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ABSTRACT 

Song, Junyeob 

M.S.O.E 

Rose-Hulman Institute of Technology 

May 2014 

Fabrication and Characterization of Edge-Emitting Semiconductor Lasers 

Dr. Paul O. Leisher 

 

 The semiconductor laser was invented in 1962, and has recently become 

ubiquitous in modern life. This thesis focuses on the development of a semiconductor 

laser fabricating process which utilizes semiconductor manufacturing technology in a 

cleanroom environment including photolithography, etching, deposition, and bonding 

processes. A photomask for patterning is designed, recipes of photolithography process 

and etching process are developed with experiments. This work gives how to develop the 

process of fabrication and determine the parameters for each processes. A series of 

semiconductor laser devices are then fabricated using the developed process and 

characterization is performed to assess device performance with industrial standard 

methods. A fabricated device has 18W power and 11% conversion efficiency. 
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1. INTRODUCTION 

1.1 Motivation 

 The semiconductor laser was invented in 1962, and has recently become 

ubiquitous in modern life. This laser has many benefits, including simple fabrication, 

small physical size, high efficiency, high-speed output, compatibility with high-speed 

modulation, stable operation, and a long lifetime. Because of these properties, it has 

numerous applications in the areas of optical communications, laser printing, laser 

pointers, spectroscopy, laser video and other types of display, and medicine. These 

advantages make edge-emitting lasers the standard for the telecommunications industry, 

which demands these properties for high speed data transmission. 

 At its core, the semiconductor laser is a Light Amplifier by Simulated Emission of 

Radiation (LASER) in a semiconductor pn junction diode. The semiconductor laser is the 

most compact of all kinds of lasers and can be mass-produced using standard 

semiconductor wafer manufacturing process at low cost. Most modern communication 

systems are based on optical fiber communication utilizing semiconductor lasers as the 

source. Other applications include laser mice, laser printers, displays, and medical 

equipment. 

 There are two fundamental classes of semiconductor lasers: edge-emitting lasers 

(horizontally-emitting lasers), and surface-emitting lasers (vertical-emitting lasers) [1]. 

Edge-emitting lasers were the first to be developed and are, therefore, the most mature 

form of the technology. In edge-emitting lasers, the light propagates parallel to the 

semiconductor wafer surface (in-plane with vertical-grown of epitaxial layers). The edge-
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emitting laser has several advantages including simple fabrication, high output power, 

high efficiency, and compatibility with high speed modulation. These advantages make 

edge-emitting lasers the standard for the telecommunication industry which demands 

these properties for high speed data transmission. Other applications which leverage these 

properties include diode-pumped solid-state and fiber lasers, optical sensing, and free 

space (point-to-point) communication. 

 

1.2 Semiconductor Laser Diodes 

Electrically, the semiconductor laser diode is a pn junction diode. Figure 1 shows 

a cross-sectional view of the laser diode having an anode and cathode to allow injection 

of current into the intrinsic layer (i-layer) active region [2]. The current blocking layer 

confines the injected current to maximize stimulated emission. The longitudinal cross-

section of the laser diode is shown in Figure 2. Optical gain is provided by radiate 

recombination of electrons and holes in the i-layer, and the light wave is amplified as it 

travels back and forth in the resonator. Cavity resonance is provided by cleaved facets at 

the ends of the chip, and this structure is called a Fabry-Perot resonator [3]. 
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Figure 1 Schematic cross-sectional views of a semiconductor laser diode along 

the lateral direction 

 

 

Figure 2 Schematic cross-sectional views of a semiconductor laser diode along 

the longitudinal direction 

In the active region of the laser, three important interactions between photons and 

electrons can occur – absorption, spontaneous emission, and stimulated emission [4][5]. 
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To achieve optical gain, the probability of stimulated emission must be greater than 

probability of absorption, which is called population inversion. To achieve population 

inversion, a forward bias voltage greater than the band gap energy of the active region is 

applied to the pn junction. When optical gain is greater than optical absorption, light 

wave in the resonator is amplified [6]. 

In order to describe the onset of laser action, all optical loss in the cavity should 

be considered. The light wave traveling in the resonator has several possible ways to lose 

photons. At the threshold point, the number of photons lost in one complete roundtrip 

from the facets or due to the waveguide loss equals the roundtrip gain. 

The laser beam of an edge-emitting laser is guided in the growth direction by a 

waveguide structure. Normally, this uses a double hetero (DH) structure which is formed 

by sandwiching a narrow bandgap material between a wider band gap material [7]. The 

semiconductor laser has a p-i-n diode structure. An intrinsic semiconductor is added 

between p-type and n-type semiconductor materials. This confines injected carriers to a 

narrow region and at the same time serves as a waveguide for the optical mode.  

The adoption of the DH structure made a significant contribution to the 

improvement in semiconductor laser efficiency. Referring to Figure 3, when a forward 

bias is applied to this structure, the electrons from the n-type semiconductor move into 

the intrinsic semiconductor section where the energy bandgap is low [8][9]. Holes from 

the p-type semiconductor move into the intrinsic semiconductor as well [10]. This 

structure improves quantum efficiency by localizing the electrons and holes in the 

intrinsic region, increasing the probability that they will find one another and recombine 

radiatively. The refractive index of the DH structure in the active region is also greater, 
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which causes the optical mode to localize in the same vicinity. The active region in the 

DH structure thus serves as a waveguide and maximizes stimulated emission. Further 

improvement is made by inserting a thin quantum well or multiple quantum well 

structures into the waveguide [11]. The quantum well improves the performance of the 

device by reducing the transparency current which lowers threshold current and improves 

temperature performance, and modulation [12]. Multiple epitaxial layers composed of 

materials having different band gaps are used to form the DH structure. Semiconductor 

materials can be epitaxial grown on top of one another, provided the lattice constants are 

similar. The epitaxial design of laser diodes is critical to the performance of such devices. 

The detail of epitaxial design however, lie beyond the scope of this thesis.  

 

Figure 3 Illustration of energy diagram of (a) double hetero structure and (b) a 

quantum well structure 

 To improve the efficiency of semiconductor lasers, several structures have been 

researched. The separate confinement heterostructure (SCH) is one method to achieve 

better efficiency [13]. Figure 4 shows the development of active region structure of laser 

diode [14]. This design allows to confine carriers by adjusting the thicknesses and index 

of refractions with inner layers and outer cladding layers [15]. 
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Figure 4 Schematic diagrams depicting the evolution of the conduction band 

structure in the transverse direction: (a) double heterostructure, (b) 

separate confinement heterostructure (SCH), (c) graded-index separate 

confinement hetero structure(GRIN-SCH), (d) single quantum well 

hetrostructure (QWH), and (e) multiple quantum well (MQW) 
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1.3 Semiconductor Fabrication Device Structure 

In general, the first step of the fabrication of a semiconductor laser is growth of 

the epitaxial layer. Epitaxy means the growth of a single crystal film on top of a 

crystalline substrate. The design of epitaxial layer depends on the conduction band 

structure mentioned in the previous chapter. Appendix A shows the epitaxial design used 

for this thesis work. It is grown by Metal Organic Chemical Vapor System (MOCVD) 

equipment. 

To limit the stripe width of a laser, a structure like Figure 5 is used. [14] The thin 

film of SiO2 is deposited on a laser structure and it is etched as a narrow stripe. A 

metallic contact is deposited on the film and the film insulates and confines the current 

within the stripe width. Injection current is easily confined by changing the stripe width. 

There are two categories to define lateral electrical and optical confinement. One 

is a ‘gain guided’ structure as shown in Figure 6. It only confines charge carriers, not 

photons. Advantages of this structure are simple fabrication and achievement of very 

high power. Disadvantages are many modes and filamentation. 

 

Figure 5 Schematic diagram of an oxide defined stripe geometry 

 



8 

 

Figure 6 Illustration of an edge-emitting diode structure 

 The other is a ‘index guided’ structure. It confines photon via refractive index 

variation; surround cavity with lower index. It can be designed index contrast such that 

only a single transverse/lateral mode propagation. A disadvantage of this structure is 

difficult fabrication complexity. To design these lateral wave guide structure, two 

specific index guided designs are widely used in the commercial market for a laser diode. 

Figure 7(a) shows one design called buried hetero structure (BH) laser. After the stripe is 

etched, another layer, having lower refractive index and higher bandgap energy, is grown 

to bury the active layer. The injection current is effectively confined to the central stripe. 

Figure 7(b) shows the ridge waveguide laser. Lowering transverse index profile outside 

the stripe, the lateral index reduction is occurred. [14] These structures are formed by 

photolithography processes and etching processes in this work. Figure 8 shows a sample 

of scanning electron microscope picture of these structures [12] [17]. 
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Figure 7 Schematic drawings of (a) the buried heterostructure (BH) laser and 

(b) the ridge waveguide laser 

 

Figure 8 Sample SEM picture buried heterostructure laser (left) and ridge 

waveguide laser (right) 

In addition to this, thinning of the substrate wafer is needed for reducing series 

resistance. All gold deposited for contact and bonding.  
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1.4 Epitaxial layer 

The standard structure for high power semiconductor lasers requires a quantum 

well, waveguide, and cladding as shown in Figure 9. 

 

Figure 9 The epitaxial structure for high power semiconductor laser 

The Figure 10 shows the energy band diagram and refractive index of each layer 

as function of x. In the figure, the cladding has a high and wide band gap, the waveguide 

is a lower energy bandgap and the quantum well is energy bandgap is even lower. The 

purpose of the waveguide and cladding layers is to control the optical mode. This occurs 

because refractive indices of each layer is related to 1/Eg, and the index profile is 

illustrated in Figure 10. Electrons enter the active region from the n-side and holes from 

the p-side. These carriers get trapped in the quantum well and recombined. 

In an electrical (Si or GE) diode, diffusion current is primarily responsible for 

current flow in the biased pn junction. In a LED of laser diode, recombination current 

dominates. This recombination occurs in the active region and is responsible for light 

generation. The waveguide is not strictly necessarily for laser operation. The dotted trend 
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in the refractive index profile shows that the quantum well alone can serve to confine 

light. In such a device however, a difficulty arises in separately engineering the carrier 

and light confinement. In other words, changing the quantum well thickness changes both 

the electronic and photonic confinement. By separating the electron and photon confined, 

an SCH structure provides independent parameters in the form of the waveguide and 

quantum well, giving us additional design degrees of freedom. The cladding serves the 

same purpose as that in a fiber optic cable, it is required for optical confinement due to 

total internal reflection. 

The purpose of the cap is to prevent oxidation of the surface, and the purpose of 

the substrate is to have a semiconductor structure to grow on it. 

 

Figure 10 The diagram of energy bandgap and refractive index for the epitaxial 

structure 
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1.5 Rate equations 

 In this section, the rate equations which describe the physical operation of 

semiconductor lasers will be discussed. The two coupled equations are the standard rate 

equations for the photon density and the carrier density as shown in Equations 1.1 and 1.2 

[16]. These show the dynamic relation of carrier density, photon density, and optical gain 

in the cavity. 

𝑑𝑁𝑝

𝑑𝑡
= 𝛤(𝑣𝑔𝑔𝑁𝑝) −

𝑁𝑝

𝜏𝑝
+ 𝛤𝑔𝛽𝑠𝑝𝑣𝑔𝑁𝑝                               (1.1) 

𝑑𝑁

𝑑𝑡
=

𝜂𝑖𝐼

𝑞𝑉
−

𝑁

𝜏
− 𝑣𝑔𝑔𝑁𝑝                                                (1.2) 

 𝑔 ≈ 𝑔0ln (
𝑁

𝑁𝑡𝑟
)                                                       (1.3) 

 

 Equation 1.1 shows the rate of change of photon density. Γg is equal to the ratio 

of mode energy in the active region called the modal overlap parameter. The first term on 

the right side describes optical gain and the second term describes optical loss. 𝜏p is the 

photon life time. The lasing phenomenon needs a condition to lase so that the rate of 

increase of photon density due to stimulated emission is equal to the rate of decrease of 

photon density due to loss. The last term describes for spontaneous emission that the 

spontaneous emission rate equals the stimulated emission rate assuming one photon in the 

optical mode. The βsp is the spontaneous emission factor which is needed for g which is 

related to the total stimulated rate. 

 Equation 1.2 describes the carrier density rate. The first tem on the right side 

describes the injection rate of carriers, the second term describes the recombination rate 

of consuming carriers, and the last term describes the stimulated emission rate. ηi is 
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intrinsic efficiency that is the ratio of electrons making the radiative transition to total 

electrons. I is injection current, q is electron charge, V is volume of active region and τ is 

carrier life time. The gain is also a function of the carrier density rate and this dependence 

is approximated by a logarithmic function as shown in Equation 1.3. Ntr expresses carrier 

density at transparency in which gain equals loss. 

 To obtain analytic solutions, the steady state is implied. The left side of Equation 

1.1 and 1.2 are set to zero. βsp is also set to zero due to photon density by spontaneous 

emission is much smaller than by stimulated emission. Figure 11 shows trends of photon 

density, carrier density, and gain as injection current increases. Using the rate equations, 

the operation of semiconductor lasers can be described. 

 When the injection current is just applied under the threshold, the gain is negative 

(n<ntr). Photons from spontaneous emission will disappear due to mirror loss, waveguide 

loss, and loss from the active region. As a result, photon density inside the cavity will be 

very low, so there will be no photon generation. As injection current is increased, the 

carrier density will increase as shown in Equation 1.2 and gain will be turned from 

negative to positive(ntr<n<<nth). Since carrier density is still much smaller than threshold 

current density and gain also smaller than threshold gain, the photon generation rate from 

spontaneous and stimulated emission inside the cavity is not much enough to overcome 

the photon loss rate. Therefore, photon density in the cavity is small as described in 

Equation 1.1. As injection current is increased further, the carrier density N approaches 

the threshold carrier density Nth, and the gain g approaches the threshold gain gth as 

shown in Figure 11. As the gain increases, the stimulated emission rate increases and 

balances the photon loss from the cavity, so there is lasing. According to Equation 1.2, as 
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the photon density increases further, the stimulated emission rate also increases and keeps 

carrier density. Therefore the gain is saturated which is needed to stabilize the photon 

density inside the cavity. This is the reason why there would be steady state that the 

photon density generated by spontaneous emission is smaller than the stimulated 

emission. 

 

Figure 11 The carrier density and the photon density vs. the injection current 
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1.6 Scope of Work 

 This work focuses on a fabrication of GaAs-based edge-emitting semiconductor 

lasers. The fabrication process has been developed from scratch and is suitable for use in 

a wide variety of epitaxially-grown wafers. Front-end processing takes place in a 

cleanroom environment using standard wafer processing techniques. Back-end 

processing (wafer cleaving, die bond, wire bond) occur outside of the cleanroom. Chapter 

2 provides an overview and development of each process step that is discussed in detail. 

The designed recipe is presented and the equipment used are shown. Photolithography is 

explained in detail and the mask layouts designed for use are given. Finally, a detailed 

account of the final fabrication procedure is discussed. In Chapter 3, the device 

characteristics are studied. Injected current versus output power and voltage are 

presented. The spectra at several current values are also presented. Additionally, the laser 

emission near field and far-field profile are measured. Chapter 4 summarizes this work 

and gives a prospective view on future work. 
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2. PROCESS DEVELOPMENT 

2.1 Overview of Fabrication Process 

 The photolithography fabrication process for the edge-emitting semiconductor 

laser will be shown as a series of process steps. Most process steps are performed in a 

cleanroom facility under contamination control because this laser deals with micro-size 

features and minor contaminants can be a critical risk. A GaAs wafer is a more fragile 

substrate than those made of silicon and, therefore, needs to be treated carefully. In 

dealing with a piece of wafer instead of using a whole wafer, more attention is required. 

Because whole wafers are expensive, a piece of wafer is suitable to develop the process. 

To meet the size standard for wafers imposed by most processing tools, which is a whole 

wafer, the piece of wafer is taped to a dummy wafer for resizing as shown in Figure 12. 

In this development, a dummy wafer with 4 inch diameter is used. 

 

Figure 12 Photograph of a piece of wafer attached on the dummy wafer 
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2.1.1 Epitaxial Growth 

GaAs is used as the substrate material because of lattice match to AlGaAs and 

InGaAsP, the direct bandgap materials from which the epitaxial structure is engineered. 

In this fabrication process, a Si-doped GaAs substrate is used for n-side contact as shown 

in Figure 13. The choice of n-type substrate is due to it having higher mobility than p-

type, which provides lower resistivity in the substrate (which is the thickest part of the 

structure) [18]. 

n
+
 GaAs substrate

 

Figure 13 GaAs wafer preparation to fabricate the semiconductor laser 

 The epitaxial growth is designed to be a single quantum well hetero structure 

which has a p-i-n diode structure as shown in Figure 14. For this fabrication, InGaAs is 

positioned at the center as a quantum well. The epitaxial layers are deposited materials 

forming a single-crystal heterostructure with the same structural orientation as the 

substrate crystal structure. The typical thickness of each layer depends on how to confine 

the light. In this work, the epitaxy layers were grown by Metal Organic Chemical Vapor 
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Deposition (MOCVD). This technique is widely used in the growth of semiconductor 

epitaxial layers including III-V compounds on GaAs [19]. 

p
+
 GaAs cap

p AlGaAs cladding

p AlGaAs waveguide

InGaAs / GaAsP active region 

n AlGaAs waveguide

n AlGaAs cladding

n
+
 GaAs substrate

 

Figure 14 Growth of epitaxial structure to create lasing by MOCVD 

2.1.2 Mesa Lithography 

 The mesa structure is needed to confine the mode in the lateral direction and help 

prevent excessive current spreading [20]. After growth of the epitaxial layers, a 

photolithography process is performed, which produces a pattern on the surface of the 

wafer using light-sensitive photoresist material and controlled exposure to light, as shown 

in Figure 15. Before spinning the photoresist, a bake and surface priming process are 

performed to prevent atmospheric moisture on the surface and to improve the adhesion of 

the photoresist.  
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Figure 15 Spin coating photoresist on the wafer 

 After spin coating, a baking process called ‘soft bake’ is performed. This bake is 

to ensure that most of the solvent in the photoresist is driven off, to avoid contamination 

and sticking to the mask in an exposure process. It also improves resist adhesion to the 

substrate. The positive photoresist is softened by exposure to the UV light by an aligner 

and the exposed areas are subsequently removed in the development process. That means 

the pattern printed on the wafer surface has the same shape as the pattern on the mask. 

Figure 16 shows that the areas of the photoresist exposed to the UV light undergo a 

photochemical reaction and become soluble and soften in the developer. 
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Figure 16 Mesa patterning by photolithography process 

2.1.3 Mesa Etch 

 In order to make the mesa structure, the GaAs wafer needs to be etched. Etching 

is the process to remove the unnecessary part of material selectively. The basic purpose 

of etching is to reproduce the mask feature on the coated resist wafer. The area under the 

pattern on the wafer is not affected by the etchant, as photoresist protects it during the 

process. Hard baking of the photoresist before etching increases the thermal, chemical, 

and physical stability of the developed resist structures, further improving its 

performance during the etch [21][22]. Figure 17 and Figure 18 show schematic images of 

the mesa structure before and after removal of the photoresist of etching process. There 

are two methods of etching, wet etching and dry etching. Wet etching uses aqueous 

solutions to etch, whereas dry etching uses a gaseous plasma. The wet etching method is 

used in this fabrication because it can achieve a high etching rate with good selectivity at 

low cost efficiency (compared with dry etching). In developing an etching process, two 
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things must be considered: etch rate (how much material is removed per unit time) and 

etch selectivity (the ratio of the material etch rate to the mask etch rate). After etching, 

boiling acetone is used to remove the photoresist mash. 
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Figure 17 Wet mesa etching of GaAs wafer 
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Figure 18 Removing photoresist after etching process by boiling acetone 
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2.1.4 Contact Window Definition 

 An oxide layer is used to insulate the metal from the p-side of the device in all 

area except where current is to be injected. The oxide layer is deposited by an E-beam 

evaporation after a cleaning process is performed. This is illustrated schematically in 

Figure 19. Deposition is a process that places the film layer on the wafer. There are two 

kinds of techniques of film deposition: chemical process and physical processes. 

Chemical process, for example, are chemical vapor deposition (CVD) and plating. 

Evaporation, physical vapor deposition and spin on methods are example of physical 

process. The electron beam evaporation, which is used in this step, fires a high energy 

beam from an electron gun to boil a small target of material in vacuum condition. The 

vapor from target is deposited on the wafer. 
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Figure 19 Oxide level deposition by e-beam evaporator 

 Figure 20 shows the process that is used to pattern the stripe contact window after oxide 

deposition. This oxide aperture layer is added to confine the applied current to the mesa 

center, to reduce leakage currents, and improve mode selection. In this step, alignment to 
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the previously processed layers is very important. To improve adhesion, 

hexamethyldisilazane treatment is performed on the oxide surface of the wafer. 
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Figure 20 Stripe patterning on the oxide by photolithography process 

 After the photolithography, the SiO2 oxide layer is etched by Buffered Oxide 

Etch (BOE) to open the contact window to confine applied current as mentioned 

previously. It is illustrated in Figure 21. Dealing with BOE is dangerous work because 

BOE includes hydrogen fluoride (HF) even if it is diluted, etching should be performed 

carefully. A BOE can burn covering less than 2 percent of the human body can be fatal. 

HF should be handled in a laminar flow bench, using two pairs of nitrile gloves and eye 

protection. Any small spills should be wiped up immediately with wipes and rinsed [23]. 
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Figure 21 Oxide wet etching of SiO2 to open the contact window 

2.1.5 Metallization 

 For P-side ohmic contact, Titanium (Ti), Platinum (Pt) and Gold (Au) are 

deposited by E-beam evaporator as shown in Figure 22. These metals are used because 

GaAs and Au contacts have different work function which makes Schottky contact or 

Ohmic contact. Ohmic contact is an electrical junction between metal and semiconductor 

material that has a linear current-voltage curve [24]. 
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Figure 22 Metal deposition on P-side (top side) 

 The next step is polishing the bottom side of GaAs substrate for N-side contact 

and junction down bonding as shown in Figure 23. The thickness of the wafer can be 

controlled by polishing. In general, the target thickness is 200μm~500μm, as thinner 

wafers are typically easier to cleave and has exhibit reduced series resistance. The 

original wafer thickness is about a millimeter. This step was skipped in this work. 
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Figure 23 Polishing the bottom side of GaAs wafer 
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 After the polishing step, N-side ohmic contacts are deposited with AuGe, Ni and 

Au on the backside, which is N-type GaAs substrate as shown in Figure 24. The electrical 

properties of alloyed AuGe offers relatively lower contact resistance to N-type GaAs. 
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Figure 24 Metal deposition on N-side (bottom side) 

2.1.6 Cleave, Coat and Bond 

 In this step, each laser is cleaved by hand. After that, the facets of lasers are 

coated with asymmetric reflectivities. This is called Partial-reflecting (PR) which the 

laser comes out; the other side is called High-reflecting (HR). The facet direction is 

considered a crystal orientation of the GaAs wafer to get perpendicular side as shown in 

Figure 25. In this work, the side facet coating is skipped, and the lasers are tested 

uncoated. 
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Figure 25 Cleaving and coating on side to create a lasing process 

 The last step is the bonding process between chip and heat-sink with indium 

solder, as illustrated in Figure 26. Indium solder is widely used to bond semiconductor 

lasers due to its simplicity and it can bond directly to copper. AuSn is another option for 

higher reliability, as it requires expansion to be matched heat sinks. C-mount heat-sink is 

used for bonding as shown in Figure 27. To wire bond, a manual wire bonder is used with 

25μm diameter gold wire. The bond wire can be either Au or Al wire due to the fact that 

it bonds well to gold and copper. A standard wire diameter of 25μm diameter is common 

[25]. 
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Figure 26 Die attach and wire bonding on a heat-sink 

 

 

Figure 27 A Schematic and picture of C-Mount heatsink 
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2.2 Mask Design 

This laser is designed with 3 different photolithography levels: mesa, oxide and 

an optional metal level. The layouts are created with CAD layout software called “L-

Edit” by Tanner EDA. The screenshot was captured and is shown in Figure 28. This 

mask set was designed for 4 different mesa sizes – 4μm, 20μm, 100μm and 200μm in a 

10mm by 10mm unit cell. A total of 29 unit cells fit on a 5″ x 5″ mash. Table 1 shows the 

specifications of mask design. The different sizes of mesas were selected in order to vary 

the output characteristic of lasers. It is designed to be easy to cleave by hand, by 

providing 2mm cleave streets between adjacent mesas. A layout of all three levels is 

shown in Figure 29.  

Table 1 Mask specifications 

Mask Specifications 

Material 
Chrome 

on Sodalime 
Format Type GDSII 

Size 5 by 5 inches Thickness of Mask 0.2286mm 

# of Unit Cell 29 cells Unitcell Size 10mm by 10 mm 

Mesa Sizes : 4μm, 20μm, 100μm, 200μm 
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Figure 28 Screen capture of the CAD layout software called “L-EDIT” 

 

Figure 29 Layer lists and layout of the three mask levels for one of mesas 

designed with L-Edit 

The mesa level of this mask determine the width of mesa to both control the 

injection current profile and confine the optical mode in the lateral direction. The oxide 

level is designed isolate the top contact further control the lateral injection current profile. 
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Alignment marks are designed for 3 levels and each pair can be matched to every 

other level in the photolithography process as shown in Figure 31. This is required to 

ensure that they will be visible with microscope and allow accurate alignment in 

photolithography process. These marks provides the most accurate alignment with 5 

crosses and 4 pairs of meshed shape structures. 

Figure 30 shows a pair of alignment mark set individually. The thickness of 

smallest feature is 2μm. Each pair of meshes are designed to be unmatched except just 

center peak to help to align vertically or horizontally. The order of alignment with an 

aligner is – first, match the biggest cross into the center. Second, figure out the alignment 

mark is angled or not with 4 sides small crosses. At last, fix the exact position using 4 

meshes. 

 

Figure 30 Picture of magnified meshes of the alignment mark 
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Figure 31 Alignment marks layout for three mask levels 

Each mask is chrome patterned on 0.2286mm of a sodalime glass. There are 

usually two kinds of materials for photomask, one is the sodalime, and the other is quartz. 

The most different feature is thermal expansion and cost. In most cases, the sodalime 

glass is used due to the price being much cheaper than the quartz. And thermal expansion 

is not a big issue in this fabrication. 

The photos of each masks are shown on Figure 32. The chrome is printed on the 

mask as shown in Figure 33. It is 20 times magnified. This mask is designed for using 

positive photoresist, Ultra-Violet light pass through the glass part and it is also blocked 

by opaque part. The photoresist that is exposed to light becomes soluble to the photoresist 

developer. 
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Figure 32 Picture of photomasks for positive photoresist (left: mesa, right: 

oxide) 

 

 

Figure 33 Microscope picture of mesa and oxide of each actual mask (20x Mag.) 
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 Figure 34 and Figure 35 show a magnified alignment mark for each mask, but 

these look different. This problem occurs when the mask is manufactured at a mask 

fabrication company. The reason of the difference between the masks is the tolerance of 

glass and chrome thickness. Most of the 2um parts are visible in one direction of the 

mask but in the other direction, some seem to disappear. 

   

Figure 34 Microscope pictures of the alignment mark of actual mask – Good 

(20x Mag.) 

     

Figure 35 Microscope pictures of the alignment mark of actual mask – Bad  

(20x Mag.) 
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 Figure 36 shows contact pad on the oxide mask [26]. It is designed for measuring 

a contact resistance of the wafer. Each square has a different distance and expected linear 

resistance profile. This work was skipped in this fabrication. 

 

Figure 36 Microscope pictures of contact pad of actual mask (20x Mag.) 
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2.3 Photolithography Process Development 

 The photolithography process for this study begins with the cleaning of a piece of 

GaAs wafer by Acetone (a), Isopropyl (IPA) (b), DI (c), and IPA, respectively, as shown 

in Figure 37. Substrates contaminated with particle impurities can be prepared with this 

four-stage substrate cleaning to better resist wetting and adhesion. Acetone removes 

organic impurities on the wafer, and this contaminated acetone is rinsed by IPA, which 

unlike DI, is miscible with acetone. After the IPA is applied, DI is used to clean the IPA 

on the wafer. Lastly, the DI on the wafer is cleaned by IPA again. 

 

(a)                      (b)                      (c) 

Figure 37 Pictures of bottles of acetone, isopropyl alcohol and DI water for 

cleaning process 

 After cleaning, the piece of GaAs wafer is taped on the dummy wafer in 

preparation for the upcoming processes. Attention must be paid when putting a piece of 

tape at the edge of the wafer fragment because the yield of the outcome could be 

decreases if the edge of the piece of wafer is too covered by tape. See Figure 38. Also, if 

less tape than normal is used, the piece of wafer will be ejected during the spinning 

process that spreads photoresist. The taping position of piece of wafer is also crucial for 

reducing centrifugal force for the dummy wafer, and for spreading the photoresist 

uniformly so as to reduce an edge problem called ‘edge bead’ as shown in Figure 39. The 
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photoresist on the wafer flows very gradually to the edges and does not experience a 

force strong enough to be taken off the edges. 

 

Figure 38 Picture of taped sample on the dummy wafer 

 

Figure 39 The illustration of edge bead [27] 

 Next, baking is needed to remove moisture from the wafer. Moisture on the wafer 

can affect the adhesion of the resist to the surface of the wafer. A hot plate is used for this 

step at 150°C for 20min as shown in Figure 40. 
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Figure 40 An image of the hot plate utilized for baking processes 

 After baking the wafer, the second phase is spinning the HMDS on the wafer for 

surface priming. Figure 41 shows bottles used for this photolithography work. HMDS 

treatment is a common method for Si wafers, not for GaAs wafers [28]. This pre-

treatment may not be effective on GaAs on the surface of wafer. There is very little 

information available for GaAs, but a study suggests a pre-coat native oxide etch on 

GaAs to improve adhesion. In this experiment, the initial lithography consisted of the 

HMDS vapor prime at 4500 RPM for 20 seconds, at 110°C for 45seconds with a spin 

coater (BIDTEC SP100) as shown in Figure 42. 
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Figure 41 Pictures of bottles of Photoresist (AZ5214-E IR) and HMDS 

 Following another round of the photolithography process is the spinning of the 

photoresist on the wafer. Clariant AZ5214E Image Reversal photoresist is used. This is a 

special photoresist which can be used both in positive and negative tone. In this work, the 

photoresist is used as a positive photoresist. The photoresist is coated at 4500RPM for 30 

seconds for 1.7μm as shown in Figure 43. According to the plot in Figure 44, photoresist 

thickness of 1.4μm is expected, but actual thickness is measured as 1.7μm by a film 

thickness measurement equipment system Figure 53. In order to achieve lower thickness 

variation, a longer spinning time is often used as shown in APPENDIX B. After spinning, 

soft bake is performed at 110°C for 45 seconds to remove the solvent in the photoresist. 
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Figure 42 The picture of the spin coater(BIDTEC SP100) and vacuum chuck 

 

Figure 43 The picture of after spinning of GaAs wafer piece taped with dummy 

wafer 
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Figure 44 The plot of spin speed vs. photoresist thick from the supplier 

datasheet 

 When the soft bake is performed, the piece of wafer is detached from the dummy 

wafer for exposure. With the dummy wafer, the sample is too thick to put on the chuck 

under a photomask in the aligner. This work is performed carefully because the piece of 

GaAs wafer is fragile. Exposure depends on resist thickness and lamp intensity. This 

piece of wafer is covered in 1.7μm thick photoresist, and it is exposed to UV light at an 

intensity 13mW/cm2, for 5 seconds at 365nm. This recommendation is from the datasheet 

of photoresist. The aligner, MJB4 (Suss MicroTec) manual aligner, is operated for 

exposure as shown in Figure 45. It is designed for 4 inch wafer samples. 
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Figure 45 The pictures of the mask aligner MJB4 by SussMicrotec Co. 

 In this fabrication, there are two photolithography processes, one for the mesa 

structure and one for oxide. For oxide photolithography, alignment with the mesa 

structure is a critical process. These two photomasks have an alignment array in each unit 

cell, which means alignment can occur by matching several alignment marks. 

 To develop the photoresist after the exposure step, a developer AZ351B is mixed 

with DI in a 1:3 ratio as shown in Figure 46. Figure 47 shows after development for the 

2nd lithography for oxide etching. This process is monitored visually to observe when the 

photoresist is removed from the wafer. This method is optimized with the best timing 

which depends on sample’s condition when the development is sufficient. But in mass 

production, this is impossible because of yield and cost-efficiency. The process of 

development takes around 50 seconds. If there is a baking step before development, the 

photoresist on the wafer works as a negative photoresist. 
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Figure 46 Pictures of the sample and 100μm photoresist stripe after develop 

process – sample (left), 20x Mag. of microscope (right) 

 

 

Figure 47 Pictures of the sample and 100μm photoresist stripe after second 

photolithography process using oxide mask – sample(left), 20x Mag. of  

microscope(right) 

 

 The final step of photolithography is a hard bake. The hard bake can be performed 

in order to increase the thermal, physical and chemical stability of the developed 

photoresist structures for subsequent processes, including chemical etching. It is baked at 

110°C for 60 seconds. 
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Figure 48 Microscope pictures of (left) under exposure and             

(right) over exposure photoresist (after development, x20 mag) 

  

Figure 49 Microscope pictures of (left) under development and          

(right) over development photoresist (x20 mag) 
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2.4 Etch Process – Mesa & Oxide 

2.4.1 Determine semiconductor and oxide etch rates 

 This laser fabrication process has two etching operations – one is GaAs etching 

and the other is SiO2 etching. The determination of the etching rate of these two materials 

is critical to the development of the laser fabrication process. The system to assess etch 

rate is discussed further in this paper. Figure 50 depicts where etching process is 

performed. 

 

Figure 50 The picture of a wet bench where etching process is performed 

 For etching GaAs wafers, several studies have researched the following options: 

Br2:Methanol, H2O2:NH4OH:DI, H2SO4:H2O2:DI, H2SO4:H2O2:HCl, or HCl:DI [29]. 

The etchant, which is mixed from 1 H2SO4 : 8 H2O2 : 160 DI, is selected in this process 

for its ubiquity as well as the relative ease with which its etch rate can be manipulated 

through the volume of DI in the solution [30]. The expected etch rate is 43Å/sec [31]. 

Four GaAs samples are used to determine the etch rate by varying the etch duration. In 
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this case, etch times of 3min, 4min, 5min and 20min were used. After etching, the sample 

is cleaved and the cross-section is observed with a scanning electron microscope (Hitachi 

TM3000). An example image of one of the etched mesas is shown in Figure 51. This is a 

photo of a piece of cleaved semiconductor after etching. An etch selectivity is observed 

that is a measure of how effective the etch process is in removing the material to be 

etched. On the other hand unaffected other material remains in the wafer. The slope in 

Figure 51 shows an isotropic etch profile of etch rates from different materials with 

preferred crystallography direction. In this work, the isotropic etch profile does not affect 

the sample negatively. 

 

Figure 51 Etched surface of GaAs wafer taken by a scanning electron 

microscope (6000x Mag.). This sample was etched to a depth 0.84μm. 

 To calculate the etch rate, mesa heights are measured with 6000 times 

magnification SEM pictures. Both sides of all mesa structure on the surface of wafer (one 
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unit cell) are used to calculate the average height. This calculation is shown in Table 2.1. 

According to Figure 52, the average etch rate is determined 0.22μm/min (52.25Å /sec). 

 

Table 2 Calculate Etch Rate for GaAs wafer 

 Sample 1 Sample 2 Sample 3 Sample 4 

Etching Time 3min 4min 5min 20min 

Average Etched Time 0.65μm 0.86μm 1.12μm 4.11μm 

Calculated Etch Rate 0.22μm/min 0.21μm/min 0.22μm/min 0.21μm/min 

 

Figure 52 Plot of Etch Rate for GaAs wafer 
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 The etch rate of SiO2 is determined using a different process by etching with 1 

Hydro Fluoride : 25 DI water [32]. Several silicon samples having around 3300Å  SiO2 

surface film were etched for various times and the film thickness was measured using 

specific equipment (Filmetrics F40) shown as Figure 53. Table 3 shows the thickness of 

SiO2 film at several etching times. This equipment measures the thickness of thin film by 

using spectral reflectance as shown in Figure 54 (It is used to reflect light off the film and 

then analyze the reflected light over a range of wavelengths). The etch rate was 

determined to be 13.18 Å /sec as shown in Figure 55. 

 

Figure 53 The picture of film thickness measurement system (Filmetrics F40) 

 

Figure 54 A mechanism of measuring the thickness of thin film by Filmetrics 

F40 
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Table 3 Measured and Calculate Etch Rate for SiO2 film 

Time 0sec 30sec 60sec 90sec 120sec 150sec 

SiO2 Film Thickness 3313Å  2910Å  2430Å  2108Å  1779Å  1288Å  

   Average Etch Rate: 13.18Å /sec 

 

Figure 55 Plot of Etch Rate for SiO2 Film 

 

 Figure 56 is the picture of wafer before and after etching with HF mixture. After 

oxide photolithography, the remaining PR on the wafer works as a barrier to protect SiO2 

film, as represented by a microscope picture in Figure 57.  
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Figure 56 Pictures of before(above) and after(below) SiO2 etching 

  

Figure 57 Microscope picture of 100μm width stripe window before(left) and 

after(right) SiO2 etching (20x Mag.) 

2.5 Metal Deposition Process 

 In order to have electrical contacts on each side of the deuce, two deposition 

processes are needed. The contact metallization is important for minimizing contact 

resistance, and for maintaining better improved contact adhesion. Necessarily, this 

requires an ohmic contact, which is a non-rectifying junction. The ohmic contact is an 
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electrical junction between two conductors which has a linear current versus voltage 

curve. This allows charge to move easily both directions between two conductors, unlike 

a diode which allow charge to flow just one direction [33]. On the other hand, the 

current-voltage curve of the Schottky contact has diode characteristic as shown in Figure 

58 [34]. Figure 59 depicts energy band diagram that demonstrates that the depletion 

region makes potential barrier for blocking moving electrons between both sides [35]. 

The titanium film (p-side) is used for adhesion like a glue layer between the SiO2 

insulating layers and the conduct layer. The platinum film is deposited as diffusion 

barrier for preventing interdiffusion between the titanium and gold layers. 

 

Figure 58 Current-voltage characteristics of ohmic and Schottky barrier metal-

semiconductor contacts to GaAs [33] 
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Figure 59 Energy diagram of (A) Metal to n-type semicondutor Schottky diode 

(B) Metal to p-type semicondutor Schottky diode (C) Metal to n-type 

Schottky diode becoming ohmic due to tunneling (D) Metal to n-type ohmic 

contact 

In this work, Ti/Pt/Au is deposited on top of fabricated laser for the P-side 

contact. This metallization system has been widely used for semiconductor lasers 

[36][37]. Ti is used because it has proven effective in reducing surface contamination 

when incorporated in ohmic contacts on GaAs. Pt is deposited as a diffusion barrier and 

Au is deposited for a contact. The thickness of metallization is 150Å  titanium, 1000Å  

platinum and 1500 Å  gold. These thicknesses are not critical to the performance but the 

deposit order is crucial. 

For the N-side contact, AuGe/Ni/Au is used as it has been shown to produce 

uniform ohmic electrical contacts to GaAs over a large resistivity ranges [38][39][40]. 

400Å  of AuGe, 200Å  of Ni, and 1500Å  of Au are deposited by E-beam evaporator under 

high vacuum. That is an electron beam evaporator which uses a high-energy beam from 
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an electron gun to boil a solid metal in a small pocket. Since the heating is not uniform, 

lower vapor pressure materials can be deposited. Ti and AuGe alloy are both used for 

adhesion between insulators and conductive metallic layers. 

 After the deposition process, annealing step is performed for metal contacts. 

Annealing consists of three steps: heating to critical temperature, maintaining a suitable 

temperature, and cooling [41]. Annealing heats the deposited metal and GaAs substrate to 

repair crystalline damage, and it reduces the internal stresses [42]. The anneal serves to 

create the alloy between Ti/GaAs and AuGe/GaAs which reduces contact resistance 
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2.6 Bonding Process 

In this step, the fabricated laser is physically attached to the C-mount heat sink 

with Indium solder as shown in Figure 60. Indium solder is one of the most widely used 

solders in semiconductor laser die bonding [43]. The reliability and performance of the 

semiconductor laser are affected by the thermal properties of the laser construction. To 

melt the indium solder, a hot plate was set to 180°C (melting point of Indium: 156°C). 

 

Figure 60 Picture of two Indium solder preforms. 

 After 5 minutes heating, the C-mount heat sink is put on the hot plate with guide 

as shown in Figure 61. The guide holds the C-mount heat sink in place during the die 

attach process. First, the indium solder is put on the top of the heat sink. After the indium 

has melted (~2 minutes), the solder is spread by a tweezer. Next, the heat sink is allowed 

to cool. After cooling, the indium is spread uniformly using sandpaper to better improve 

adhesion with the semiconductor laser. The semiconductor laser is put on top of the 

indium pad and the temperature is once again raised to 180°C to solder the chip to the 

heat sink. Ideally, a die bonder would be used for this process. However, due to we have 

not, this step had to be completed manually. It is a crude method in several ways – 
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amount of indium solder, uniformity of spread indium solder, proper bonding pressure 

and upright bonding position. 

  

Figure 61 The experiment setting for die bonding 

 After the die bonding process, wire bonding is performed with K&S 4700 (Julicke 

& Soffa) dual manual wire bonder as shown in Figure 62. Six wires are bonded for one 

semiconductor laser, as the fusing current of 25μm diameter gold wire is 0.6A [44]. 

Figure 63 shows the result of the wire bonding process. 

   

Figure 62 The picture of wire bonder K&S 4700 by Kulicke & Soffa Co. 
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Figure 63 The picture of bonded semiconductor laser on the heat sink 
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2.7 Final Process 

 After die attachment & wire bonding, the fabrication process is complete, and the 

chip is ready for testing. The process traveler which summarizes the entire process is 

presented in Figure 64 and summarized in Table 4. 
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Figure 64 Captured image of process sheet 

 

Table 4 Summary of determined parameter for fabrication lasers 

Photolithography process 

Spin coating 4500RPM for 30 seconds for 1.7μm 

Softbake 110°C for 45 seconds 

Exposure 13mW/cm2, for 5 seconds at 365nm 

Develop AZ351B:DI (1:3) for 50 seconds 

Hardbake 110°C for 60 seconds 

Etching for GaAs 
H2SO4 : H2O2 : DI(1:8:160)  

Etch rate: 43Å/sec 

Etching for SiO2 
HF: DI(1:25) 

Etch rate: 13.18 Å /sec 
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3. LASER CHARACTERIZATION 

 After all processing is completed, the semiconductor laser is characterized in an 

optical laboratory. For this measurement, current is supplied by a LDX-36000 for a high 

power laser diode as shown in Figure 65, and the laser output is fed into a thermal power 

detector XLPF12-3S-H2-DO as shown in Figure 66. For spectral measurement, the laser 

out is coupled into a fiber through to AQ6370©  optical spectrum analyzer made by 

Yokogawa. Parameters including voltage and power are measured with a digital 

multimeter. The optical beam is profiled in both the near-field and far-field. 

 For this characterization, two semiconductor laser chips are characterized. Table 5 

shows the specifications. Device A is commercially bonded chip, Device B is bonded at 

Rose-Hulman institute of technology (RHIT), and Device C is fabricated and bonded at 

RHIT. Device A is coated 808nm laser with 100μm stripe and 1.5mm cavity length is 

bonded with a gold-tin (AuSn) solder on copper-tungsten (CuW) heatsink. This device 

was provided by nLight Corp (Vancouver, WA). Device B is 912nm wavelength laser but 

with uncoated, cleaved, and bonded manually. Device C is 885nm wavelength laser with 

1.5mm cavity length, uncoated, cleaved, and bonded manually. 

Table 5 Specification of characterized devices1 

 Epi 

Growth 

Wafer 

Fab. 

Bond Wave 

-length 

Cavity 

Length 

Emitter 

Length 

Bond 

Orientation 

Test 

Condition 

Device A @nLight @nLight @nLight 808nm 1.5mm 95μm Junction 

down 
CW, 25°C 

Device B @nLight @nLight @RHIT 912nm 3.5mm 100um Junction up QCW*, 

25°C 

Device C @nLight @RHIT @RHIT 885nm 1.5mm 200um Junction up QCW*, 

25°C 

                                                 
* 500us of pulse duration, and 20% of duty cycle 
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Figure 65 The picture of a current source for semiconductor laser (LDX-36000) 

and optical spectrum analyzer (AQ6370© ) 

  

Figure 66 The picture of equipment for measuring power of semiconductor laser 
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3.1 Power, Voltage and Power conversion efficiency vs. Current 

First of all, a basic test for the semiconductor laser is performed. This is called a 

light-current-voltage test, or L-I-V test. All semiconductor lasers have a light current 

characteristic, with a defined threshold current. The laser is connected to the current 

supply (LDX-36000), and the thermal power detector is set in front of the laser as shown 

in Figure 68.  

Figure 67 shows optical power, voltage, and efficiency vs. current. For Device A 

(a), the laser threshold current is 0.4A, under the threshold where stimulated emission 

dominates and over the threshold where stimulated emission dominates, and quantum 

efficiency increase dramatically. A series resistance is calculated with slope of voltage 

plot in stimulated emission region. It is 63.6mΩ. It also presents that peak efficiency at 

1.5A is 34% and maximum power is on the order 2A. This is measured until 3A until the 

efficiency slope is saturated. Device B (b) has 0.6A threshold current, 130mΩ series 

resistance, 39% peak efficiency at 2.4A. This difference in results shows that bond, and 

cleave quality affect the output parameters. Device C has 0.8A threshold current, and 

11% peak efficiency at 2.4A. 

A continuous wave (CW) of injection current is used for Device A and a quasi-

continuous wave is used for Device B and C, because of their difference of junction type. 

Device A is bonded junction down (the laser junction is close to the heat sink), it has less 

thermal resistance than device B and C bonded junction up [45]. 
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(c) 

Figure 67 The plot of power, voltage and power conversion efficiency vs. 

injection currents for a high-power separately confined heterostructure 

quantum well semiconductor laser (a) Device A (b) Device B (c) Device C 
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3.2 Spectrum at several current value 

The spectra of Device A are measured by the spectrum analyzer (Yokogawa 

AQ6370© ) as shown in Figure 68. Figure 69 shows spectra at several injection current 

that plot presents the wavelength shifts by the injection current, because the spectrum 

depends on a temperature [46]. Increasing temperature makes spectral shift to the higher 

wavelength of the spectrum. The forward laser currents increases Joule heat and the laser 

chip temperature goes up as well. 

  

Figure 68 The picture of the experiment set for measuring optical power and 

spectra 
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Figure 69 Spectral characteristic at several injection currents 

 

 The thermal resistance is calculated from Figure 70. This laser spectrum shifts 

0.24nm per temperature, so the thermal resistance is 6.5°C per Watt as shown in Equation 

3.1. 

812𝑛𝑚 − 806𝑛𝑚 = 6𝑛𝑚 

              
6𝑛𝑚

0.24𝑛𝑚 ℃⁄
= 25℃ 

           
25℃

3.8𝑊
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Figure 70 The plot of spectrum wavelength and temperature vs. power 

differences 

 FWHM of wavelength increases by injection current as shown in Figure 71. The 

FWHM is an expression of the extent of a function, given by the difference between the 

two extreme values of the independent variable at which the dependent variable is equal 

to half of its maximum value. The trend of values means gain spectrum is broader with 

injection current caused by the gain saturation, overheating of the active region.  
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Figure 71 The plot of wavelength FWHM vs. injection currents 

 

Table 6 The calculated value of FWHM 

I(A) 0.5 1 1.5 2 2.5 3 

FWHM(nm) 1.6 1.7 1.8 1.8 1.9 2.1 
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3.3 Near-field Measurement 

Figure 72 shows a spatial emission profiles for diodes. Measuring these profiles 

are used for determine the shape of laser. The near-field measurement is one of the 

methods that figures out a beam profile. This profile shows a quality of laser beam. 

Figure 73 illustrates the experiment setup for near-field measurement. The CCD camera 

is on the translation stage for adjusting the focus of beam image. The wavefront in front 

of the facet of the laser through a microscope objective is captured by a CCD camera as 

shown in Figure 74. 

  

Figure 72 The spatial emission for laser diodes 
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Figure 73 The illustration of setup for near-field measurement 

 

(a) 

 

(b) 

Figure 74 The profiles of near field measurement (a) at slow axis, (b) at fast axis 
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3.4 Divergence (Far-field) Measurement 

 Lastly, the divergent beam from the laser is measured which has wide divergence 

because of a narrow emitter. Laser diode with an active layer emits coherent light with 

far-field angular divergence in the plane. The angular divergence determines the far-field 

radiation pattern. Because the active layer size is small, the laser diode is characterized by 

an angular divergence larger than that of other common lasers. The detector is set on the 

rotation stage by connecting with four long posts, 100μm slit is used in front of the 

detector as shown in Figure 75. Figure 76 shows a profile of device A. The injection 

current is 0.4A and calculated FWHM is 5.5. 

 

Figure 75 The illustration of setup for far-field measurement 
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Figure 76 The plot of far-field measurement 
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3.5 Analysis 

In this section the characterization results of Device A, B, and C are discussed. 

According to Figure 67, LIV characteristics can be compared. Device A, and B showed 

similar curve trends that mean the die attach process and wire bonding process worked at 

RHIT were completed successfully. In spite of that Device A was fabricated in the 

company, even though the efficiency of Device B is better than Device A. On the other 

hand, the efficiency of Device C is lower than other devices – 11%. This is because the 

diode voltage was much higher as compared with others. Device C was made with the 

same die attach and wire bonding process but with a different metallization process. To 

step down the higher voltage, different metal layers should be used, or an annealing 

process should be carried out. 

Table 7 shows the parameters for modelling the semiconductor laser which is 

Device C. This modelling is based on the rate equations. Figure 77 shows the measured 

and modelled results with Device C. This device is uncoated, the reflections of both sides 

(Rth. Rfront) are used 30%. 

Table 7 Materials and device parameters for modelling of Device C 

Cavity Length (μm) 1500 A (SHR) 1.00E-05 

Emitter Width (μm) 200 B (Spon) 1.00E-09 

# Emitters per Bar 1 C (Auger) 1.00E-30 

Rth 4.2 J<->n constant 5.41976E-16 

Rfront (%) 0.3 Modal Gain (cm-1) 15 

Rback (%) 0.3 i 85% 

jVj (meV) 650 Jo (A/cm2) 100 

ii (cm2) 6.50E-05 Wavelength (nm) 885 

Jdiode (A/cm2) 3.00E+00 i (cm-1) 0.4 

Additional Rs (Ω) 1.00E-01 To (K) 110 

Temperature (°C) 25 T1 (K) 450 
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(a) 

 

(b) 

Figure 77 Modelling results of Device C (a) Power, (b) Voltage 
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4. CONCLUSION 

In this work, GaAs edge-emitting semiconductor lasers were fabricated and 

characterized. This required development of a cleanroom fabrication process from 

scratch. All fabrication took place in the MiNDS(Micro and Nano Device and Systems) 

cleanroom. The characterization included power vs. current behavior, voltage vs. current 

behavior and efficiency vs. current behavior, spectral characteristics, and near-field and 

far-field analysis, and the modelling for the device which fabricated at RHIT was carried 

out. 

Mask design chapter was showed that the material, thickness and the critical 

dimension, which is smallest feature size, are considered. Sodalime glass is much less 

expensive than quartz and it was enough to fabricate masks for this work.  

Photolithography process was performed with AZ5214E-IR photoresist and 

AZ351B developer. This photoresist can be used as both positive and negative. 1.7μm 

thickness was okay for mesa etching and oxide etching. HMDS vapor priming was also 

applied, and it was successful. 

The etch rates of GaAs layer and SiO2 oxide on GaAs wafer were determined. 

The ratio that 1 H2SO4: 8 H2O2: 160 DI mixture was used for GaAs layer and its rate was 

52Å /sec. The ratio that 1 HF: 25 DI rate was mixed for SiO2 oxide etching and its rate 

was 13Å /sec. The metallization process is performed with E-beam evaporator. For P-side, 

Ti / Au: (1500Å  / 1500Å ) was deposited and for N-side, AuGe / Ni / Au: 400Å  / 200Å  / 1500Å  

was deposited.  
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Indium solder was used for die attachment between the c-mount heatsink and the 

fabricated laser. It was performed on the hot plate. The gold wire of 25μm diameter was 

also selected to wire bond, and 6 wires was bonded for this semiconductor laser.  

The result showed that the fabricated semiconductor could potentially attain better 

performance. Future work will be centered around the goal of increasing output 

efficiency. One method could include using a tool designed for cleaving such as a wafer 

piler or dicing saw machine. This will provide better facet surface. Another method being 

considered is using a die bonder to reduce contact resistance, since the die bonder 

machine will yield better results than bonding by hand. For better efficiency, different 

metal layers will be used and an annealing process will be carried out for. 
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APPENDIX A – Device C Epitaxial Structure design 
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APPENDIX B – AZ5214E IR Data Sheet 
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