0
linear dependencies of the form described above. Conjecture A.3.1 in [7] summarizes these results:

Conjecture 3.2. For D € {d...2d — 1}, I = min(T, R) — € where € is small, for ezample, € < 5.

D-2d
For D € {2d...3d — 1}, I = min (T,R— (BEAIE Z <7Z>> — € where € is small, for
example, € < 5. =
This conjecture was confirmed with empirical evidence in [7]. One of the biggest questions
concerning this conjecture is the size of e. It is unclear if these small number of dependencies are
random or systematic. There may be more dependencies when d > 2, but it is not clear what these
dependencies would look like. Regardless of extra dependencies, it appears that the dependencies
described for d = 2 also apply when d > 2. This relatively small number of linear dependencies
justifies the assumptioni in Section 3.2.2 that XL will succeed when R > T. In practice, it is
unlikely that we can choose m so that R =~ T’; in most cases to get R > T, we will have R >> T
so the linear dependencies do not affect the analysis.

3.24 FXL

The FXL algorithm is designed to capitalize on how rapidly D falls as m — n increases, even by one
or two. FXL involves guessing the value of a few x; variables, and then solving the system in the
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the same number of equations but with the smaller number of variables. For example, we would
like for m —n > 2 so that D = y/n. If the original system has m —n = 1, we can guess the value
of one variable and then solve the resulting system of m equations in n — 1 variables.

Given a system with m —n = 1 we need D = n, so the entire algorithm requires about
7/64 (30, (7)Y = 2" operations. If instead we use the FXL algorithm and guess the val-

13
ue of one variable over GF(q), we can solve the resulting system in n — 1 variables in about

7/64q <Zl:\/ﬁ1 (’Z))w ~ q(\%)w operations.

Thus FXL offers large savings when adding a few equations to the original system drastically
reduces the complexity (the XL parameter D). However when the field is small, equations of the
form x? = z; have degree < D, and so could be included in the XL system. In fact, these n
equations are included in the XL system implicitly when we reduce all exponents to the range
1,2,...¢ — 1. For example, over GF(2) the monomial z9xy = ;79 because 27 = x1. Thus any
system that has m = n or m = n + 1 requires only D = y/n due to these implicit equations. This
result is confirmed by empirical evidence from [8]: XL can solve a system with n = m = 10 and
D = 4 (rather than D = 210 as over a large field) and n = m = 20 can be solved using D = 5. Note
this justifies our assumption in Section 3.2.3 that D << n, so our analysis is valid over large fields
when m > n + 2 and over small fields when m > n.

Thus if we guess r variables using FXL, the complexity is multiplied by 2" but D does not
get smaller, so FXL is not as interesting over small fields. In any case, we will see that the XI.’
algorithm uses the same idea to obtain much better results.

325 XL

Rather than guessing variables before we start XL, which results in having to repeat the process
several times, XL’ allows us to perform XL once and do an exhaustive search over a small number
of variables at the end. The primary advantage is that XL’ allows us to use XL with a (slightly)
smaller D.

Given a R x T XL system, we expect XL to succeed when I > T — min(D,q — 1). The idea
of basic XL in step 4 is to get an equation in one original variable. With XL’, our goal is to get
at least r equations in r original variables. When we have at least r equations, we expect this
system to have one solution. We then solve this smaller system by exhaustive search (there are ¢"
possibilities to check, so over GF'(2) we can allow r up to about 40 [8]).

D
Let ¢ = Z (T) be the number of monomials in 7 variables of degree < D (including a constant,
i
i=0

since T also includes the constant). We can reorder the columns of the XL system so that the ¢
linearized variables in r original variables occur last. When T — I < ¢, we can reduce the system
to equations in the r XL’ variables. 7 If we further require that T'— I < ¢ — r we can reduce the
XL system to a system of at least r equations in the ¢ monomials in r variables (possibly after
reordering the rows).

For example, suppose the XL system (mod11) with n =4 and D =3 is

"Keep in mind that T = number of monomials + 1. When we have equations in ¢ variables, only ¢ — 1 of those
are free. Thus we actually need the number of free variables to be strictly less than ¢, because if all of the ¢ variables
were free, there would be no equations in only those variables.
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19 4 6 6 6 0 4 6 7 8 2 0
5 3 6 71 0 2 4 8 2 6 4 0
021 99 6 3 0 4 10 9 3 4
4 3 4 02 4 3 2 0 4 1 9 9
1 210 48 4 0 2 10 2 10 0 4
8 4 0 2 2 4 7 10 5 2 & 5 3
104 7 03 9 10 10 8 3 3 10 9
T3 7T 701 4 2 4 7 1 8 4
9 6 8 6 6 3 2 10 & 10 3 o 1
021 79 10 5 7 8& 5 10 4 6
9 5 0 37 1 6 10 10 3 &5 10 2

If this were the final XL system, it is clear that we would not succeed since R < T. However,
we can succeed with XL’ with » = 3. We arbitrarily choose z1, z9, and z3 as the variables that
will be found by exhaustive search. The next step is to reorder the columns so that the ¢ —1 =7
monomials in these three variables occur last. We also put y4 immediately before the ¢ variables

—_
OOU!OOQD>i

—
<o

—_ R =W

Y1
Y2
Y3
Ya
Y12
Y13
Y14
Y23
Y24
Y34
Y123
Y124
Y134
Y234

so that it can be found immediately after exhausting to find y1, y2, and ys.

6 0 6 7 2 0 1 1 9 4 6 6 4
7T 2 8 2 4 0 9 5 3 6 1 0 4
9 3 4 10 3 4 0 0 2 1 9 6 O
03 0 4 9 910 4 3 4 2 4 2
4 0 10 2 0 4 5 1 2 10 8 4 2
2 7 5 2 5 5 8 8 4 0 2 4 10
0 10 8 3 10 9 10 10 4 7 3 9 10
7T 4 4 7 8 4 3 7 3 7 0 1 2
6 2 8 10 5 1 1 9 6 & 6 3 10
7T 5 8 5 4 6 4 0 2 1 9 10 7
3 6 10 3 102 1 9 5 0 7 1 10

Next we perform Gaussian elimination until we get ¢ — T + I equations in ¢ variables.
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_y14_
(6 0 6 7201 19 466 4 8]/ 9 [ 10 ]
0910 8205926678 7 Y4 5
0010 6 3 46 1 8 49 26 2 Y124 10
00 0 498866 48%56 8 Y134 10
00 0 04934596705 Y34 10
00 0 00O5 3 4861771 Yol | 7
00 0 00028476129 u 3
00 000004197785 Y2 9
00 0 00O0O0OTE6 8310 10 Ya 8
00 0 00009 63706 2 Y12 1
00 0 00O0O0T79 046 4 8 Y13 2
- | ves L

| Y123 |

Now we are interested in solving the smaller system

S
419778 5 Y2 9
7683 10 10 I I I
9 6 370 6 2 Y1z | =14
79046 4 8 Y13 2
Y23
| Y123 |

We solve this system by exhausting the values of the r original variables, then computing the
corresponding values for each of the ¢ linearized variables. There are two solutions to the smaller
system: {z1 =2,29 = 3,23 =6} and {z; = 3,29 = 8,23 = 6}.

From the reduced XL system, we have 2z4 +8x1 +4xo+ 723+ 62122 + 2123 + 220223 + 9212023 =
3 mod 11. The first solution gives x4 = 10, which is a solution to the original non-linear system.
The second solution gives x4 = 6, which is not a solution to the original non-linear system. Thus
the only solution is {z1 = 3,29 = 8,23 = 6,24 = 10}.

We expect the complexity of XL” to be about the same as XL with the same D; the power of
XL’ is that we can solve systems with a smaller D than with XL. For example if a certain system
require D = 6 with XL, but it can be solved with D = 5 with XL’ by guessing r variables, we
expect that (g)w > (g)w +q".

4 Toyocrypt

4.1 Toyocrypt

Toyocrypt-HR1 (HR1) is a pseudo-random sequence generator based on the idea of a non-linear
function applied to the state of a Galois LFSR. We will use the notation introduced in Section 2
for the LFSR. HR1 uses a 128-bit Galois LFSR with a special kind of non-linear function called a
bent function [10]. The 128-bit feedback polynomial is also known as the fixed key and is always
chosen to be primitive. The HR1 key also has a 128-bit vector L(0) # 0, known as the stream
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key.® Although the key size appears to be 256 bits, the requirement that the feedback function be
primitive reduces the key size to 248 bits because there are only 2'2° primitive polynomials of degree
128 in GF'(2)[z] [9]. Note that when the feedback function is primitive, the LFSR will achieve its
maximum period of 2'28 — 1 [11]. This means that a given internal state will occur exactly once
every 21?8 — 1 clocks, so for any imaginable application we would not be able to exploit repetition
in the pseudo-random key stream (before or after the non-linear function is applied).

Although the specification of HR1 does allow the feedback polynomial (fixed key) to change,
the cost of finding a new primitive polynomial is prohibitive in a software implementation and most
hardware implementations use a constant feedback polynomial for increased speed. In any event
we assume for the purposes of cryptanalysis that the fixed key is known. If it is not published for
a specific implementation, it may be obtained by looking at a software implementation or through
reverse-engineering a hardware implementation [9].

Knowing the fixed key further reduces the effective key size from 248 bits to 128 bits (the length
of the stream key), but this does not in itself lead to an attack on HR1 because 128 bits is still to
large too brute force at this time.

4.1.1 Non-linear filter

As shown in the example in Section 2.3, it is not sufficient to use a LFSR as a keystream generator
for cryptographic purposes because the key can be easily recovered [18, p. 46]. Rather than using
a single state bit as the keystream bit (a linear function), HR1 generates keystream bits using a
non-linear function of the LFSR state. HR1 uses a non-linear function

f:GF(2)?" = GF(2)

The pseudo-random keystream bits are generated by composing the non-linear function f with the
state L. To prevent an attack when the initial stream key is not sufficiently pseudo-random, the
first keybit is generated after the LFSR has been clocked 256 times [17], that is

ky = f(L(t+256)), t>0 (1)

We will always refer to the initial fill of the LFSR when ¢ = 0 because we can recover the t = 0
state given the state at ¢ = 256 as shown in Section 2.3. Note that we may not know when the
keystream began, but we may choose an arbitrary point to call ¢ = 0, and it will make no difference
in the analysis.

HR1 designers chose f to be resistant against all known attacks. In particular, the Toyocrypt
non-linear function is balanced, has high degree, and has optimal resistance to correlation attacks.
The general form of the Toyocrypt nonlinear function is

62
F(@0, @1, ., B127) = T127 + Y | TilTa; + T10T23T32T 42+
i=0
62
T1T2X9T12018T20L23L25T26 2833138 L41L42T51L53L59 + H Ty
i=0

8Recall that since the leading coefficient must be 1, we drop it from the vector form of the polynomial, resulting
in 128 coefficients that can be varied to form a fixed key. L(0) # 0 avoids the degenerate case for the LFSR.
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where {ag, a1, ..., a2} ~ {63,64,...,125}, that is, the «;’s are a permutation of the second set.
As we will see, adding a non-linear function complicates the process of recovering the initial
state of the LFSR, but inversion is still possible if the non-linear function is not carefully chosen.
The encryption algorithm (Toyocrypt-HS1) works by computing the xor of the keystream (the
sequence of output bits of the non-linear function) and the plaintext.

5 Attack on Toyocrypt

We will explain the attack for a generalization of Toyocrypt which is relevant to many stream
ciphers. We will assume that the stream cipher uses an n bit LFSR combined with a general
non-linear filter, not necessarily of the form above. The attack works in two cases:

S1 when the non-linear filter has a low algebraic degree d

S2 when the non-linear filter can be approximated with good probability (1 — €) by a function
g that has low algebraic degree d

Toyocrypt falls into S2 because the Toyocrypt non-linear function has high algebraic degree,
but there are only two high degree terms. If we drop the degree 63 term and the degree 17 term,
we are left with a degree 4 approximation. This approximation is correct unless exactly one of
the high-degree terms is non-zero. Since the degree 17 term is fixed in the Toyocrypt non-linear
function, the probability that all 17 variables are set is 27'7. Similarly, the probability that the
degree 63 term will affect the output of the non-linear function is 2753, If both high degree terms
are non-zero, they cancel each other and the approximation is still correct. The Toyocrypt non-
linear function has the interesting property that the degree 63 term contains all of the variables in
the degree 17 term. Any time the degree 63 term is non-zero, the degree 17 term is also non-zero,
and the two high degree terms cancel. Thus the approximation is wrong only when all 17 variables
in the degree 17 term are set, but the other 46 variables in the degree 63 term are not all set. Thus
the degree four approximation is correct with probability (1 — 2717 +2763) ~ (1 —2717). It is also
worth considering a degree 2 or degree 17 approximation, but the feasibility of this attack using
those approximations is not known.

5.1 Obtaining the Known Keystream

As in Section 2.3, the attack on Toyocrypt is a known-plaintext attack. In this section we explore
the plausibility of the assumptions of this attack. The attack will require a large number of known
keystream bits. It is sufficient to know plaintext bits since we may simply xor the known plaintext
with the ciphertext to obtain the corresponding keystream bit. One reason an attacker may know
plaintext bits is because of constant/predictable header data on a message. For the purposes of
the attack described below, it is not necessary for the known keystream bits to be consecutive, so
we may be able to exploit the fact that the message is written with Latin characters [7]. This is
due to the fact that common Latin characters (anything you can type with a standard keyboard) is
represented by ASCII 0 to 127, meaning that the most significant bit in a character byte will likely
be 0. This allows us to determine every 8" plaintext bit. A final scenario where we might be able
to obtain enough information to launch an attack is if the message is encrypted with parity and
we know the scheme being used [7]. This will be explained more when we describe how to create
equations from the known keystream bits in Section 5.2.

24



5.2 Attack Using XL

For extreme simplicity, we will work with a n = 4 example using the non-linear function
f(zo,z1,m2,73) = T3 + ToT1 + T172 + ToT1T2T3
which we will approximate by
9(%0, 71, T2, T3) = T3 + ToT1 + T1T2

We assume that we somehow determined m keybits and that for simplicity, they are consecutive.
To simplify notation we will ignore the Toyocrypt requirement to clock the LFSR before generating
keybits. We index the known keybits ki, ko, ...ky,. We assume that we do not know any of the
initial bits of the LFSR. It makes no difference if we start the LFSR from its initial state, or after
it has been clocked 2n times (per the Toyocrypt algorithm). If we label the initial LFSR bits z,
Z1, ..., Tn—1, We can compute the algebraic composition of the LFSR bits at time ¢ in terms of the
unknown bits at time ¢t = 0, in the same way as Section 2.3.

For the purposes of this example, suppose we know k1 = 0 and we can determine based on the
known fixed key 0011

Lo(1) = L3(0)
Ly (1) = Lo(0) + L3(0)
Ly(1) = L1(0)

(1) (0)

Using the same method as the example in Section 2.3, ky = f(L(t)) can be found by using the
algebraic representations of L (¢). To simplify notation, we will write L;(0) = ;.

0=k = f(LQ)) = g(L(1)) = g(Lo(1), L1(1), L2(1), L3(1)) = g(z3, 20 + 23,21, 72) = @2 +
:B3(:L‘0 + 273) + (:L‘o + 173)]71 = T9 + X3+ Tox3 + Tox1 + T173

This equation becomes one of the original equations that will form the XL system of m original
equations in n original variables. We showed in Section 3.2.3 how to determine m given D, the
XL parameter. Since each known keybit leads to one original equation, we need m known keybits
to solve the XL system. When we can solve this system using XL (or XL’), we have successfully
found the initial fill of the LFSR. This allows us to generate the original keystream, which we can
xor with the known ciphertext to recover the plaintext.

One serious problem with this method is that we are using an approximation to the non-linear
function. When the original equation is incorrect, it will generate even more incorrect equations
in the XL system, so we expect the overdetermined system will be inconsistent. In this case, we
select m new keybits (or use a better approximation) and try again.

We can also now see how to use a known linear parity function to compute known keybits.
Suppose we know the message is encoded with even parity (before encryption), so that the last bit
in every plaintext byte is a parity bit that ensures an even number of ones in the byte. Let ¢; be
the ciphertext bits and p; be the plaintext bits. We know the following equations hold:
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co = ko +po

ca =k +p
cy = ka + po
c3 = ks +ps3
cqy = kg +py
cs = ks +ps
c6 = ke + ps

cr = k7 +po +p1+p2 +p3+ps+ps+ pe

If we xor these equations together, we find

cot+cp+cectcez+ceqg+ce5+ce+cr
=ko + ki + ko + ks + kg + ks + kg + kr
=9(L(0)) + g(L(1)) + g(L(2)) + g(L(3)) + g(L(4)) + g(L(5)) + g(L(6)) + g(L(7))

The ciphertext bits are assumed to be known and the sum of g(L(t)) has the same degree as
each individual g(L(t)). Thus the equation is of the same form as described above when we knew
the value of a key bit explicitly.

5.3 Analysis of Toyocrypt Attack

The approximation ¢ is used to determine each of the m original equations of the XL system, and
we assume it fails with probability e. Since the states of the LE'SR that determine the equations are
linearly related, we probably cannot treat each equation as an independent event so the probability
that the original system is correct is bounded below by (1 —€)™. If we repeat the attack (1 —e)™™
times with different equations, we expect to succeed. In this case the complexity of XL is about
(I—¢)~™. 614 . (ZZQO (’Z))log? 7. If we use fewer original equations, our chance of success with each
attempt is improved, but we must use a higher D so that each attempt is more expensive. We
explore this tradeoff below.

5.3.1 XL Analysis
Per Conjecture 3.2 when D € {d...2d — 1} we expect the XL system to have full rank when R

D n
exceeds T by a small amount. Thus we need R > T 9, which implies m > ZZ‘)_%((Z)). When D €

i=0 \;
D-2d
{2d...3d—1}, weneed I = R—[(7)+ ()] Z (?) > T—1. Rearranging, we need m to be a solution
i=0

9This condition actually gives us two more equations than we need since the number of monomials is T — 1. Thus
we only need I =T — 1, but if we require R > T, there can be two linear dependencies among the R equations and
we can still succeed. In practice, we will choose m to be larger by a few than this analysis predicts and this should
give us enough linearly independent equations.
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fo (—;Dizéd (?)) 24 (:32;1 (TZ) - ;Dzzéd (?)) m+ (1 —i (?)) > 0. The (+) solution

of the quadratic corresponds to the smaller value of m because the coefficient of m? is negative.
If m is smaller than the (+) solution, we do not have enough linearly independent equations for
XL to succeed. When m is larger than the (—) solution, linear dependencies accumulate to make
I < T —1. Thus we need m between the (+) and (—) solutions for XL to succeed. We will be
interested in the smaller of these two values (the (4) solution) since for a fixed D, we want to make
m as small as possible. Otherwise we are decreasing our chance of success without any reduction
in complexity (in fact the complexity increases when D is fixed and we increase m due to the term
(1—e)m).

The table below uses these formulas to find the smallest m for which XL succeeds on the
Toyocrypt system for several values of D (recall d = 4, n = 128). The Data row in the table
corresponds to the number of original equations needed for XL to succeed with a given D. The
Memory row is the size of the final XL system represented as a bit matrix. We need about
RT = T? bits to store the XL system. The complexity calculation is based on the result for
Strassen’s algorithm [16] in Section 3.2.2, modified to include the approximation term. Thus the
complexity for the Toyocrypt attack is (1 —2717)~™. T . (32 ())log2 7.

o
D 4 5 6 7 8 9 10 11

Data 223 221 219 218 217 216 215 214
Memory 246 256 265 273 281 288 296 21[]2
Complexity 2183 299 295 2102 2112 2122 2131 2141

Table 2: Conjectured Complexity of Toyocrypt Attack Using XL

This table is essentially the same as the table in Section 6 of [7], but it is interesting for several
reasons. First, this table was produced using a different method than the table in [7]. In that paper,
the authors used a fixed ratio and chose m so that R > 1.17. Our approach relies on Conjecture
3.2, and so we obtain a tighter bound. This bound is noticeable in the complexity results for
D =4,5,6. Our complexity bounds are lower in these three cases. It seems that for small D, the
fixed ratio overestimates the number of original equations needed (this is exactly what the authors
of [7] were relying on when they chose a fixed ratio). The results in this table indicate the best
attack on Toyocrypt using the method described above requires 84 KB of known keystream bits,
3 EB of memory, and has a complexity of 2°°, which is better than brute force. Alternatively, we
can plot the complexity of the attack for several different values of D.
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Figure 2: Conjectured Complexity of XL for D=4..10

5.3.2 XL’ Analysis

Now we analyze the Toyocrypt attack using XL’, which to our knowledge has not been done
before. As in Section 3.2.5, let < 40 be the number of variables guessed in the XL’ attack and
¢ = Z?: 0 (:) be the number of monomials of degree < D in r variables. Since we now need
T—¢+r

1= 1

T—12>¢—r, wehave for D € {d...2d — 1} that m >

D—2d
the constant term in the quadratic changes, so we need m to be a solution of (—5 Z ())m2
i
i=0
D—d | D=2 D /. Do,
+ (ZO (z) —3 ZO (Z>)m + (ZO (z) —r— 2 <z>) > 0 (note that the 1 from the previous
1= 1= 1= 1=
equation is now part of ¢.) We assume that r = 40 because this will minimize the number of
equations needed. If any of the complexities falls below 240 we would need to reconsider this choice,
because at that point the exhaustive search would be more costly than the Gaussian reduction. As
the table below shows, the complexity is much higher in all cases so we are justified in using r = 40.
Based on these equations, we can find the smallest value of m such that XL’ succeeds for several
values of D.



D 4 5 6 7 8 9 10 11

Data 223 221 219 218 217 216 215 214
246 256 265 273 281 288 296 2102
2182 299 295 2102 2112 2122 2131 2141

Memory

Complexity

Table 3: Conjectured Complexity of Toyocrypt Attack Using X1

This table is identical to the X table (except for the complexity when D = 4.) The number of
required equations is in fact smaller for XL’ than XL for every value of D in the table, but not by
any appreciable amount. If we view the memory requirement as 7 rather than RT, the memory
requirement does not change since T' depends only on D. Corresponding to the slightly smaller
values of m, the complexity is better in each case, but not appreciably.

These results are very disappointing in light of the apparent improvement of XL’ over XL in
some cases. There is a subtle difference between the previous analysis of XL’ and this analysis.
Previously, we assumed we had a fixed number of known equations. This meant D was bounded
below based on the number of known equations (i.e. we could not reduce D just by adding more
original equations). Thus XT.” allowed us to decrease D by a small amount, which drastically reduces
the complexity of the attack on a particular system. With the Toyocrypt attack, we assume that
there are arbitrarily many key bits available. Given D, XL’ allows us to use a smaller number of
original equations. Unfortunately, this does not decrease the complexity of the attack by nearly as
much as decreasing D. One reason XL’ performs worse than expected is that although ¢ = (%))
is quite large, it is still small compared to the total number of monomials, T = (112)8). Thus the

savings are relatively small for the Toyocrypt attack.

5.3.3 Other Attacks on Toyocrypt

There are other attacks on Toyocrypt. In particular, the attack from [14] is sometimes faster than
the attack described above, but it requires 32 consecutive known keybits, whereas our attack has
no adjacency requirements. An even better attack given in [6] breaks Toyocrypt in 24 CPU clocks,
but we did not investigate this attack.

5.4 When to use XL

Given our analysis, we now consider the cases where XL is useful. As shown in Table 2, if some of the
original equations may be incorrect, XL provides a tradeoff between low probability of success and
high complexity. In particular, a larger D allows us to use fewer original equations which increases
the probability of success for each attack, but increases the cost of each attack. Thus even if we
have enough equations to linearize directly without XL, the presence of the approximation error
makes XL useful for reducing the overall complexity.

For the Toyocrypt attack, we assume we have access to a large number of keybits. If this is not
the case, our choice of D may be bounded below by the number of original equations. Since the
number of original equations increases as D decreases, linearization may not succeed (if we do not
have sufficient equations to allow D = d), but XL can still succeed. If we are in the case of S1
above, we would have access to a large number of equations that are known to be correct (since we
do not use a non-linear approximation). In this case, we can categorically conclude that we should
use linearization rather than XL. We will not have to repeat the attack since the equations are
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correct, and the complexity of XL (when we do not have to repeat the attack) depends on D but
not m. Thus we should use enough original equations to allow us to achieve the smallest possible

D, which is when D = d. This requires about m = (ngl) + n original equations.

6 Toycrypt

Due to the high complexity of the Toyocrypt attack, we created a toy cipher analogous to Toyocrypt
called Toycrypt. We implemented Toycrypt and the attack using C and the M4RI library for matrix
algebra over GF(2) [1].

6.1 Toycrypt Details

Toycrypt uses an n-bit Galois shift register (n > 10), which is clocked 2n times before keybits are
generated, the same as Toyocrypt. The non-linear function has the same form as the Toyocrypt
non-linear filter and has degree v:

n/2—1 s+y—1
f(o, w1, s 1) = Tp_1 + Z TiTa;, + T|10n/128|7T23n/128| T [32n/128] T |42n/128] T H T
i=0 i=s

where o, is the ith a; that is < n and the ordering is the same as the «a;’s defined for Toyocrypt.

In the Toyocrypt filter function, v = 63, s = 0, and n = 128. There is also an additional degree
17 term in Toyocrypt. The spirit of the Toycrypt non-linear filter is that there is a degree v term
that gets dropped in the approximation, and we can adjust v to get more or fewer approximation
errors. The additional parameter s in the Toycrypt function allows us to observe any changes
resulting from shifting the highest degree term.

Otherwise, Toycrypt works the same as Toyocrypt, and the attack proceeds in the same way,
using the approximation

n/2—1
9(20, 71, o, Tp1) = Tp1 + Z TiTa;, + T|10n/128] T 23n/128|T |32n/128) T |42n /128
i=0

We were able to break Toycrypt when 10 < n < 24. We could have broken Toycrypt for slightly
larger n, but due to the amount of time needed, we did not. For n in this range, Figure 2 shows
that the minimum complexity is achieved when D = 4, which is normal linearization. In order to
study XL, we used D = 5 instead. Although this does not result in optimal complexity, it is still
good enough and it allows us to observe XL in action.

6.2 Performance and Results

The figure below shows the time it took to break m-bit Toycrypt on a logarithmic scale. As the
graph indicates, it appears that XL is fully exponential for the cases we observed.
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Figure 3: Runtime for Toycrypt Implementation

We observed some interesting and unexpected behavior with our implementation. Although
the XL analysis over GF(2) predicts that we need I = T — 1, we were able to break Toycrypt
when I < T — 1 and even when R < T'. Since the implementation generates the keystream along
with the equations, we are able to detect when approximation errors occur. We expect that when
approximation errors occur, the XL system will be inconsistent or at the very least the solution
will be incorrect. However, we observed that even when approximation errors occurred, we were
still able to solve the XL system correctly. This seemed to depend upon which high-degree term
was used. We observed different behavior for different values of s.

For all of these examples, we used D = 5 as previously noted, n = 16, and v = 8. We ran 20
trials for different values of m using a single fixed key and different stream keys. We chose our
known key bits consecutively for each trial, but each trial used a different set of known key bits.
Recall that for D = 5, we do not expect any linear dependencies. We first tried m = 446 and
s = 0. This leads to T" = 6885 and R = 7582, so we expect XL to succeed. However, after Gaussian
elimination the rank of the XL system (I) was only 6494, which means we do not expect to be able
to solve the system. Yet XL succeeded in isolating all of the linear variables, and so the attack
worked even though I < T — 1. Of the 20 trials, 18 had errors but none of these trials led to an
inconsistent system and the correct solution was obtained in every case.

Next we tried decreasing m further to 379. Now R = 6443 < T, so again we do not expect to
succeed. After Gaussian elimination we found that I = 5623, so the linearized XL system was even
more underdetermined. Again, all 20 trials resulted in correct answers, even though 14 trials had
approximation errors.

Next we tried increasing m to 491. This gives R = 8374 > T', so we expect XL to succeed. For
this value of m, we found that systems without approximation errors had full rank (I = 6884) and
were consistent. However, systems that had incorrect original equations had rank I = 6885 = T,
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and were inconsistent. This is exactly the behavior we predicted, but we had to have a very large
m to achieve it.

For the next set of trials, we changed to s = 6 and repeated some of the experiments above.
When m = 446, we found that unlike for s = 0, every system with errors was inconsistent (and
had rank I = 6495) while every system without approximation errors had rank I = 6494 and found
the correct solution. When m = 379, again our results were different from the s = 0 trials. Every
system with approximation errors had rank I = 5264 and were inconsistent, while systems without
errors had rank I = 5263 and found the correct solution.

It is strange that for a fixed m, every consistent system had the same rank. It is also surprising
that there were so many linear dependencies where we predicted none. As to how we could find a
solution when I < T — 1, the results seem to indicate that the XI. system has unexpected block
structure. We were able to confirm this for an n = 6 XL system. Even though there were several
free variables after Gaussian reduction, most of the variables (and all of the variables corresponding
to linear monomials) did not depend on these free variables. While this explains why we were able
to solve the system in these cases, it is not clear why this unexpected block structure arises.

There are still more questions about these results. It is unclear how systems with incorrect
original equations are able to lead to the correct solution, since we expected such systems to be
incorrect or inconsistent. We also note that while the solution depends only on the values of the
linear variables, all of the non-linear terms that could be determined (i.e. that did not depend on
free variables) were also correct when systems with errors led to correct final solutions.

We obtained similar results for several different values of n, m, s, and . Perhaps one of the
most surprising results was how the consistency of the XL system depended on s, which does not
play a role in the XL equations at all, since that term is dropped in the approximation.

Much more analysis is needed to determine the exact cause of this behavior. Of particular
interest is the nature of the block structure in the XL system. All of the empirical results from this
section need to be more closely analyzed; this would be an excellent topic for future work.

7 Conclusion

In this paper we first studied the linearization and relinearization techniques of Kipnis and Shamir
and determined some linear dependencies among the relinearization equations. These dependencies
reduce the efficiency of relinearization, but the technique is useful for understanding the basic
approach taken in more sophisticated algorithms.

Next we studied XL, along with two variations. XL seems to be fully exponential unless the
number of original equations is m > en?. We analyzed XL over both large and small fields and
noticed different behavior due to equations of the form z! = z;. Although XL’ appears to offer an
improvement over XL, it was not useful in reducing the complexity of the Toy(o)crypt attack.

We introduced Toyocrypt, a stream cipher that was resistant to all known attacks at the time
of its design [7]. We described an attack that reduced the problem of recovering the stream key to
solving a system of non-linear equations. The attack by Courtois exploits the small number of high-
degree terms in the non-linear filter. The best attack we described required 2% CPU clocks and
required 2%° bits of memory. We offered additional analysis using XL’ and found no improvement
in either time or space complexity.

Finally we described our implementation, which is the first that we are aware of. Our trials
confirmed that the attack is fully exponential but led to several interesting and unexplained anoma-
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lies. It appears that the XL system contains a previously undocumented block structure, which
allows us to succeed even when R < T'. Even more interesting is that we can succeed in cases where
approximation errors occur. This seems to depend on the specific non-linear function being used.
Due to the large complexity of the attack on the full Toyocrypt system, we were unable to test the
actual Toyocrypt non-linear function. The implementation results leave many open questions that
would be an excellent topic for future work.
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A Degree Six Relinearization

The following randomly chosen homogeneous system in five variables can be solved using degree
four relinearization:

1
122
T1x3
124
(2 3 10 1 4 3 0 9 1 10 6 9 8 6 37 | zizs (9]
6 8 8 109 0o 3 9 1 0 3 7 9 9 8 73 8
05 2 7 3 7 7 0 2 6 10 10 0 6 7 ToT3 0
6 1 6 5 6 10 9 0 10 6 2 3 9 2 9 Tory | = | 1
3 4 3 6 2 10 104 1 1 1 0 09 3 ToTs 7
8§ 8 7 0 2 2 5 3 7 10 6 6 5 4 2 73 4
|19 1 7 1 5 2 8 7 3 8 9 91 7] | z324 L 8 ]
L3L5
3
T4T5
w3 ]
One solution to this system is
2 =5
2711132:9
$1$3:5
124 =06
(II1£E5:10
T3=3
1521,‘3:9
ToTy = 2
372(1)5:7
r3=5
T3x4 = 6
1,‘31'5:10
73 =5
£E4(II5:1
2=9

which gives 1 = £4 mod 11, 9 = £5 mod 11, z3 = +4 mod 11, 4 = £4 mod 11, and z5 =
+3 mod 11. The solutions to the non-linear system are {z; =4, 9 =5, 23 =4, 24 =7, 25 = 8}
and {x1 =7, 29 =6, 23 =7, z4 = 4, x5 = 3}.

The system requires seven equations to solve as predicted in Table 1. The system above can
also be solved with degree six relinearization, so at least in this case, degree six relinearization is
at least as powerful as degree four relinearization.

If we remove the last equation from the system, we are unable to solve it with degree four
relinearization. However, we can still solve the smaller system with degree six relinearization. This
shows that degree six relinearization is more powerful than degree four relinearization in some cases.
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B Random Linear Dependencies

We can gain some insight into how often “random” linear dependencies occur by using the matrix
from Appendix A and changing the right hand side to

(which corresponds to the same solution above, but with zo = 1).

Since the system has the same matrix, we expect to have the same number of systematic
dependencies (even systematic dependencies that have not been classified). However, neither degree
four nor degree six relinearization can solve the system with seven equations! This means there are
“random” dependencies with the new right hand side vector that did not occur with the system in
Appendix A.
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