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Abstract

Flux Balance Analysis (FBA) is a widely used computational model for studying
the metabolic pathways of cells and the role individual metabolites and reactions play
in maintaining cell function. However, the successes of FBA have been limited by
faulty biological assumptions and computational imperfections. We introduce Robust
Analysis of Metabolic Pathways (RAMP) to provide a more theoretically sound and
computationally accurate model of cellular metabolism. RAMP overcomes the faulty
assumptions of traditional FBA by allowing deviation from steady-state and accounting
for variability across a cellular culture. Computationally, RAMP more successfully
predicts the lethality of gene knockouts and reduces degeneracy in optimal flux values.
Analytical results establish the stability of RAMP under perturbations in modeling
parameters. The inclusion of new modeling parameters in RAMP opens the possibility
of modeling different cellular cultures in a wider range of conditions, including non-
optimized cultures. We conclude that RAMP is an improvement over traditional FBA
and deserves further study.
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1 Introduction

Every cell is composed of three main networks: the gene-regulatory network, the protein-
interaction network, and the metabolic network. The metabolic network consists of a series
of chemical reactions that convert nutrients into products used in cellular functions. The
chemicals involved in these reactions are called metabolites, and the net rate of a metabolic
reaction is called the reaction flux. The reactions and metabolites can be experimentally
determined by genome sequencing, but it is difficult to obtain empirical information about
the rate and necessity of each reaction.

Flux Balance Analysis (FBA) is a mathematical model of cellular metabolism that is
capable of computationally inferring information about reaction rates and predicting cel-
lular responses to environmental changes and mutations. Traditionally, FBA makes these
inferences on the basis of three modeling assumptions. First, the model asserts that a cell’s
metabolism exists in steady-state, meaning the concentration of each metabolite remains
constant. Second, the model imposes environmental bounds on each reaction flux. Finally,
the model assumes that cells achieve some biological objective. The most commonly used
objective is the optimization of growth rate, while other objectives include the maximization
of ATP production and minimization of energy expenditure.

Under these three modeling assumptions, traditional FBA analyzes metabolism through
the lens of a linear optimization problem. The model has been used in various applications,
such as predicting the essentialness of genes and computing possible values for each reaction
rate. Fields making use of FBA range from metabolic engineering to drug development.
For instance, understanding how to increase or eliminate gene expression can be useful in
strain engineering, which is used extensively in the development of pharmaceuticals, fuels,
and specialty chemicals.

However, the successes of FBA have been limited by faulty biological assumptions and
computational imperfections. The FBA model optimizes cellular growth rate through the
use of a pseudo chemical reaction that represents the conversion of certain metabolites in
the correct proportions into biomass. The metabolites in this reaction have experimentally-
derived, non-integer coefficients that are averages calculated over the entire culture. In-
dividual cells need not behave according to these averages; in fact, experimental evidence
suggests significant deviation from these mean values [?]. Thus, traditional FBA fails to
account for variation across cellular cultures. Additionally, the steady-state assumption
is biochemically inaccurate. Individual cells typically exist near but not at steady-state,
so the steady-state assumption represents an oversimplification of the biological reality at
hand. On the computational level, FBA yields many false positives in predicting lethal gene
knockouts and suffers from degeneracy in optimal flux values.

We introduce a new approach to metabolic modeling, Robust Analysis of Metabolic
Pathways (RAMP), to correct these two flaws. RAMP allows variation in the growth coeffi-
cients across a culture and permits deviation from steady-state, subject to some maximum
bound. The traditional requirement that all cells be at steady-state is then reformulated as a
probabilistic requirement that some percentage of cells in the culture exist near steady-state.

What follows is a thorough exposition of RAMP and its results. We begin with a math-
ematical overview of metabolic modeling and develop the optimization problems on which
the old and new models are predicated. We then detail the theoretical aspects of robust
optimization and its computational implementation. We discuss the computational results
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of RAMP and compare them to the results of the traditional model. Finally, we establish
analytic results showing the stability of a robust linear program under perturbations in
modeling parameters.

2 Mathematical Overview

2.1 Metabolic Modeling

To model a biological system mathematically, it is first necessary to represent its elements
as mathematical objects. We therefore begin by introducing a mathematical representation
of a metabolic system.

A metabolic system is comprised of the following biological elements and corresponding
mathematical quantities:

� A set of m metabolites x1, . . . , xm and their concentrations [x1], . . . , [xm].

� A set of n chemical reactions involving the metabolites, with the jth reaction having
the form

a1jx1 + · · ·+ amjxm 
 b1jx1 + · · ·+ bmjxm,

with forward and reverse rate coefficients kj+ and kj−.

Each reaction has a net flux, or rate, given by a rate law from chemistry:

vj = kj+[x1]a1j [x2]a2j · · · [xm]amj − kj−[x1]b1j [x2]b2j · · · [xm]bmj .

The rate of change of the concentration of the ith metabolite is then calculated by scaling
each reaction rate by the stoichiometric coefficient of that metabolite and summing the
rates, i.e.

d[xi]

dt
=

n∑
j=1

(bij − aij)vj .

The traditional FBA model develops these fundamental concepts into a metabolic model
in the following way.

2.2 A Linear Model

FBA first expresses the above data in a way that is convenient to analyze mathematically.
Let S (the stoichiometric matrix) be the m × n matrix whose ith row Si contains the
stoichiometric coefficients bij − aij of the ith metabolite and v be the n × 1 column vector

containing the reaction fluxes. Then d[xi]
dt as expressed above is

∑n
j=1 Sijvj , the ith entry of

the product Sv.

The stoichiometric reaction coefficients Sij are known and the goal is to determine the
reaction fluxes vj . Several assumptions are imposed to determine realistic values for v.
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Traditional FBA first assumes that cells exists in steady-state, meaning the concentration

of each metabolite remains constant, or d[xi]
dt = Siv = 0 for each i. Hence v must solve the

homogeneous linear system Sv = 0.

Since many solutions to this system typically exist, additional constraints are necessary.
Biologically, the environment of the cell places bounds on possible flux rates. Let L and
U be vectors whose jth entries contain the lower and upper bounds (sometimes infinite) on
flux vj , and add the constraint L ≤ v ≤ U .

For evolutionary reasons a cell typically allocates its resources in such a way as to
maximize growth rate. Among the environmentally constrained solutions to Sv = 0, FBA
thus selects those which maximize the growth rate of the cell. To this end it seeks flux vectors
v such that the growth flux vgrowth of the cell is maximized. FBA is sometimes based on
optimization of some other biological objective, but growth rate is the predominantly used
objective. We therefore assume FBA maximizes growth rate from this point onward.

The traditional FBA model is therefore the following constrained linear optimization
problem:

max{vgrowth : Sv = 0, L ≤ v ≤ U}.

2.3 RAMP: A Probabilistic Model

We now describe the modeling changes made by Robust Analysis of Metabolic Pathways to
address the faulty assumptions of the linear FBA model.

While stoichiometric coefficients are typically integer-valued and hence are the same
for every cell and can be known with certainty, the coefficients of the growth reaction are
averages estimated from batch cultures. The coefficients for any individual cell need not
equal these averages, and indeed experimental data suggests substantial deviation from
these averages across a culture. A more accurate model of a cellular culture can therefore
be obtained by treating the growth coefficients as random variables rather than fixed values,
which in turn makes the product Siv a random variable.

Rather than setting each Siv = 0, we therefore assume each Siv is a normally distributed
random variable and impose a probabilistic constraint that Siv remains within the interval
[−Mi,Mi] with some degree of certainty, i.e.

P (Siv > Mi) ≤ ε and P (Siv < −Mi) ≤ ε.

Since Siv is normally distributed,
{
Siv−µi

σi

}
is normally distributed with mean 0 and

standard deviation 1. Let µi denote the mean of each scenario and σi denote the standard
deviation. The above constraints are therefore equivalent to

Mi − µi
σi

≥ δ1−ε and
−Mi − µi

σi
≤ δε

where δ1−ε and δε are the 1− ε and ε percentiles. Rearranging these inequalities and noting
that −δε = δ1−ε, this constraint is equivalent to the condition that

σi ≤ min

{
Mi − µi
δ1−ε

,
Mi + µi
δ1−ε

}
.
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RAMP can thus be expressed as an optimization problem subject to a probabilistic
constraint on each σi:

max

{
vgrowth : σi ≤

Mi ± µi
δ1−ε

∀ i, L ≤ v ≤ U
}
.

RAMP’s probabilistic constraint is advantageous in that it better represents the true
biological state of a cellular culture, but it risks losing mathematical tractability with the
loss of the convenient linear optimization problem. Fortunately, the probabilistic RAMP
constraint can be made computationally feasible through conversion to two well-studied
types of optimization problems, robust linear programs and second-order cone programs.
The following sections detail that conversion.

2.4 RAMP as Robust Linear Program

2.4.1 Introduction to Linear Programming and Robust Linear Programming

Both FBA and RAMP are based on maximization of vgrowth, which means that each model
consists of an optimization problem. The type of optimization used in FBA is Linear
Programming (LP), in which the objective function being maximized and constraints on
that objective function are linear. We introduce an LP problem in standard form.

Definition. A linear programming problem is an optimization problem of the form

min {cTx : Ax ≤ b}

where c is a constant vector called the cost vector and cTx is being minimized subject to
the two constraints on x.

Many linear optimization problems that appear in different form can be converted into
standard LP form. For example, an optimization problem with an inequality constraint
Ax ≤ b can be expressed as an equality constrain by the introduction of slack variables,
Ax+ s = b. Similarly, a maximization problem can be converted to a minimization problem
by minimizing the negation of the set to be maximized.

An optimization problem in standard LP form is called a primal problem, and every such
problem has a related optimization problem called the dual problem. The primal problem
has its own primal variables and primal constraints and its solutions are an upper bound for
possible optimal solutions to the dual problem. The related dual problem is a maximization
problem with its own dual variables and dual constraints, and dual solutions are a lower
bound to optimal solutions to the original problem. An example of the primal and dual of
the standard LP problem is

The canonical forms of a primal SOCP and its dual are the following:

primal: dual:
min

{
cTx : Ax ≤ b

}
, max

{
ρT b : (cT − ρTA) ≥ 0

}
.

Here, the primal variable is x and the dual variable is ρ. Both variables have their own
constraints. It is not immediately evident how we form the dual from the primal. We discuss
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this algorithm in Section 2.5.1. A pair of primal and dual variables x, ρ yield an optimal
solution to the primal and dual problem under three necessary and sufficient conditions:

1. Primal Feasibility (x satisfies the primal constraints.)
2. Dual Feasibility (ρ satisfies the dual constraints.)
3. Complementarity (The values of the objective functions are equal, i.e. cTx = ρT b.)

Take note of the complementarity condition, which verifies the optimality of the solution.
Because the primal problem was an upper bound on the solution and the dual problem was a
lower bound, the point at which they are equal must be an optimal solution to the problem.

FBA consists of a linear programming problem, while RAMP can be formulated as a
robust linear programming problem, a type of adaptation of an LP problem. Robust linear
programs were designed to treat uncertainty in the rows of the matrix A in the LP constraint
Ax = b. Instead of requiring each row of A to be one specific vector, a robust linear program
enforces each row constraint Aix = bi for a set of possible values for Ai, called an uncertainty
set.

Definition. A Robust linear programming problem is an optimization problem of the form

min {cTx : Aix ≤ bi ∀Ai ∈ Ui}

where c is a constant vector and Ui denotes an uncertainty set. The optimization of cTx is
taken over the set of all vectors x such that Aix ≤ bi for every vector Ai in the uncertainty
set Ui.

We will show that RAMP is equivalent to a Robust LP with ellipsoidal uncertainty sets.
An ellipsoid is defined to be the set

Ui = {Āi + uTRi : uTu ≤ 1},

where Ā is a fixed vector and R is a matrix. The definition of an ellipsoid can be understood
geometrically in the following way. The set uTu ≤ 1 represents the unit sphere. The matrix
R distorts the unit sphere through multiplication into an elliptical shape. Addition of the
vector Ā then re-centers the ellipsoid at Ā.

We use a visual example to demonstrate the relationship between an LP and a Robust
LP.

Observe the simple LP problem:

maxx1 + x2
subject to
x1 + x2 ≤ 1

x1 ≥ 0, x2 ≥ 0.

(1)

Note that the constraint x1 + x2 ≤ 1 can be formulated as Ax ≤ b, in the standard LP
where A is the vector [1, 1] and b = 1. To convert (1) to a Robust LP, we allow A to be
chosen from an uncertainty set. The Robust LP is
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maxx1 + x2
subject to

Ax ≤ 1 ∀A ∈ U

U =

{
[1, 1] + uT

[
0.1 0

0 0.2

]
: uTu ≤ 1

}
x1 ≥ 0, x2 ≥ 0.

(2)

We present a graph of the feasible solution sets for each problem to demonstrate how
the two compare.

The black line represents the boundary of the set of feasible vectors for the LP. The red
curve represents the same for the Robust LP. Everything to the left of each curve represents
feasible points for each problem. Notice that the Robust LP is more restrictive because
there exists some x that are LP feasible and Robust LP infeasible.

We now discuss how RAMP can be converted to a Robust LP problem.

2.4.2 Converting RAMP to a Robust LP

The conversion of RAMP to a Robust LP depends upon an approximation of the normal
distribution of Si by a finite set of discrete scenarios, each assigned some probability. Little
information is lost if a sufficient number of scenarios are taken, and with this approximation
it becomes possible to express every possible case and analyze them mathematically.

So suppose each Si is assigned q possible scenarios, and let Sik denote the row vector of
stoichiometric coefficients for the ith metabolite under scenario k. Each scenario is assigned
a probability pk.

The mean and variance of Siv are then:

µi =

q∑
k=1

pkSikv

σ2
i =

q∑
k=1

pk(Sikv − µi)2.
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These expressions of µi and σi derived from the scenario approximation enable the proof
of the following theorem:

Theorem. The robust FBA model with its probabilistic constraint

max

{
vgrowth : σi ≤

1

δ1−ε
(Mi ± µi), i = 1, 2, . . . ,m

}
is equivalent to the robust LP problem

max {vgrowth : −Mi ≤ Siv ≤Mi ∀Si ∈ Ui, i = 1, 2, . . . ,m} .

Ui is the ellipsoidal uncertainty set

Ui =
{
pTS′i + uT

(
δ1−ε
√
P (I − epT )S′i

)
: uTu ≤ 1

}
where p is a vector containing the q scenario probabilities, S′i is a q×n matrix whose kth row
contains the kth scenario for Si, P is a diagonal matrix containing the scenario probabilities,
and e is a vector of 1’s.

Proof. We first establish an alternate form for a robust LP problem. We show that

max
{
cTx : Aix ≥ bi ∀Ai ∈ Ui, ∀ i

}
, Ui = {Āi + uTRi : uTu ≤ 1}

is equivalent to
max

{
cTx : ||Rix|| ≤ Āix− bi, ∀ i

}
.

Observe the following:

Aix ≥ bi ∀Ai ∈ Ui ⇐⇒ 0 ≤ Aix− bi ∀Ai ∈ Ui
⇐⇒ 0 ≤ min {Aix− bi : Ai ∈ Ui}

= min {(Āi + uTRi)x− bi : uTu ≤ 1}
= Āix− bi + min {uTRix : uTu ≤ 1}
= Āix− bi + max {uTRix : uTu ≤ 1}
= Āix− bi − ||Rix||.

Therefore Aix ≥ bi ∀Ai ∈ Ui ⇐⇒ ||Rix|| ≤ Āix− bi, as required.

We now convert the probabilistic FBA model to a robust LP model by expressing it in
this alternate robust LP form. From the expressions of µi and σi developed in the preceding
section, we have that:

µi =

q∑
k=1

pkSikv = pTS′iv.

(Recall that pT = (p1, p2, . . . , pq) and S′i is the q × n matrix whose kth row holds the
coefficients of the ith metabolite under scenario k.) Therefore

σ2
i =

q∑
k=1

pk(Sikv − µi)2 =

q∑
k=1

pk(Sikv − pTS′iv)2.
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Note that an expression of the form
∑q
k=1 pkx

2
k can be written

q∑
k=1

pkx
2
k = (x1, x2, . . . , xq)


p1 0 . . . 0
0 p2 . . . 0
...

. . .
...

0 0 . . . pq




x1
x2
...
xq

 = XTPX

and so
σ2
i = (S′iv − epTS′iv)T

√
P
√
P (S′iv − epTS′iv)

=
(√

P (S′iv − epTS′iv)
)T (√

P (S′iv − epTS′iv)
)

=
∣∣∣∣∣∣√P (S′iv − epTS′iv)

∣∣∣∣∣∣2
=
∣∣∣∣∣∣√P (I − epT )Siv

∣∣∣∣∣∣2 .
Therefore,

σi ≤
1

δ1−ε
(Mi ± µi) ⇐⇒

∣∣∣∣∣∣√P (I − epT )Siv
∣∣∣∣∣∣ ≤ 1

δ1−ε
(Mi ± µi)

⇐⇒
∣∣∣∣∣∣√P (I − epT )Siv

∣∣∣∣∣∣ ≤ 1

δ1−ε
(Mi ± pTS′iv)

⇐⇒
∣∣∣∣∣∣δ1−ε√P (I − epT )Siv

∣∣∣∣∣∣ ≤ ±pTS′iv +Mi.

This establishes that the condition

σi ≤
1

δ1−ε
(Mi ± µi)

is equivalent to ∣∣∣∣∣∣(δ1−ε√P (I − epT )S′i)v
∣∣∣∣∣∣ ≤ ±pTS′iv +Mi.

Note that this statement embodies two conditions:∣∣∣∣∣∣(δ1−ε√P (I − epT )S′i)v
∣∣∣∣∣∣ ≤ pTS′iv +Mi

and ∣∣∣∣∣∣(δ1−ε√P (I − epT )S′i)v
∣∣∣∣∣∣ ≤ −pTS′iv +Mi,

which are both in the alternate form of a robust LP constraint, with Āi = pTS′i, Ri =
δ1−ε
√
P (I − epT )S′i, and bi = −Mi. They are therefore equivalent to the following two

constraints:

Siv ≥ −Mi ∀Si ∈ Ui, Ui =
{
pTSi + uT (δ1−ε

√
P (I − epT )S′i) : uTu ≤ 1

}
Siv ≥ −Mi ∀Si ∈ Ui, Ui =

{
−pTSi + uT (δ1−ε

√
P (I − epT )S′i) : uTu ≤ 1

}
and this last constraint can be re-expressed:

−Siv ≥ −Mi ∀Si ∈ Ui, Ui =
{
pTSi − uT (δ1−ε

√
P (I − epT )S′i) : uTu ≤ 1

}
=
{
pTSi + uT (δ1−ε

√
P (I − epT )S′i) : uTu ≤ 1

}
11



so that the two constraints together are equivalent to

−Mi ≤ Siv ≤Mi ∀Si ∈ Ui, Ui =
{
pTSi + uT (δ1−ε

√
P (I − epT )S′i) : uTu ≤ 1

}
.

We have now derived two useful alternative forms for the probabilistic FBA model:

max
{
vgrowth :

∣∣∣∣∣∣(δ1−ε√P (I − epT )S′i)v
∣∣∣∣∣∣ ≤ ±pTS′iv +Mi, ∀ i

}
and

max {vgrowth : −Mi ≤ Siv ≤Mi ∀Si ∈ Ui, ∀ i} ,

Ui =
{
pTSi + uT (δ1−ε

√
P (I − epT )S′i) : uTu ≤ 1

}
This completes the proof. �

While the equivalence of the the probabilistic and robust LP forms of RAMP highlights
the relationship between linear FBA and RAMP, the norm inequality developed in the proof
above is the most convenient way to computationally implement the RAMP constraint. An
optimization problem subject to a constraint in this form is called a second-order cone
program (SOCP). Before proceeding further in our discussion of RAMP, we take a brief
foray into the world of conic optimization. The following section explains what a second-
order cone program is and details key aspects of SOCP theory.

2.5 Theory of Second-Order Cone Programming

Definition. A cone is a set K of vectors such that if k ∈ K and α > 0, then αk ∈ K.

Second-order cone programming in particular is concerned with quadratic cones.

Definition. The second-order (quadratic) cone of dimension n is the set

Kn
q =

{(
z0
z

)∣∣∣∣ z0 ∈ R, z ∈ Rn−1, ||z|| ≤ z0
}
.

Note that there is only one second-order cone of each dimension. The statement ||z|| ≤ z0
is important for visualizing the cone. As an example, consider z = (z1, z2)T , so ||z|| =√
z21 + z22 . K

3
q is then the set of (z0, z1, z2) satisfying

√
z21 + z22 ≤ z0. If

√
z21 + z22 is 0, z0

can be any positive value. As we increase z1 and z2, z0 is restricted more. As we vary z1
and z2, we obtain the ice-cream cone shape that we imagine for a cone.

Given a cone K, the dual cone is defined as K∗ =
{
c : cTx ≥ 0∀x ∈ K

}
, i.e. a vector c

is in the dual cone in and only if c is within ninety degrees of every vector in the cone. All
second-order cones are self dual, K∗ = K. Rn+ is also a self-dual cone.

A second-order cone program optimizes a linear function subject to conic constraints:

Definition. A second-order cone programming problem is an optimization problem of
the form:

min

{
n∑
i=1

cTi xi :

n∑
i=1

Aixi = b, xi ∈ Ki, i = 1, 2, ..., n

}
,

12



where ci and xi are vectors, Ai is a matrix, and K1, . . . ,Kn are self-dual cones.

Like linear programs, every second-order cone program has a related dual problem. The
primal and dual of an SOCP stand in the same relation to one another as the primal and
dual of an LP, including the three conditions for optimality. We will now provide an example
for deriving the dual problem from the primal with an SOCP.

2.5.1 Formulating the Dual from the Primal

Consider the primal SOCP:

min
{
cT1 x1 + cT2 x2 : A1x1 +A2x2 = b, x1 ∈ K1, x2 ∈ K2

}
.

The Lagrangian of an optimization constraint is a special function useful for solving the
optimization problem. The Lagrangian of the primal SOCP problem is the following:

L(x, λ) = cT1 x1 + cT2 x2 − λT (A1x1 +A2x2 − b).

We claim that the primal is equivalent to the following problem:

min
x1∈K1,x2∈K2

max
λ free

cT1 x1 + cT2 x2 − λT (A1x1 +A2x2 − b)

This optimization problem is equivalent to the original primal problem for the following
reasons. If the primal constraint A1x1 +A2x2 = b is satisfied, λT (A1x1 +A2x2− b) = 0 and
so the objective function of the reformulated problem is the same as that of the primal for all
x1, x2 satisfying the primal constraint. If the primal constraint is violated, (A1x1+A2x2−b)
is non-zero in at least one entry, so λT (A1x1 + A2x2 − b) can be made arbitrarily large by
choosing a suitable λ. Therefore the outside minimization problem is never solved by x1
and x2 that violate the primal constraint citeEmilyA.

The dual is the maximization problem obtained by switching the max and min above
and separating those terms that contain some x and those that do not:

max
λ free

min
x1∈K1x2∈K2

(c1 −AT1 λ)Tx1 + (c2 −AT2 λ)Tx2 + bTλ.

The dual problem can be put in the form of a cone problem by reversing the process applied
to the primal above. We will show that the dual is equivalent to the following cone problem:

max
{
bTλ : (cT1 −AT1 λ)T ∈ K1, (cT2 −AT2 λ)T ∈ K2

}
.

The dual objective function includes all parts of the dual Lagrangian that do not include
an x term. All terms in the dual Lagrangian that do include an x will form cone constraints.

To make the problems equivalent, the dual constraints must make any λ infeasible that
allows x1 or x2 to be chosen in such a way that (c1 − AT1 λ)Tx1 + (c2 − AT2 λ)Tx2 becomes
arbitrarily small, because the max min problem cannot achieve optimality under such con-
ditions.

Let’s suppose (cT1 − AT1 λ)T /∈ K∗1 (K∗1 is the dual of K1.) Then, by the definition
of a dual cone, ∃x1 ∈ K1 such that (cT1 − AT1 λ)Tx1 < 0. Because K1 is a cone, αx1 ∈
K1, (α > 0). So we can choose αx1 so that (cT1 −AT1 λ)Tαx1 returns negative infinity. Hence,
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if (cT1 − AT1 λ)T /∈ K∗1 , our inner minimization problem returns negative infinity, and our
maximization becomes infeasible. By this argument we have that one of our dual constraints
is (cT1 − AT1 λ)T ∈ K∗1 , and since all second-order cones are self-dual, (cT1 − AT1 λ)T ∈ K1. A
similar argument holds for (cT2 −AT2 λ)T , and our second constraint is (cT2 −AT2 λ)T ∈ K2.

We conclude that the dual is indeed

max
{
bTλ : (cT1 −AT1 λ)T ∈ K1, (cT2 −AT2 λ)T ∈ K2

}
.

This method for finding the dual problem can be used more generally, including finding
the dual of an LP. We adapt the method specifically to second-order cones because second-
order cones are prevalent in applications. The self-duality of a second-order cone is the
lynch-pin of the method.

2.5.2 RAMP as SOCP

Recall that we established an alternate form of RAMP’s probabilistic constraint:∣∣∣∣∣∣(δ1−ε√P (I − epT )S′i)v
∣∣∣∣∣∣ ≤ ±pTS′iv +Mi, ∀ i.

Directly from the definition of a quadratic cone, this norm inequality is true if and only if
the following cone conditions hold:(

pTS′iv +Mi, δ1−ε
√
P (I − epT )S′iv

)
∈ Kq ∀ i,(

−pTS′iv +Mi, δ1−ε
√
P (I − epT )S′iv

)
∈ Kq ∀ i.

Expressing the probabilistic RAMP constraint in this form allows the RAMP model to be
expressed in the standard primal form of an SOCP. The following section, devoted to explain-
ing computational aspects of RAMP and their results, will begin with a detailed explanation
of how RAMP can be expressed as an SOCP and solved by a computer algorithm.

3 Computational Methods, Applications, and Results

3.1 Introduction

The goal of RAMP is to improve traditional metabolic models by introducing robustness.
This is accomplished in two primary ways: by accounting for uncertainty in experimentally-
derived metabolic quantities, and by abandoning steady-state assumptions that produced
more tractable mathematics but a less accurate portrayal of the biological reality being
studied.

On the level of mathematical modeling, these changes convert linear optimization prob-
lems to second-order cone programs. While less easy to solve than linear programs, second-
order cone programs (SOCP) are solvable in polynomial time by publicly available solvers
using an interior-point algorithm. The increase in mathematical complexity is thus not im-
mense and, we believe, is worth the increased accuracy in portraying the cellular cultures
under study.
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This section is devoted to explaining the purpose, implementation, and results of the
computational methods of RAMP. We develop several programs that mimic the traditional
applications of metabolic modeling, compare their successes, and then explain how RAMP
can be used to simulate metabolic situations that could not be analyzed using traditional
methods.

3.2 Computing Tools

Constraint-Based Reconstruction and Analysis (COBRA) is a well-established tool used to
model organisms on a genome scale. COBRA works with a metabolic network model that
is reconstructed based on the annotated gene sequences and known biochemical reactions
of the organism of interest. Genome-scale metabolic networks have been reconstructed for
many organisms, including E. coli. In the following computational experiments, we use
metabolic reconstructions of E. coli obtained from the BiGG Database [7] and utilize
COBRA Toolbox for MATLAB [1] as a tool for implementing RAMP.

We use two publicly available solvers, SeDuMi and sdpt3, to solve our second-order cone
problem. SeDuMi is a MATLAB toolbox for optimizing over symmetric cones using interior
point algorithm; sdpt3 is a MATLAB implementation of infeasible path-following algorithms
for solving conic optimization problems. Although both solvers should ideally give the same
solution for a given optimization problem, the differences in their implementation methods
resulted in different solutions. Generally, SeDuMi showed more stability and accuracy in
solving LPs while sdpt3 performed better in solving SOCPs. We therefore used SeDuMi in
experiments that involve solving LPs and sdpt3 to solve SOCPs.

3.3 Implementing Robust Flux Balance Analysis

The fundamental computational tool of RAMP is a robust form of Flux Balance Analysis,
denoted RFBA. This section is devoted to explaining the computational implementation of
RFBA as a second-order cone program. This process involves two steps: first, the steady-
state constraint must be formulated in a way compatible with the standard form of an SOCP
and expressed in the proper form for the solver. Second, the environmental bounds must
be formulated in a way consistent with a standard SOCP.

3.3.1 Implementing cone constraints

SOCP solvers solve problems of the specific form

min
{
cTx : Ax = b, xi ∈ Ki ∀ i

}
.

c denotes a constant vector, A and b are respectively a matrix and a vector, and the con-
straint xi ∈ Ki ∀ i requires that x be divisible into sub-vectors xi each of which lies in a cone
Ki. Each coneKi may be Rn, Rn+, or the quadratic coneKq =

{
(z0, z) : z ∈ Rn−1, z0 ≥ ||z||

}
(Refer to section 2.5 for details).

We divide the rows of the matrix S into two categories. Let Sc denote the rows of S
whose entries are certain, arranged according to their ordering in S, and let Su denote the
rows of S containing any uncertain entries, ordered in the same way.
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We account for the constraints on Sc and Su separately. We first express the constraints
−Mi ≤ Sci v ≤ Mi to be compatible with standard SOCP. Since SOCP requires a matrix
equality Ax = b, we convert the each inequality −Mi ≤ Sci v ≤ Mi into a pair of equalities
by introducing two slack variables and requiring that

Sci v + s1i = Mi

Sci v − s2i = −Mi

where the slack variables s1i and s2i are restricted to the positive cone Rn+. Applying this
process to each row of Sc, we obtain the following system:

Sc1 1 0 0 0 . . .
Sc1 0 −1 0 0 . . .
Sc2 0 0 1 0 . . .
Sc2 0 0 0 −1 . . .
...

...
...

...
...

. . .





v
s11
s21
s12
s22
...


=


M1

−M1

M2

−M2

...

 ,

(s11, s
2
1, s

1
2, . . .) ∈ Rn+.

Now consider the rows in Su. We have already shown that the constrains on Su can be
formulated as a pair of cone constrains:

||Rv|| ≤ −S̄iv +Mi.

||Rv|| ≤ S̄iv +Mi.

In other words, (−S̄iv +Mi, Rv) and (S̄iv +Mi, Rv) must lie in the quadratic cone Kq.

In a standard primal SOCP, cone constrains may only be placed upon sub-vectors of the
unknown vector x. To implement these cone constraints, we therefore expand x to include
segments (zi10 , z

i1) and (zi20 , z
i2) for each uncertain row i. We then add to the system Ax = b

the requirements that Sui v+Mi = zi10 , Riv = zi1 and −Sui v−Mi = zi20 , Riv = zi2. Requiring
that (zi10 , z

i1) and (zi20 , z
i2) lie in Kq then imposes the desired constraints on the model.

These additions to Ax = b result in the following system:



1 0 . . . 0 0 0 0 0 0 0 0 0 · · ·
Sc 0 −1 . . . 0 0 0 0 0 0 0 0 0 · · ·

...
...

. . .
...

...
...

...
...

...
...

...
...

. . .

S̄u1 0 0 · · · 1 0 0 0 0 0 0 0 0 · · ·
R1 0 0 · · · 0 −Id 0 0 0 0 0 0 0 · · ·
S̄u1 0 0 · · · 0 0 −1 0 0 0 0 0 0 · · ·
R1 0 0 · · · 0 0 0 −Id 0 0 0 0 0 · · ·
S̄u2 0 0 · · · 0 0 0 0 1 0 0 0 0 · · ·
R2 0 0 · · · 0 0 0 0 0 −Id 0 0 0 · · ·
S̄u2 0 0 · · · 0 0 0 0 0 0 −1 0 0 · · ·
R2 0 0 · · · 0 0 0 0 0 0 0 −Id 0 · · ·
...

...
... · · ·

...
...

...
...

...
...

...
...

. . .
. . .





v
s11
s21
...
z110
z11

z120
z12

z210
z21

z220
z22

...



=



M c
1

−M c
1

...
Mu

1

0
−Mu

1

0
Mu

2

0
−Mu

2

0
...



,
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(s11, s
2
1, . . .) ∈ Rn+, (zi10 , zi1), (zi20 , z

i2) ∈ Kq ∀ i.

The constraints on both Scv and Suv have now been expressed in SOCP form. The
constraints on v, however, are not yet compatible with SOCP, since the bounds given in L
and U may take any form whatsoever and so are not initially in the form of cone constraints.

3.4 Implementing environmental bounds

SeDuMi solves the optimization problem of the form

min
{
cTx : Ax = b

}
,

where each variable xi is either free, non-negative, complex-valued, in a quadratic cone, or
in a positive semi-definite cone.

For RAMP, we are only interested in variables that are either free, non-negative, or
in quadratic cones. We define a structure K to give SeDuMi information about the types
of input variables. K contains three fields: K.f, K.l, and K.q . K.f is the number of free
variables; K.l is the number of non-negative variables; K.q is an array that contains the
dimension of each quadratic cone.

The previous section describes how to set up the quadratic cone constraints. Here, we
handle the constraint L ≤ v ≤ U such that each variable vi is either free or non-negative as
required by the solver.

Given a problem of the form

min
{
cT v : Av = b, L ≤ v ≤ U

}
,

where L and U may take any values, we define A′, b′, and c′ such that the given problem is
reformulated as

min
{
c′T v′ : A′v′ = b′, v′i ∈ R for i = 1, . . . ,K.f , v′i ≥ 0 for i = K.f + 1, . . . , n

}
,

a form compatible with the solver.

We begin constructing A′ column-by-column by handling the free variables in the original
problem (i.e. any vk where −∞ < vk < ∞). SeDuMi requires that the first K.f columns
of A′ correspond to the free variables. We therefore find all columns of the original A that
correspond to the free variables and place them in the first K.f columns of A′.

Next we handle the constant variables (i.e. any vk where vk = αk for some constant
αk). The columns of A that correspond to constant variables do not appear in A′, but are
instead incorporated into b′. Notice that for any constant variable vk = αk,

bi = Ai,1v1+, . . . ,+Ai,k−1vk−1 +Ai,k · αk +Ai,k+1vk+1+, . . . , Ai,nvn

is equivalent to

bi −Ai,k · αk = Ai,1v1+, . . . ,+Ai,k−1vk−1 +Ai,k+1vk+1+, . . . , Ai,nvn
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for all i. This equivalence shows that any column of A that corresponds to a constant
variable can be removed from A and be incorporated to the left hand side. So instead of
placing such constant columns into A′, we define b′i as

b′i = bi −
∑

constantvk

Ai,k · αk.

Now it remains to show how to handle variables that are neither free or constant. The
remaining variables have bounds that fall into one of the three following cases:

1. −∞ < vk ≤ αk
2. αk ≤ vk <∞

3. αk1 ≤ vk ≤ αk2, where αk1 < αk2 are constants.

Although each case is handled slightly differently, an example of one sufficiently highlights
the general idea of handling all the other cases. As an illustrative example, consider the
case where −∞ < vk ≤ αk for some constant αk.

In order to transform vk into a non-negative variable, we define a new variable zk =
−vk + αk. Then the constraint −∞ < vk ≤ αk becomes 0 ≤ zk, a legal input for SeDuMi.
Note that

bi = Ai,1v1+, . . . , Ai,kvk+, . . . , Ai,nvn

= Ai,1v1+, . . . , Ai,k(−zk + αk)+, . . . , Ai,nvn

is equivalent to

bi −Ai,k · αk = Ai,1v1+, . . . ,+(−Ai,k)zk+, . . . , Ai,nvn

for all i. So in order to preserve the system of equations with the new variable zk, we place
the negated column of A into A′ and redefine b′ as follows:

A′i,K.f+k = −Ai,k

b′ = b′ −A′i,k · ck.

Finally, we define c′ to select the correct objective variable in A′.

If we handle each constraint Lk ≤ vk ≤ Uk in this manner for all k, then the original
constraints can be re-expressed as

A′v′ = b′, v′i ∈ R for i = 1, . . . ,K.f , v′i ≥ 0 for i = K.f + 1, . . . , n

as required.

Notice that the solution v′ of the optimization problem is not equal to the solution to
the original problem. In order to obtain the solution to the original problem, we map v′

back to v by applying appropriate inverse operations.
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3.5 Inferring Metabolic Parameters

A primary advantage of RAMP over linear FBA is the existence of additional modeling
parameters in RAMP that either do not exist in linear FBA or are fixed at some value for
mathematical convenience. These parameters are:

� M , the deviation of metabolite concentrations from steady-state.

� σ, the standard deviation of the growth coefficients.

� S̄i, the average value of the ith row (i.e. of the growth coefficients).

All three of these parameters represent biologically meaningful information not modeled by
linear FBA. Given biological information about any two parameters, RAMP can computa-
tionally infer information about the third and thus obtain information beyond the scope of
linear FBA. Some examples are the following.

3.5.1 Steady-state deviation

The amount of deviation allowed from steady-state for each metabolite in the positive and
negative directions, denoted by M+

i and M−i for the ith metabolite, controls the flexibility of
the flux state of the cell. Increasing the vector M containing these bounds for each metabo-
lite, therefore, increases the optimal growth rate whereas decreasing it has the opposite
effect.

The minimal steady-state deviation necessary for cells to achieve their optimal growth
rate is biologically relevant and computationally useful information. The following is an
explanation of how a least-squares minimization of this steady-state deviation can be for-
mulated as a second-order cone program.

3.5.1.1 Implementation Notation: Superscripts c and u are used to denote variables
corresponding to certain and uncertain rows of the stoichiometric matrix, respectively. For
example Sc denotes the matrix whose rows are the certain rows of S. j is used to index
the uncertain rows of S, so that Suj denotes some uncertain row of S. Superscript + and

− signs denote variables corresponding to upper and lower bounds. For instance, Mu+
j and

Mu−
j denote the bounds on deviation from steady state for the jth uncertain metabolite.

The goal is to implement the following optimization problem as an SOCP:

min
{
||M || : −M c− ≤ Scv ≤M c+,−Mu−

j + ||Rjv|| ≤ S̄jv ≤Mu+
j − ||Rjv|| ∀ j, L ≤ v ≤ U, vgrowth fixed

}
.

The following steps convert this problem to an SOCP:

� We incorporate the vector M into the unknown vector x rather than treating it as a
set of known values.

� Since an SOCP requires a linear objective function, we introduce an additional variable
φ and minimize φ under the cone constraint φ ≥ ||M ||. Minimization will of course
force φ = ||M ||, so that minimizing φ becomes equivalent to minimizing ||M ||.
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� The complete unknown vector thus becomes

x =
(
v, s11, s

2
1, . . . , φ,M

c+
1 ,M c−

1 , . . . ,Mu+
1 ,Mu−

1 , . . . , z110 , z
11, . . .

)
.

� The entries in L and U corresponding to vgrowth are fixed at the experimentally derived
growth rate so that vgrowth itself is fixed.

� Equations in the steady-state constraints involvingM (formulated in the SOCP system
Ax = b) must be rewritten to account for the fact that M is now an unknown. For
instance, we can take the pair of equations

Sci v + s1i = M c+
i , Sci v − s2i = −M c−

i

and move the M terms to the left side

Sci v + s1i −M c+
i = 0, Sci v − s2i +M c−

i = 0

and then add a 1 and −1 to the rows enforcing these equations in the columns corre-
sponding toM c+

i andM c−
i . When this process is executed for each equation containing

an element of M , the resulting system Ax = b is the following:



1 0 . . . 0 −1 0 . . . 0 0 0 0 0 0 0 · · ·

Sc 0 −1
. . . 0 0 1

. . . 0 0 0 0 0 0 0 · · ·
...

. . .
. . .

...
...

. . .
. . .

...
...

...
...

...
...

...
. . .

S̄u1 0 0 · · · 0 0 0 0 1 0 1 0 0 0 0 · · ·
R1 0 0 · · · 0 0 0 0 0 0 0 −Id 0 0 0 · · ·
S̄u1 0 0 · · · 0 0 0 0 0 −1 0 0 −1 0 0 · · ·
R1 0 0 · · · 0 0 0 0 0 0 0 0 0 −Id 0 · · ·
...

...
... · · ·

...
...

...
...

...
...

...
...

...
...

. . .
. . .





v
s11
s21
...
φ

M c+
1

M c−
1
...

Mu+
1

Mu−
1
...
z110
z11

z120
z12

...



=



0
0
...
0
0
0
0
...


,

(s11, s
2
1, . . .) ∈ Rn+, (zi10 , zi1), (zi20 , z

i2) ∈ Kq ∀ i, (φ,M) ∈ Kq.

� We then impose the bounds L and U on v by formatting for the solver in the typical
way.

� After obtaining a solution, we rearrange the elements of M so that they are ordered
according to the original metabolite indices.
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Figure 1: Minimal deviation from steady-state required to achieve the optimal growth rate

3.5.1.2 Results and Computational Uses While interesting and biologically mean-
ingful in its own right, obtaining a minimal M is also useful for the purpose of further
computations for it establishes a standardized M to use consistently in computations for a
given model to generate comparisons across changes in other parameters. For instance, it
establishes an M we can use to simulate gene knockouts with a guarantee that the cellular
conditions imposed upon all the mutant cells are those that would yield the correct growth
rate in non-mutant cells.

However, using the vector M obtained from the minimal M program often leads to com-
putational instability, likely because it is the most restrictive M possible by design. We have
found that taking the maximum element of the minimal M and allowing each metabolite
that same maximal steady-state deviation in both directions yields the same growth rate
with greater computational stability. The computational tests detailed throughout this sec-
tion were for this reason executed using this method. We refer to the uniform M computed
in this way as the “box M .”

3.5.2 Growth as a function of probability

The parameter δ indicates the certainty at which the cells are near steady-state. Increasing
δ, therefore, decreases the optimal growth rate by requiring a higher percentage of the cells
to be near steady-state. Decreasing δ, on the other hand, allows more cells to deviate from
steady-state, thereby giving them more flexibility to achieve a higher growth rate.

Figure 2 shows the optimal growth rate of E. coli core model as a function of δ. Here
the box M was computed with δ = 3 and 5 scenarios. The optimal growth rate was then
computed with the fixed box M and varying δ values. The results are surprising in that
the optimal growth rate drops significantly between δ = 4 to δ = 5, indicating that the
constraint that the cells be near steady-state with 99.9999 percent probability is drastically
more restrictive than 99.9937 percent. Further analysis is in progress.
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Figure 2: Optimal growth rate as a function of δ

For the following computational experiments, we let δ = 3 as a default value, which
means that the probabilistic constraint becomes P (M− ≤ Siv ≤M+) ≥ .997.

3.5.3 Dependence upon scenario construction

Each growth coefficient in the stoichiometric matrix is treated as a normally distributed
random variable with mean µ and standard deviation σ, where µ is the value of the coefficient
as given by the original model and σ is its first non-stated decimal place.

The scenarios for the uncertain coefficient s are created by discretizing the normal distri-
bution of the coefficient. For instance, we first compute the interval of possible values of s by
considering values that lie within the 3 standard deviations from the mean: [µ−3σ, µ+ 3σ].
In order to discretize this interval, we sample n points uniformly distributed across the
interval, where n is the number of scenarios.

Increasing the number of scenarios gives a better approximation of the distribution of
possible s values. Setting the number of scenarios too high, however, increases the size
of the problem, thus increases its computational time, significantly. We therefore seek an
appropriate number of scenarios that approximates the distribution of s well, but small
enough to keep the computational time relatively short.

The results are forthcoming.

3.6 Flux Variability

It may be interesting or useful to know what possible range of values a particular reaction
rate may take under specified cellular conditions. The Linear and Robust FBA models can
easily be adapted to compute these ranges. Our adaptation computes flux ranges in the
following way:
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� Fix the growth rate at its true value. Accomplished by maximizing growth rate in
the linear model and then setting the upper and lower bounds on the growth reaction
equal to this optimal value.

� In the robust case, fix some M , typically the minimal or box M that yields the true
growth rate.

� Construct c such that the objective function is the value of the flux of interest. The
variable, c, should have a nonzero entry corresponding to the location of the reaction
of interest in the solver-formatted ordering of reactions. This entry should be positive
if the flux is to be minimized, and negative if it is to be maximized (so that the set
of negatives is minimized). Sometimes in the course of formatting for the solver it
is necessary to negate a flux value; we compensate by negating c if this happens to
the flux of interest. Sometimes in formatting for the solver a flux is shifted by some
constant, but this has no effect on the computation of the maximum and minimum so
long as the optimal value is shifted back by the correct amount.

By maximizing and minimizing each flux value across a model’s entire set of reactions, we
obtain a profile of possible reaction rates for the cell. Such a result may look like this:

Figure 3: Range of possible flux values

3.6.1 Degeneracy

The flux ranges obtained in the linear and robust models are typically consistent, but some
differences in results are notable.

Flux ranges may be classified into two groups: some fluxes are essentially unbounded,
limited only by the L and U bounds imposed in the model. Such a result is biologically
unrealistic and thus undesirable, failing to give meaningful information about possible flux
values.
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The existence of multiple sets of fluxes yielding the optimal growth rate is called the
problem of degeneracy, and the existence of unbounded fluxes is its worst manifestation.
We find that the robust model performs better than the linear model in computing flux
ranges in the respect that it permits fewer unbounded fluxes, sometimes significantly fewer.
In the largest and most accurate E. coli model, the linear model allows 108 unrestricted
fluxes while the robust model allows only 67, a substantial decrease.

The other flux category is those that are bounded, restricted to falling within some
fixed range. In the case of these fluxes, the linear model allows smaller ranges than the
robust model, so that degeneracy is greater in the robust model than in the linear in this
respect. However, it is debatable whether such degeneracy is bad: given the complexity
of metabolic networks, it is likely that cells can achieve optimality through activation of
different subsets of the metabolic network. The mathematical existence of many flux sets
achieving optimality may reflect that biologically cells may achieve the optimal growth rate
in many different ways.

It should be noted that robust flux ranges were computed using a box M constraint,
and that some initial tests using a minimal M constraint showed decreased degeneracy in
flux ranges. We also note that linear flux ranges are typically contained within the robust
ranges, so that the two models are consistent with one another.

3.6.2 Experimental Validation

Although most metabolic flux values cannot presently be determined by experiment (hence
the need for models such as FBA), wet-lab data do exist for a small set of reactions. A
validation of RAMP would be incomplete without a comparison of these experimental values
to the flux ranges allowed in RAMP. We found that the experimental values always lie within
the ranges permitted by RAMP. However, this is not surprising because RAMP allows such
wide ranges in flux values.

The following table summarizes the data analyzed and corresponding flux ranges per-
mitted by the linear and robust models. All reactions rates were normalized to the glucose
uptake rate, with a normalization factor of approximately 11.3.

3.7 Gene Knockout Simulation

3.7.1 Motivation

The term gene knockout refers to the removal of a gene from a species and the consequent loss
of functions controlled by that gene. Organisms which have lost a gene are called mutants,
while the original species is referred to as the wild-type. Mutants may arise naturally, or
may be created in the lab, where researchers are capable of removing a specific gene from
an organism.

It is often desirable to know the effect the loss of a particular gene would have on a
species. This is particularly the case in drug development, where researchers can create
drugs designed to remove essential genes from diseased cells, such as cancerous cells.

However, because of the great number of genes in a cell it is time-consuming and expen-
sive to experimentally determine which gene-knockouts are lethal to a species and which
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Reaction iAF index exp. flux value linear range robust range
GLC + ATP→G6P 1376 100 ± 1.2 0 to 132 0 to 317
G6P→6PG + NADPH 1165 29.5 ± 1.3 0 to 190 0 to 276
G6P→F6P 1919 70.1 ± 1.5 -170 to 141 -141 to 330
PEP→PYR+ATP 2037, 2099 119.7 ± 2.9 -64 to 157 -243 to 378
PYR→ACCOA + CO2 + NADH 1890 102.6 ± 2.9 0 to 155 0 to 216
OAA + ACCOA→ICT 482 159.7 ± 2.4 9 to 127 7 to 284
ICT→OGA + CO2 + NADPH 1418 24.2 ± 3.1 9 to 87 7 to 129
FUM→MAL 1130 13.8 ± 3.1 9 to 271 -48 to 575
MAL→OAA + NADH 1622 10.7 ± 2.4 -22 to 255 -291 to 167
MAL→PYR + CO2 + NADH 1626 3.1 ± 1.8 0 to 55 0 to 192
OAA + ATP→PEP + CO2 2022 0.2 ± 0.3 0 to 63 0 to 248
PEP + CO2→OAA 2020 27.1 ± 1.9 0 to 94 0 to 277
ACCOA→AC + ATP 195 59.7 ± 2.4 0 to ∞ 0 to ∞
NADPH→NADH 1725, 2222 -52.5 ± 9.3 -155 to 264 -508 to 568
ETH→ETHxt 700 0.0 ± 1.0 0 to 8 0 to 34

Table 1: Experimental and Computed Flux Data

are not. FBA provides a computational alternative. Each gene is associated with some
number of metabolic reactions which are lost under removal of that gene. These reactions
can be deleted from the FBA model and a new optimal growth rate computed under these
conditions. If the ratio of mutant to wild-type growth rates falls below a certain threshold,
the gene knockouts is considered lethal.

3.7.2 Robust FBA Method

Implementation of a gene knockouts using FBA or RFBA simply involves fixing the flux
values of affected reactions at zero, accomplished by adjusting the bounds L and U , and
then optimizing growth rate.

Gene knockouts were simulated on three E. coli models called iJR904, iAF1260, and
iJO1366. The computational predictions for gene essentiality were then compared to the ex-
perimentally derived gene knock-out results in studies by Joyce [4], Gerdes [2], and Orth [3].

Each model’s environment was tuned to mimic the growth media used in these studies
by adjusting the bounds on the intake reaction rates of the carbon source, oxygen, and other
necessary nutrients. For nutrient-rich growth media, the cell was allowed free exchanges of
all possible nutrients. For minimal growth media, the cell was only allowed to intake its
carbon source, NH4, SO4, O2, Pi, H+, H2O, and CO2.

The gene was classified as essential if the ratio of the mutant to wild-type growth rates
fell below 0.5.

3.7.2.1 Results The experimental data for the essentialness of genes were obtained
from studies by Joyce, et al, where in vivo gene-knock outs were conducted in glycerol-
supplemented minimal medium. Our computational gene knockout studies were carried out
in a slightly altered cell environment; the cell was allowed to intake potassium and iron in
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addition to all nutrients available in a minimal growth medium, and glucose as its carbon
source.

The following tables show the the comparisons between experimental and model predic-
tions of gene essentiality of genes in iJR904.

FBA Results:

experimental essential experimental non-essential
predicted essential 78 100

predicted non-essential 31 695

RFBA Results:

experimental essential experimental non-essential
predicted essential 63 48

predicted non-essential 46 747

RFBA showed an increased accuracy rate compared to FBA in predicting the essential-
ness of the genes. Although FBA predicted a higher number of correct essential genes, its
accuracy rate (44 percent) was markedly lower than that of RFBA (57 percent).

Increasing the threshold value for determining the lethality of genes to .7 produced a
higher number of correct essential genes determined by RFBA (63 to 75), but also increased
the number false positives by a proportional amount (48 to 58), thus leaving the accuracy
rate relatively stable around 57 percent. Similarly, decreasing the threshold value to .3
decreased the number of correct essential genes as well as false positives, and produced only
a marginal improvement on the accuracy rate (57 percent to 58 percent).

Gene knockout simulations with models iAF1260 and iJO1366 are still work in progress.

3.7.3 Robust MOMA Method (RMOMA)

3.7.3.1 MOMA: an Alternative Approach Minimization of Metabolic Adjustment
(MOMA) is an alternative method of simulating gene knockouts. Unlike FBA-based gene
knockout simulations, which assume that mutant cells achieve an optimal growth rate,
MOMA hypothesizes that mutant cells minimize changes in flux state in response to the
gene deletion. [6] Specifically, MOMA minimizes the Euclidean distance between the flux
values of the wild-type cell and the mutant cell. More precisely, the goal is to minimize
||v′ − v||, where v is any optimal flux vector of the wild-type cell satisfying the steady-state
conditions and environmental bounds, and v′ is any feasible flux vector for the mutant,
meaning it satisfies the typical steady-state constraint subject to new bounds L′ and U ′

which fix the lost reactions at zero flux. The growth flux of the mutant is then taken to be
the growth flux of the new flux vector v′ which yields optimality in the MOMA minimization
problem. The lethality of the gene knockout is then defined by some threshold below which
the ratio of mutant to wild-type growth rate must fall, just as under the FBA method.

3.7.3.2 Implementation MOMA can be formulated as an SOCP in the following way:

� MOMA seeks to minimize the norm of a vector, just as in the minimization of M
discussed previously. We again introduce a new variable φ, and impose the conic
constraint φ ≥ ||∆v||. Minimizing φ is then equivalent to minimizing ||∆v||.
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� The unknown vector is consequently defined to be the vector

x = (v, s, z, v′, s′, z′, φ,∆v) .

� Recall that the original RFBA program constructed an SOCP in two steps, first by
constructing a system of equations Ax = b which imposed the steady-state condi-
tions, and then by manipulating variables and imposing cone constraints such that
the condition L ≤ v ≤ U was satisfied by any v feasible in the SOCP. To impose the
steady-state conditions on v and v′, we form the matrices A and b that impose this
constraint and begin with the system

[
A 0
0 A

]


v
s
z
v′

s′

z′

 =

[
b
b

]
.

� It will later be advantageous to have the unknowns v, v′ located consecutively within
x. By suitably rearranging columns of the above system we obtain this reordering of
variables.

� We then expand x to include the variables φ,∆v, and enforce the equation ∆v = v′−v
by adding the following rows to the system:

[
Id −Id 0 −Id

]


v
v′

s
s′

z
z′

φ
∆v


=
[

0
]
.

� Since v and v′ are adjacent, we can construct lower and upper bound vectors on the
joint flux vector [v; v′] by concatenating L with L′ and U with U ′, setting fixing the
growth rate in the bounds on v and setting deleted reactions to 0 in the bounds on
v′. With a single flux vector a single vectors of upper and lower bounds, we can then
format the system in the normal way for the solver.

3.7.3.3 Computational Difficulties We have confirmed that RMOMA has been im-
plemented correctly and yields reasonable results through testing on the E. coli core model.
However, the system of equations on which RMOMA is based is more than double the size
of a typical

3.8 Wild-Type Modeling

3.8.1 RFBA and Non-optimized Cultures

The traditional FBA model suffers from two limiting assumptions: that cells exist in steady-
state, and that cells are identical across a culture, particularly with regard to biomass
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composition (reflected in growth coefficients). While these assumptions represent an over-
simplification of biological reality in any situation, one can conceive of a cellular culture
as converging towards such a state over lengthy periods of time if it remains in a stable
environment with a steady supply of the same nutrients. Indeed, while the improvements
shown by RAMP support the notion that LFBA’s assumptions are faulty, the successes of
linear FBA (LFBA) suggest that the steady-state and uniformity assumptions are not gross
misrepresentations of optimized cultures in a stable environment, such as a labratory.

However, when one turns from a stable cellular environment to the ever-changing envi-
ronments in nature, the LFBA assumptions no longer represent a reasonable approximation
of the biological situation. Cells in nature, referred to as wild-type cells, exhibit greater vari-
ability across a culture and can be expected deviate farther from steady-state as they adjust
their flux state and metabolite concentrations to adapt to changes in nutrients available.
While LFBA cannot possibly model such situations, RAMP may be capable of modeling
non-optimized wild-type cultures. Parameters representing deviation from steady state (M)
and variability across a culture (σ in the distribution of Si) can be increased to represent the
fact that wild-type cultures do not exist near the steady-state, uniform condition imposed
by LFBA.

This section is devoted to discussing preliminary attempts to model wild-type cells, their
results, and future possibilities in the use of RAMP to study non-optimized cultures.

3.8.2 Preliminary Attempts

Preliminary attempts have centered upon isolating possible values for the parameters M
(departure from steady-state) and σ (variability of growth coefficients) over time as a wild-
type culture adapts to a stable environment and approaches optimality. We expect M to
decrease and σ to increase over time in such a way that the growth rate increases towards
LFBA optimal value. Based upon experimental data from [5], we know the growth rate
that E. coli should have at each point in time as it approaches optimality over a 40-day
period. The goal is to then back-calculate an (M,σ) pair for each point in time to infer
information about steady-state deviation and growth coefficient variability as the culture
adapts.

The most significant hurdle in inferring such information has been degeneracy in possible
(M,σ) pairs for any given growth rate. In fact, for a given growth rate, we can calculate
for any σ a minimal M such that the growth rate is achieved. This process simply involves
constructing the scenario sets of the uncertain rows Su according to a given σ and then
executing the minimal M function. The result of executing this process for a fixed growth
rate over a range of σ values is a linear relationship between ||M || and σ.

Since an infinite number of possible (M,σ) pairs can be computed for each growth rate,
we sought additional constraints to isolate realistic pairs. An initial idea was this: we expect
that as the cellular culture progresses from one growth rate to another, changes in M and
σ are continuous. Consequently, (M,σ) pairs for consecutive, sufficiently close growth rates
should be close to each other, i.e. near the intersection of the M -vs.-σ graphs for the
two growth rates. Taking each consecutive pair of growth rates and locating the point of
intersection of their M -vs.-σ graphs, we hoped to identify a progression of (M,σ) points
along which the culture must progress over time in order to adjust steady-state deviation
and growth coefficient variance continuously as it adapts to a stable environment.
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While theoretically promising, this approach did not yield realistic results. Taking a
least-squares linearization of the M -vs.-σ relation for each growth rate and locating points
of intersection, we found that the intersections points were all very near the origin and in no
orderly progression. Further consideration suggests these lines should in fact not intersect,
and that their apparent intersection near the origin was the result of computational error
and rounding. For any two growth rates g1 < g2 and a fixed σ, a greater M (greater
steady-state deviation) should always be required to achieve the higher growth rate. In
other words, M(g1, σ) ≤ M(g2, σ) for every σ, so that the M -vs.-σ graph for g1 should
never cross the M -vs.-σ graph for g2. Note that this does not imply that (M,σ) pairs must
change discontinuously with growth rate; a small increase in growth rate could produce only
a slight shift of the M -vs.-σ graph upward, so that the new (M,σ) pair moves only slightly
from the old without the two lines needing to intersect.

In another approach, we sought experimental biological data that might limit possible
(M,σ) pairs. [5] contained experimental data about glucose and oxygen uptake rates for the
culture over time. We speculated that of the set of (M,σ) pairs for each growth rate, only
some bounded subset of pairs might be consistent with the known glucose and oxygen uptake
rates. Selecting these subsets for each growth rate and connecting them in a reasonable way
might then yield the desired path of (M,σ) through time.

However, this approach also met with difficulty. We determined consistency of a given
(M,σ) pair with experimental data by maximizing and minimizing the glucose and oxy-
gen uptake rates subject to a maximal steady-state deviation of M and growth coefficient
standard deviation of σ. (M,σ) pairs for M and σ nearly zero were consistent with the
experimental data, and as M and σ increased, the range of theoretically possible uptake
rates did not shift in one direction or the other, but expanded outward in both directions,
remaining consistent with the data. The wide ranges on flux values permitted by the robust
model and the expanding rather than shifting of these ranges with increases in M and σ
combined to make all (M,σ) pairs consistent with experimental data, so this method also
failed to isolate probable (M,σ) values.

In addition to these computational difficulties, we encountered broader, biological ques-
tions about how a wild-type culture should be modeled. One persistent question was this:
what aspect of wild-type cells prevents them from growing optimally when not acclimated
to a stable environment? We certainly expect steady-state deviation to be greater for a
wild-type culture in a changing environment, and this has the effect of enabling increased
growth rates. If σ is the only other parameter being varied, it must then increase to account
for the diminished growth rate, representing greater variability of the growth culture.

While increasing σ has the effect of reducing growth rate in RAMP because RAMP
optimizes over some high percentage of growth coefficient scenarios, a change in σ does
not actually represent an overall decrease in growth efficiency in the culture: increasing σ
represents greater deviation of the growth coefficients in both directions, both the direction
unfavorable toward growth and the direction favorable toward it, with the result that some
portion of the culture is represented as having more ideal growth coefficients than any
eventually will in the optimized culture. A more accurate representation of the wild-type
growth coefficients should therefore involve a change in the average growth coefficients as well
as growth coefficient variability to avoid this misrepresentation. However, computational
results may be unaffected because RAMP optimizes over the least ideal growth coefficients
in either case.
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Another approach, however, might say that wild-type cultures fail to reach optimality
not because of less favorable growth coefficients within the culture (reflecting a less ideal
biomass composition), but because cells fail to reach the maximum growth rate possible
because it takes time to express the genes and create the enzymes necessary to adjust their
flux state the ideal flux state when they enter a new environment. Such a scenario would
represent a greater modeling challenge for RAMP, since RAMP is inherently an optimization
model.

However, we have developed a method to represent in RAMP the gradual progression of
a wild-type culture toward an optimal growth rate. We represent time in a discrete series
of points and assume that sub-optimal cells increase growth rate as quickly as possible over
time, but are limited by some maximum rate at which they can adjust their flux state in
time. This method thus optimizes growth rate at each point in time, but subject to some
maximum deviation from the flux state of the previous point in time. It begins with some
sub-optimal flux vector v0 which yields a growth rate equal to the experimentally-known
initial growth rate of the wild-type culture. Between any two points in time tj and tj+1 it
then solves the following optimization problem:

max
{

(vgrowth)tj+1
: −M−i ≤ Sivj+1 ≤M+

i ∀ Si ∈ Ui, L ≤ vj+1 ≤ U, ||vj+1 − vj || ≤ φ
}

for some constant φ representing the maximum change in flux state between two points in
time.

The result of this program is a function giving growth rate over time. In the typical
result, growth rate increases quickly at first and levels off gradually toward the ultimate
optimal growth rate, as expected. The length of time is affected by φ, but it does not affect
its overall qualitative shape.

Several disadvantages to this approach should be mentioned. First, it currently treats
all other modeling parameters as constant. This could potentially be fixed, for example
by making M some suitable function of time. The greater problem is that this approach
assumes information about parameters such asM , and then infers information about growth.
However, since growth information is already known about a culture over time, it would be
more ideal to have some method of inferring information about other modeling parameters
given information about growth over time.

To conclude, our work indicates that RAMP is capable of representing non-optimized
wild-type cultures, but that additional biological information is necessary before an accurate
model can be implemented. Succinctly put, many combinations of different parameters can
be used in RAMP to induce the expected wild-type behavior, and so only with greater
biological information might it be possible to determine which parameters should be used
to account for this behavior and to then make specific quantitative predictions about the
behavior of those parameters over time.

3.9 An Alternative Computing Approach

3.9.1 Motivation

Semidefinite and quadratic program solvers take problems of the specific form

min
{
cTx : Ax = b

}
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where the components of x are free or restricted to positive or quadratic cones. Although
the Robust FBA optimization problem is not naturally in this form, we have explained how
it can be expressed in the canonical form of a second-order cone program above and solved
by SeDuMi and similar programs. However, this process involves the introduction of many
slack and surplus variables and an expansion of the stoichiometric matrix into a new matrix
many times its size. These changes required to express our problem in the standard primal
form of an SOCP have had a significant effect on computational time and complexity, so
that many programs take hours or days to solve.

The original form of the Robust FBA optimization problem resembles much more closely
the dual of a canonical SOCP. A more efficient computational method than converting it to
a primal problem would instead consist of leaving it as a dual problem, finding the primal
problem to which it dual, and giving that primal problem to the solver. Since the primal
and dual of an SOCP have the same solution, the same optimal value will be computed.
The solution vector v to our (dual) problem will consist of the dual variables given by the
solver.

3.9.2 Implementation

The original form of the RFBA/ SOCP problem is the following:

max
{
dT v : M c− ≤ Scv ≤M c+,Mu−

j + ||Rjv|| ≤ Suj v ≤Mu+
j ∀ j, L ≤ v ≤ U

}
where we have used d rather than c to avoid future confusion.

The canonical forms of a primal SOCP and its dual are the following:

primal: dual:
min

{∑
i c
T
i xi :

∑
iAixi = b, xi ∈ Ki ∀ i

}
, max

{
bT y : ci −ATi y ∈ Ki ∀i

}
.

Our goal is to express RFBA in the canonical form of a dual SOCP, find the corresponding
primal problem, and format it for solvers such as SeDuMi.

We first express RFBA as an SOCP. It is evident that d plays the role of b, and that
the unknown y in the dual problem is the flux vector v in RFBA. It remains to express the
RFBA constraints as cone constraints of the form ci−ATi y ∈ Ki. For the constraints on Sc

and the flux bounds L and U , observe the following:

M c− ≤ Scv ≤M c+, L ≤ v ≤ U ⇐⇒ M c− ≤ Scv ≤M c+, L ≤ Id · v ≤ U

⇐⇒
[
M c−

L

]
≤
[
Sc

Id

]
v ≤

[
M c+

U

]

⇐⇒


[
M c+

U

]
−
[
Sc

Id

]
v ∈ Rn+,[

−M c−

−L

]
−
[
−Sc
−Id

]
v ∈ Rn+.
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Similarly, we express the constraints on each row of Su as follows:{
||Rjv|| ≤Mu+

j − S̄uj v ∀ j,
||Rjv|| ≤ −Mu−

j + S̄uj v ∀ j
⇐⇒

{ (
Mu+
j − S̄uj v,Rjv

)
∈ Kq ∀ j,(

−Mu−
j + S̄uj v,Rjv

)
∈ Kq ∀ j

⇐⇒


[
Mu+
j

0

]
−
[
S̄uj
Rj

]
v ∈ Kq ∀ j,[

−Mu−
j

0

]
−
[
−S̄uj
−Rj

]
v ∈ Kq ∀ j.

RFBA now is the following optimization problem, in canonical dual form:

max dT v, subject to:[
M c+

U

]
−
[
Sc

Id

]
v ∈ Rn+,[

−M c−

−L

]
−
[
−Sc
−Id

]
v ∈ Rn+.[

Mu+
j

0

]
−
[
S̄uj
Rj

]
v ∈ Kq ∀ j,[

−Mu−
j

0

]
−
[
−S̄uj
−Rj

]
v ∈ Kq ∀ j.

A comparison of the canonical primal and dual forms shows that in the corresponding
primal problem, each matrix by which v is multiplied in the above cone constraints becomes
the transpose of a matrix Ai in the primal constraint

∑
iAixi = d, where the new primal

unknown xi must lie in the cone of the corresponding dual constraint. Moreover, each vector
in the above cone constraints becomes a vector ci in the primal objective function

∑
i cixi.

The primal problem to which RFBA corresponds is thus:

min


[
M c+

U

]T
x1 +

[
−M c−

−L

]T
x2 +

∑
j

([
Mu+
j

0

]T
x2j+1 +

[
−Mu−

j

0

]T
x2j+2

) ,

subject to:[
Sc

Id

]T
x1 +

[
−Sc
−Id

]T
x2 +

∑
j

([
S̄uj
Rj

]T
x2j+1 +

[
−S̄uj
−Rj

]T
x2j+2

)
= d,

x1, x2 ∈ Rn+, x3, . . . , xn ∈ Kq.

Since solvers such as SeDuMi require one vector c, one matrix A, and one unknown x, we
give the solver the equivalent problem min

{
cTx,Ax = b, xi ∈ Ki

}
where

c =
[
(M c+)T , UT , (−M c−)T , −L, Mu+

1 , 0, −Mu−
1 , 0, . . . , Mu+

j , 0, −Mu−
j , 0, . . .

]
A =

[
(Sc)T , Id, (−Sc)T , −Id, (S̄u1 )T , RT1 , (−S̄u1 )T , −RT1 , . . . , (S̄uj )T , RTj , (−S̄uj )T , −RTj , . . .

]
x =

[
xT1 , x

T
2 , . . . , xi, . . . , xn

]T
, each sub-vector xi in its cone as given above.
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3.10 Modularity and Other Alternative Forms

To increase coding flexibility, we divided Robustify into two separate functions. We created
a function dual2solver which takes the Ai, ci, and d matrices for an SOCP in canonical dual
form and formulates the corresponding primal problem for solvers. Robustify now consists
of a code which creates these matrices as detailed above and then calls dual2solver. The
advantage of modularizing code in this way is that the dual2solve function has made it easy
to create alternate forms of the Minimal M and RMOMA programs, which can also be
expressed more simply as dual rather than primal SOCPs.

4 Theoretical Results

4.1 Stability Analysis

The robust FBA model maximizes growth flux over a set of feasible flux vectors v. The flux
vector, v, is defined to be feasible if it satisfies the constraint Av ≤ b for all vectors A in an
uncertainty set U = {Ā + uTR : uTu ≤ 1} determined by some vector Ā and some matrix
R.

The choice of parameters Ā and R defining U is somewhat arbitrary, and therefore it is
desirable to assure that feasible v are stable under sufficiently small perturbations in Ā and
R.

We prove the following:

Theorem. Let U = {Ā+uTR : uTu ≤ 1} and let v be a vector such that Av ≤ b for every
A ∈ U , where b > 0 is a constant. Let U ′ = {Ā′ + uTR′ : uTu ≤ 1} be a second uncertainty
set defined by Ā′ = Ā+ ∆A and R′ = R+ ∆R. Then for any given ε > 0, there exists δ > 0
such that if

∣∣∣∣∆Ā∣∣∣∣+ ||∆R|| < δ, then there exists v′ satisfying A′v′ ≤ b for all A′ ∈ U ′ and
||v′ − v|| < ε.

We make use of the following Lemma:

Lemma. Av ≤ b ∀ A ∈ U if and only if Āv + ||Rv|| ≤ b.
Proof of Lemma.

Av ≤ b for all A ∈ U ⇐⇒ max {Av : A ∈ U} ≤ b
= max

{(
Ā+ uTR

)
v : uTu ≤ 1

}
= Āv + max

{
uTRv : uTu ≤ 1

}
= Āv + ||Rv|| .

Therefore Av ≤ b for all A ∈ U ⇐⇒ Āv + ||Rv|| ≤ b. �

Proof of Theorem: Let ε > 0. We will find c ∈ (0, 1) so that v′ = cv satisfies A′v′ ≤ b
for all A′ ∈ U ′ and ||v′ − v|| < ε when

∣∣∣∣∆Ā∣∣∣∣+ ||∆R|| < δ for some δ > 0.

We show that max {A′(cv) : A′ ∈ U ′} ≤ b by showing max {A′(cv) : A′ ∈ U ′} ≤ max {Av : A ∈ U}.
Note that this inequality is equivalent to the following:

max {A′(cv) : A′ ∈ U ′} ≤ max {Av : A ∈ U}
⇐⇒ Ā′cv + ||R′cv|| ≤ Āv + ||Rv||
⇐⇒

(
Ā+ ∆Ā

)
cv + ||(R+ ∆R) cv|| − Āv − ||Rv|| ≤ 0.
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The expression on the left side of the inequality can be bounded above as follows:(
Ā+ ∆Ā

)
cv + ||(R+ ∆R) cv|| − Āv − ||Rv||

≤ Ācv +
∣∣∣∣∆Ācv∣∣∣∣+ ||Rcv||+ ||∆Rcv|| − Āv − ||Rv||

≤ cĀv + c
∣∣∣∣∆Ā∣∣∣∣ ||v||+ c ||Rv||+ c ||∆R|| ||v|| − Āv − ||Rv||

(by the sub-multiplicity of the 2-norm)

≤ c
(
Āv +

∣∣∣∣∆Ā∣∣∣∣ ||v||+ ||Rv||+ ||∆R|| ||v||)− (Āv + ||Rv||
)
.

Therefore, if

c ≤ Āv + ||Rv||
Āv + ||Rv||+

(∣∣∣∣∆Ā∣∣∣∣+ ||∆R||
)
||v||

then
max {A′(cv) : A′ ∈ U ′} ≤ b.

Choose

v′ = cv =

(
Āv + ||Rv||

Āv + ||Rv||+
(∣∣∣∣∆Ā∣∣∣∣+ ||∆R||

)
||v||

)
v.

Now we show that if
∣∣∣∣∆Ā∣∣∣∣ + ||∆R|| is sufficiently small then ||v′ − v|| = ||cv − v|| =

(1 − c) ||v|| < ε, which is true if and only if 1 − c < ε
||v|| . Note that the function f(x) =

k
k+x||v|| (k constant) satisfies limx→0 f(x) = 1. Therefore if k = Āv + ||Rv||, ∃ δ > 0 such

that if
∣∣∣∣∆Ā∣∣∣∣ + ||∆R|| < δ, then

∣∣f (∣∣∣∣∆Ā∣∣∣∣+ ||∆R||
)
− 1
∣∣ = 1 − c < ε

||v|| , which implies

||v′ − v|| < ε. �

4.2 Extensions and Corollaries of Stability Analysis

The actual FBA model requires not just that Av ≤ b for all A in a single uncertainty set U ,
but that Aiv ≤ b for all Ai ∈ Ui where

{
Ui =

{
Āi + uTRi : uTu ≤ 1

}
: i = 1, 2, . . . ,m

}
is a

collection of uncertainty sets. To show that the model is stable, it is therefore necessary to
extend the theorem with the following corollary:

Corollary. Under a perturbation of each Āi and Ri, a single v′ can be constructed such
that A′iv

′ ≤ b ∀ A′i ∈ U ′i for each i = 1, 2, . . . , k.

Proof. Let ε > 0 be given. We must find v′ and δ > 0 so that if
∣∣∣∣∆Ā′i∣∣∣∣+ ||∆R′i|| < δ ∀

i, then A′iv
′ ≤ b ∀ A′i ∈ U ′i for each i, and ||v′ − v|| < ε.

By the theorem proven above, for each i there exist ci and δi such that ||civ − v|| < ε and
A′iciv ≤ b ∀ A′i ∈ U ′i provided

∣∣∣∣∆Āi∣∣∣∣+ ||∆Ri|| < δi. Choose c = min {ci : i = 1, 2, . . . ,m},
so that c = ck for some 1 ≤ k ≤ m, and choose δ = min {δi : i = 1, 2, . . . ,m}.

Now suppose that
∣∣∣∣∆Ā′i∣∣∣∣ + ||∆R′i|| < δ for all i. Then

∣∣∣∣∆Ā′k∣∣∣∣ + ||∆R′k|| < δk and so

||cv − v|| = ||ckv − v|| < ε. Furthermore, for each i = 1, 2, . . . ,m,
∣∣∣∣∆Ā′i∣∣∣∣+ ||∆R′i|| < δi and

so max {A′icv : A′i ∈ U ′i} = c
(
Ā′iv + ||R′iv||

)
≤ ci

(
Ā′iv + ||R′iv||

)
≤ b. So v′ = cv satisfies

the requisite properties. �

It may sometimes be desirable to tighten the restriction upon A′v′ from the initial
restriction on Av, so that A′v′ ≤ b− δb ∀ A′ ∈ U ′ for some δb > 0. The following corollary
shows that the theorem remains true under sufficiently small perturbations in b.
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Corollary. For any ε > 0, there exist δAR, δb > 0 so that if
∣∣∣∣∆Ā∣∣∣∣+ ||∆R|| < δAR, ∃ v′

such that ||v′ − v|| < ε and A′v′ ≤ b− δb ∀ A′ ∈ U ′.

Proof. The reasoning follows that of the proof of the theorem.

A′v′ ≤ b− δb ∀A′ ∈ U ′ if Ā′cv + ||R′cv|| − Āv − ||Rv||+ δb ≤ 0.

This expression is bounded above by

c
(
Āv +

∣∣∣∣∆Ā∣∣∣∣ ||v||+ ||Rv||+ ||∆R|| ||v||)− Āv − ||Rv||+ δb

and so the inequality is satisfied if

c
(
Āv +

∣∣∣∣∆Ā∣∣∣∣ ||v||+ ||Rv||+ ||∆R|| ||v||)− Āv − ||Rv||+ δb ≤ 0,

which is true if

c =
Āv + ||Rv|| − δb

Āv + ||Rv||+
(∣∣∣∣∆Ā∣∣∣∣+ ||∆R||

)
||v||

.

Clearly, c can be chosen arbitrarily close to 1 by taking δb and
∣∣∣∣∆Ā∣∣∣∣+ ||∆R|| sufficiently

small, which in turn makes v′ = cv arbitrarily close to v. �

The robust FBA model places not only an upper but also a lower bound on Av. We now
extend the theorem to cover the constraint −b ≤ Av ≤ b.

Corollary. Suppose v satisfies −b ≤ Av ≤ b for all A ∈ U , and let ε > 0. Then ∃ δ > 0
so that if

∣∣∣∣∆Ā∣∣∣∣ + ||∆R|| < δ, there exists v′ such that ||v′ − v|| < ε and −b ≤ A′v′ ≤ b ∀
A′ ∈ U ′.

Proof. By the theorem, there exist c1 ∈ (0, 1) and δ1 > 0 such that ||c1v − v|| < ε and
A′c1v ≤ b ∀ A′ ∈ U ′ if

∣∣∣∣∆Ā∣∣∣∣ + ||∆R|| < δ1. Note that −b ≤ Av =⇒ A(−v) ≤ b. So
applying the theorem to −v, there exist c2 ∈ (0, 1) and δ2 > 0 such that ||c2v − v|| < ε and
A′(c2(−v)) ≤ b ∀ A′ ∈ U ′ ⇐⇒ −A′(c2v) ≤ b ∀ A′ ∈ U ′ ⇐⇒ −b ≤ A′(c2v) ∀ A′ ∈ U ′ if∣∣∣∣∆Ā∣∣∣∣+ ||∆R|| < δ2.

Let c = min{c1, c2} = ck for some k, and δ = min{δ1, δ2}. Then
∣∣∣∣∆Ā∣∣∣∣ + ||∆R|| < δ

implies
∣∣∣∣∆Ā∣∣∣∣ + ||∆R|| < δk, which means ||cv − v|| = ||ckv − v|| < ε. Furthermore,∣∣∣∣∆Ā∣∣∣∣+ ||∆R|| < δ1 =⇒ A′cv ≤ A′c1v ≤ b if A′v is nonnegative, and A′cv < 0 < b if A′v is

negative. Likewise,
∣∣∣∣∆Ā∣∣∣∣+ ||∆R|| < δ2, which implies A′cv ≥ A′c2v ≥ b if A′v is negative,

and A′cv > 0 > −b if A′v is positive. Therefore −b ≤ A′cv ≤ b ∀ A′ ∈ U ′. Hence v′ = cv
satisfies the requisite properties. �

4.3 Lower Semi-Continuity

4.3.1 Lower Semi-Continuity of Robust LP

We attempt to establish a Lower Semi-Continuity argument to validate the legitimacy of
the new RAMP model. Lower Semi-Continuity guarantees that as we decrease uncertainty
in RAMP, the RAMP solutions converge back to a solution to FBA. We prove Lower Semi-
Continuity for a general Robust LP and remember that RAMP is an application of a Robust
LP.
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Suppose we have a primal Robust LP problem of the form min{cTx : Ax = a,Bix ≥
bi ∀Bi ∈ Ui, x ≥ 0} where Ui = {B̄i+uTRi : uTu ≤ 1}. Notice that the constraints denoted
with A’s contain no uncertainty in the Robust problem while the constraints denoted with
B’s are given uncertainty in the Robust problem. We write the dual to the robust LP,
max{aTλ+bTi ρ0 : ATλ+B̄Ti ρ0i−

∑
i (Ri)

T ρi ≤ c, ρ0i ≥ ||ρi|| , λ free}. We create a function f ,
a point-to-set map, that takes in some (A, a,R, B̄, b) and outputs a set containing items of the
form (x, λ, ρ0, ρ) where x belongs the set argmin{cTx : Ax = a,Bix ≥ bi ∀Bi ∈ Ui, x ≥ 0}
and λ, ρ0, and ρ are the corresponding allowable dual variables for a given x. The cost
function c is a constant. We assume Slater’s interior condition, a condition that guarantees
we have an optimal solution to our problem, and we show that f is lower-semi continuous.

Theorem. Lower Semi-Continuity: If the sequence (Ak, ak, Rk, B̄k, bk)→ (A∗, a∗, R∗, B̄∗, b∗)
and the sequence (xk, λk, ρk, ρk0)→ (x∗, λ∗, ρ∗, ρ∗0) where (xk, λk, ρk, ρk0) ∈ f(Ak, ak, Rk, B̄k, bk),
then (x∗, λ∗, ρ∗, ρ∗0) ∈ f(A∗, a∗, R∗, B̄∗, b∗). In other words, if we know the parameters defin-
ing the Robust LP converge and the corresponding solutions to the Robust LP also converge,
the limit of the solutions to the Robust LP is equal to the solution to the Robust LP defined
by the limiting values of the original parameters.

Proof. For any (Ak, ak, Rk, B̄k, bk) in the sequence, (Ak, ak, Rk, B̄k, bk) is an allow-
able input to f by assumption, so (Ak, ak, Rk, B̄k, bk) must satisfy primal feasibility, dual
feasibility, and complementarity in the robust problem in order to produce an optimal out-
put for f . By constructing the terms of these three conditions, (Ak, ak, Rk, B̄k, bk) and
(xk, λk, ρk, ρk0) ∈ f(Ak, ak, Rk, B̄k, bk) must satisfy the following set of equations for all k:

Akxk = ak∣∣∣∣Rkxk∣∣∣∣ ≤ B̄kxk − bk
(Ak)Tλk + B̄k

T
(ρi0)k −

∑
i (Rk)T (ρi)k ≤ c

(ρi0)k ≥
∣∣∣∣(ρi)k∣∣∣∣

cTxk − (ak)Tλk − (bk)T (ρ0)k = 0.

(3)

Since the product of two convergent sequences converges to the product of the limits
of the two sequences, and the same notion holds for the sum of two convergent sequences,
we get that every equation and inequality in (3) holds for A∗, a∗, R∗, B̄∗, b∗, x∗, λ∗, ρ∗, and
ρ∗0. For example, we look at the last equality, cTxk − (ak)Tλk − (bk)T (ρ0)k = 0. The right
hand side remains 0 for every k and so limk→∞(cTxk − (ak)Tλk − (bk)T (ρ0)k) = 0. We use
properties of limits to break this up into the equation limk→∞ cTxk − limk→∞(ak)Tλk −
limk→∞(bk)T (ρ0)k = 0.We know that the product of the limits of convergent sequences is
the is equal to the limit of the entire product, so limk→∞(bk)T (ρ0)k = (b∗)T ρ∗0. This notion
holds for every term, and we have cTx∗ − (a∗)Tλ∗ − (b∗)T ρ∗0 = 0. The same argument
holds for inequalities. The norm is a continuous operator so it also does not skew limiting
values. Every equation holds when we plug in A∗, a∗, R∗, B̄∗, b∗, x∗, λ∗, ρ∗, and ρ∗0. Thus
by the definition of the function f , (x∗, λ∗, ρ∗, ρ∗0) ∈ f(A∗, a∗, R∗, B̄∗, b∗) and f is lower
semi-continuous.

4.3.2 Robust Convergence to a Linear Optimal Solution

Observe the primal Linear Programming problem min{cTx : Âx = â, B̂x ≥ b̂, x ≥ 0} with

a dual, max{âT y1 + b̂T y2 : ÂT y1 + B̂T y2 ≤ c, y1 free, y2 ≥ 0}. To satisfy complementarity

36



in the LP, x must solve cTx = âT y1 + b̂T y2. All together, for x to be an optimal solution to
the LP, it must satisfy the following necessary and sufficient conditions:

Âx = â

B̂x ≥ b̂, x ≥ 0

ÂT y1 + B̂T y2 ≤ c, y2 ≥ 0

cTx = âT y1 + b̂T y2.

(4)

We look back to the Robust LP problem from Section 4.3.1: min{cTx : Ax = a,Bx ≥
b∀B ∈ U, x ≥ 0} where U = {B̄+uTR : uTu ≤ 1}. We use the idea of lower semi-continuity
to show that as uncertainty decreases to 0 in the Robust LP and constraints from the Robust
problem converge to constraints from the Linear problem, the optimal solution to the Robust
problem will converge to an optimal solution to the Linear problem. More specifically, as a
sequence (Ak, ak, Rk, B̄k, bk) converges to (Â, â, 0, B̂, b̂), uncertainty decreases to 0 and the
robust constraints converge back to the linear constraints. If there exists a corresponding
sequence (xk, λk, ρk, ρk0) that converges to (x∗, y1, ρ

∗, y2), then x∗ satisfies the necessary and
sufficient conditions for the linear program by the previous theorem. In this case, we have
decreased uncertainty and shown that the optimal solution to our robust model converges to
an optimal solution to the linear model. Notice that when assuming lower semi-continuity,
the system of equations (3) must hold true for the given convergent values. In other words,

Âx∗ = â

||0 · x∗|| ≤ B̂x∗ − b̂
ÂT y1 + B̂T y2 −

∑
i (0)(ρ∗)i ≤ c

y2 ≥
∣∣∣∣ρi∣∣∣∣

cTx∗ − âT y1 − b̂T y2 = 0.

(5)

must hold true. Ignoring the fourth equation in the system and simplifying, we know the
following must be true:

Âx∗ = â

b̂ ≤ B̂x∗
ÂT y1 + B̂T y2 ≤ c

cTx∗ = âT y1 + b̂T y2.

(6)

Looking back to the original posed Linear Program, we see that x∗ now satisfies the
necessary and sufficient conditions for an optimal solution in the LP (4). Thus, the system
of equations for the robust model collapses to that of the linear model, and our optimal
solutions to the robust model converge to an optimal solution to the linear model. Alterna-
tively, instead of having R converge to 0, we could impose the more-relaxed conditions that
||Rx∗|| converges to 0 and Rρ∗ converges to 0 and get the same result.

We return to the example of a comparative Robust LP and LP used in Section 2.4.1 to
illustrate this result. Recall that the boundary of the feasible region for each problem can
be represented in the graph:
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Lower Semi-Continuity guarantees a pair of boundaries for feasible solutions that look
like the following:

We see here that uncertainty has decreased, so the robust boundary lies close to the linear
boundary. Lower Semi-Continuity tells us that the robust LP behaves as we would expect-
this visual indeed does describe how robust solutions behave as we decrease uncertainty to
0.

4.3.3 Application to RAMP and FBA

Refer back to Section 2 and recall that the Robust Aanalysis of Metabolic Pathways model
is a Robust LP and the FBA model is a related LP. In applying this result to Flux Balance
Analysis and RAMP, we validate the legitimacy of our new robust model. The FBA model
has been used extensively and it is reassuring that if there is small uncertainty in the robust
model, the optimal solution to the robust model is close to that of the linear model. Also, as
robust uncertainty decreases, if we can assume that the robust optimal solution converges,
we know that the robust optimal solution gets closer to a linear optimal solution. We can
thus replicate the linear FBA model if we use specific parameters in the RAMP model.
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4.4 Upper Semi-Continuity

4.4.1 Upper Semi-Continuity of Robust LP

We have shown that as we decrease uncertainty to zero, the optimal solution to the Robust
LP converges an optimal solution of the original LP if it converges somewhere. It is also of
interest to assure that we can converge our Robust LP back to every optimal solution to
the linear model if we construct our convergent sequence in a specific way. This argument
describes our function f as upper semi-continuous. Recall the Robust LP stated in Section
4.3.1: min{cTx : Ax = a,Bix ≥ bi ∀Bi ∈ Ui, x ≥ 0} where Ui = {B̄i + uTRi : uTu ≤ 1}. We
first prove a lemma.

Lemma. Given x∗B , which describes a single optimal LP solution, and y1B and y2B ,

the corresponding dual LP variables, then (x∗B , y1B , 0, y2B) ∈ f(Â, â, RB , B̂, b̂) where RB is
defined as a non-zero matrix such that ||RBx∗B || = 0 and ||RBxB || 6= 0, where xB is any
other optimal linear solution.

Proof. The proof follows an extension of ideas from Section 4.3.2. Since x∗B is an optimal

LP solution, it solves the equations (4) for y1B , y2B , Â, â, B̂, b̂. To assure (x∗B , y1B , 0, y2B) ∈
f(Â, â, RB , B̂, b̂), the inputs must satisfy (3). So we must have:

Âx∗B = â

||RBx∗B || ≤ B̂x∗B − b̂
ÂT y1B + B̂T y2B −

∑
i (RB)T · 0 ≤ c

y2B ≥ ||0||
cTx∗B − âT y1B − b̂T y2B = 0.

(7)

The fourth equation follows from constraints on the dual variable in the original LP. All
of the other equations are equivalent to those in (4), which are given as true.

Now we prove the theorem.

Theorem. Upper Semi-Continuity: Given (x∗B , y1B , 0, y2B) ∈ f(Â, â, RB , B̂, b̂) ∃ a se-

quence (Ak, ak, Rk, B̄k, bk) → (Â, â, RB , B̂, b̂) and (xk, λk, ρk, ρk0) ∈ f(Ak, ak, Rk, B̄k, bk)
such that (xk, λk, ρk, ρk0)→ (x∗B , y1B , 0, y2B).

Proof. Consider the sequence (Â, â, tRB , B̄, b̄) where we let t → 0. We know that
RBx

∗
B = 0, or that x∗B is in the null space of RB . Then x∗B must also be in the null

space of αRB , where α is a scalar. Thus, for the sequence given above, USC Lemma verifies
that (x∗B , y1B , 0, y2B) is in the mapping of every member of the sequence. Therefore, the
constant sequence (x∗B , y1B , 0, y2B) fits the conditions of the theorem and trivially converges
to (x∗B , y1B , 0, y2B).

We look back again to our example of an LP and a Robust LP. Upper Semi-Continuity
guarantees that by skewing R in a specific way, we can converge the robust solutions back
to any solution to the linear model. So, we don’t only have a convergence like this:
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but also one like this:

and in fact, a convergence of the red curve to every point on the black curve. Our specific
method for obtaining upper semi-continuity relied on a scaling of R, which would lead to a
converge that looks something like the following in our example:

The graphs here apply to the particular toy example used above, note that usually we
are dealing with high-dimensionality, which does not lend itself to this geometry.
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4.4.2 Application to RAMP and FBA

In applying the result to FBA and RAMP, we have that every optimal solution to a posed
linear FBA problem can be described as the limit of a specific set of solutions to RAMP.
The parameters that define the uncertainty set used in RAMP, mainly RB here, must
satisfy very specific rules. In FBA, we have the constraint Siv = 0, while in RAMP,
we have −Mi ≤ Siv ≤ Mi ∀Si ∈ Ui. In order to converge back to the linear model, we
have to relax the inequality in the robust model, so we need Siv = 0 ∀Si ∈ Ui where
U = {B̄ + uTR : uTu ≤ 1}. To get Upper Semi-Continuity, we also need RBx

∗
B = 0. To

satisfy the equality under an uncertainty set condition, our robust LP reduces to a linear
problem with the added linear constraint RBx

∗
B = 0. RB must be one-dimensional for this

to be true. To apply Upper Semi-Continuity to FBA and RAMP, we must specify RB as a
particular matrix, but one which is not wholly unlikely for our problem.

5 Conclusion

Inspired by the systems biology problem Flux Balance Analysis (FBA), we have introduced
Robust Analysis of Metabolic Pathways (RAMP) to provide a more theoretically sound
and computationally accurate model of cellular metabolism. RAMP recognizes the faulty
assumptions of traditional FBA and corrects them by allowing deviation from steady-state
and accounting for variability across a cellular culture. RAMP is computationally more
successful in predicting the essentiality of genes and reducing degeneracy in optimal flux
values. Theoretical results describe the stability of RAMP under perturbations in model-
ing parameters and the convergence of FBA to RAMP when uncertainty decreases. The
inclusion of new modeling parameters in RAMP opens the possibility of modeling a wider
range of cellular conditions, including non-optimized cultures. We conclude that RMAP is
an improvement over traditional FBA and deserves further study.
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