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ABSTRACT

The Swedish forestry industry competes on an international
market; because raw material is more expensive than in other
parts of the world, the chain from the stump to the industry
needs to be very effective. One part in this chain is cutting and
transporting trees from the forest to the landing area for further
transportation with trucks to the paper or saw mill. When cut-
ting and transporting trees, forestry machines equipped with
booms are used to handle the trees. If boom handling time can
be reduced thereby increasing productivity by 10 percent, the
Swedish forestry industry can earn up to 250 million Swedish
crowns (US$35 million) per year.

One way to decrease boom handling time is to introduce au-
tomatization. This paper describes how to solve the kinematic
control of knuckle booms used on forestry machines when au-
tomatization is introduced. The objective was to develop a ki-
nematic control strategy for maximum lifting capacity, which is
suited for computer-controlled knuckle booms that are redun-
dant. This strategy was analyzed with respect to time consump-
tion when the manipulator tip moves along a predetermined
path. The analysis was conducted on a knuckle boom used on a
forwarder in a forestry application. The knuckle boom had one
redundant degree of freedom. The analysis showed the neces-
sary joint speed requirements and time consumption for cer-
tain motion cycles and also what happens when the joints reach
their maximum velocity limits.

Keywords: hydraulic manipulator, redundant, kinematic con-
trol, local optimization, knuckle boom, forest machine, for-
warder, boom tip control, joystick control, simulations

Introduction

A powerful and radical mechanization since the mid-1960s
has made Swedish forestry almost 100 percent mechanized.
This is one of the primary explanations as to why Swedish for-
estry could remain competitive in international markets.

Forestry machines of today are high technology units with
advanced control engineering. Technology development has re-
sulted in a radical increase in performance. For the operator this
has meant an increased working volume and fewer natural
stops in the ordinary work. At the same time, quality content in

the operators’ work has changed. It is no longer sufficient to
control the machine and its functions. The operator also has re-
sponsibility for environmental concerns, planning, and fol-
low-up of the work. Through the years, the working environ-
ment has improved resulting in less physical stress on the oper-
ator. But the increased working volume, in combination with
many decisions that the operator has to make, has increased
mental stress. The operator could be a bottleneck in new initia-
tives to increase productivity. By using more automated func-
tions and letting the machine itself take care of repetitive work,
it is possible for the operator to devote their time to decisions
regarding tree selection, wood quality, and environmental
concerns.

The control of the manipulator’s movement takes most of
the operators’ working time on both forwarders and harvesters.
There is a potential to simplify the control of the manipulator,
partly to reduce the mental work load and produce a good ef-
fect on more important tasks, partly to increase the production.
The risk for stress injuries can also be reduced. The control of
the manipulator can be simplified through the introduction of
a manipulator tip control and automated control of certain
manipulator movements.

To control a forestry machine implies almost continuous
precision work with the hands. High production requires in-
tensive precision work. The repetitive work and the high inten-
sity will cause statically tensed muscles and muscle fibers. In a
harvester application, the operator uses the crane about 80
percent of the total work time. They cut one tree each 47 sec-
onds and make 12 decisions/tree. On average they use 24 func-
tions/ tree and cut about 1,000 trees/day. In a forwarder appli-
cation, the operator uses the crane about 50 percent of the total
work time. On average, they load and unload 1 tree each 30
seconds and handle about 400 trees/day.

Actions that increase blood running through the muscles are
of crucial importance for minimizing the risk of stress injuries.
The work to control the manipulator should, therefore, be as
dynamic as possible, which requires many short pauses. De-
creased demands on the precision of the joystick work will give
less muscle tension and thereby reduce stress. Therefore,
technical solutions that will give short pauses in the intensive
joystick work are positive (Erikson and Thor 1999, Gellerstedt
1993).

Operators of forestry machines are exposed to great mental
stress during their work. They have to receive and process a
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large amount of information and make decisions under a great
time pressure. At the same time, precision work with the hands
means by itself a relatively large stress on brain activity (Geller-
stedt 1993). A natural conclusion of this is that a simplified con-
trol of the manipulator can reduce the mental stress on the
operator.

Forestry machines of today are controlled by two joysticks of
different design. With the movement of one joystick in one di-
rection, the operator is controlling a specific hydraulic actuator
(cylinder) on the boom. This means that the operator has to
combine different joystick movements to move the tip of the
boom in the desired direction (Fig. 1).

The concept boom tip control means that the tip of the boom
is controlled with only one joystick.Up/down on the joystick cor-
responds to up/down on the tip of the boom, out/in on the joy-
stick corresponds to out/in on the tip of the boom, and left/right
corresponds to left/right on the tip of the boom (Fig. 2).

With the extension, the linear degree of freedom (DOF) in
the outer boom, in combination with the two rotational de-
grees of freedom, make it possible for the TCP (tool center
point) to reach the next point on a desired path in a number of
ways. In Löfgren (1989), computer analysis shows how the ex-
tension DOF affects the speed and the lifting force. The results
show that the extension gives shorter time cycles and that one
has better lifting force capacity close to the ground. This means
that the extension should be included as much as possible in the
kinematic control algorithm for the boom.

Joystick Control

As mentioned, the TCP is controlled with only one joystick.
To have a good analogy between the joystick and the manipula-
tor, the joystick functions are placed in the order shown in Fig-
ure 3. The swing function is placed in the left and right direc-
tions of the joystick.

Potential Advantages of Boom Tip Control

A simplified manipulator control will provide the following
advantages compared to a conventional manipulator control:

• less physical strain on the operator,
• decreased learning time, and
• longer life time of the manipulator.
Operators of forestry machines are injured in the neck,

shoulders, and back after some or several years of controlling
the manipulator (Erikson and Thor 1999). More than half of all
of the operators have had problems with the neck, shoulders,
and back. These problems can be assigned to manipulator
control.

It has been shown that operators unconsciously tense them-
selves before manipulator control work, with increased stress as
a consequence (Erikson and Thor 1999). A simplified manipu-
lator control will most likely influence the operators to control
the manipulator in a more relaxed way.

Work with conventional control of knuckle booms is very
complicated since one can reach every point within the knuckle
boom’s work space in many ways because the knuckle booms

are redundant. A simplified control will most likely make it eas-
ier to control the knuckle manipulator since the tip is con-
trolled directly and since the redundancy is resolved automati-
cally. Consequently, a simplified control will most likely mean
that the learning time would decrease substantially (Suh and
Hollerback 1987).

There is a big difference between a skilled operator and a
non-skilled operator (Sciavicco and Siciliano 1987). A non-
skilled operator will control the manipulator in a jerky way
which will affect the lifetime of the manipulator. With a simpli-
fied control, it is possible to eliminate many of the jerky move-
ments and, thereby, increase the lifetime of the manipulator.
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Figure 1. ~ Conventional control.

Figure 2. ~ Boom tip control.

Figure 3. ~ Joystick functions with boom tip control.



Targeted Machines and Research Objectives

Most of the manipulators used in forestry are of a knuckle
boom type. They are hydraulically powered and are controlled
by hydraulic servo valves. The same types of hydraulic manipu-
lators are also commonly used on trucks and in stationary ap-
plications. Knuckle booms are often constructed with extra
DOF and are, therefore, redundant. A redundant manipulator,
designed for positioning only, has more than three DOF. In this
paper, a redundant manipulator with three revolute joints and
one prismatic joint was studied.

Why is a redundant DOF introduced? The extra motor, sen-
sor, etc., and the more complicated controller mean extra
weight, complexity, and cost. Some objectives of the redundant
DOF are:

• singularity avoidance,

• obstacle avoidance,

• robot dexterity,

• energy minimization,

• manipulator precision,

• lifting capacity, and

• velocity of operation.
This study was made possible by the introduction of com-

puter control in a manually operated 4 DOF manipulator. The
objective was to develop a kinematic control strategy to achieve
maximum lifting capacity of a redundant knuckle boom. The
strategy was to analyze based on time consumption when the
manipulator tip moves along a predetermined path. The analy-
sis was made on a knuckle boom used on a forwarder in a for-
estry application. The same type of manipulator geometry was
used on other forestry machines and also on trucks.

State of the Art

A review of the research shows that there has been an in-
creased interest in redundant manipulators since the beginning
of the 1980s. Currently, in the academic world there is great in-
terest in problems about kinematic redundancy.

Within the industry it was necessary to introduce one or
more redundant DOF to solve complicated applications. The
redundancy implies considerably more complicated control al-
gorithms than those for non-redundant manipulators. Most of
the methods used are based on local optimization and use the
quite popular pseudo-inverse solution. The kinematic equation
that describes the relation between manipulator end effector
speed and corresponding joint speeds is defined as follows:

� �x J= θ [1]

where:
�x = anm ×1velocity vector in Cartesian

coordinates for the manipulator end effector,
�θ = then ×1joint velocity vector for the joints

(n > m), and

J = the [m × n] Jacobian.

We solve the equation with respect to �θ:

� �
#θ = J x [2]

where:

J# = JT (JJT)–1 [3]

J# is the pseudo inverse of the Jacobian matrix according to
the generalized Moore-Penrose inverse (Sciavicco and Siciliano
1987).

In Klein (1989), the problem with joint drift, when one uses
only the pseudo inverse control, was analyzed for the case when
a cyclic task was performed. Despite a well-developed theory in
by Löfgren (1989), there was still a problem with making the
control conservative (i.e., when repeating a work cycle several
times, the joint configurations will not be repeatable and the
manipulator can run into unfavorable configurations).

To overcome this drawback, a more general solution, by ad-
dition of a term, is given by:

� � ( )�# #θ φ= + −J x I J J [4]

where:
�φ = an arbitrary joint velocity vector and

(I – J# J) = the null-space projection matrix of J.

This corresponds to a self motion of the manipulator which has
no effect on the velocity of the end effector. The attractiveness
with this method is twofold. The first term, J x#

�, minimizes � �θ θT

(Sciavicco and Siciliano 1987), which presumably means that
all of the joints will be prevented from moving too fast. The sec-
ond term,( )�#I J J− φ, can improve the manipulator’s configura-
tion by assigning different optimization or performance criteria
by means of a proper selection of �φ (e.g., to achieve singularity
avoidance) (Lögren et al. 1994).

Other secondary criteria are: obstacle avoidance (Klein and
Kee 1989), joint torque optimization (Honegger and Codourey
1998, Noble 1975, Sciavicco and Siciliano 1987), joint velocity
constraints (Beiner 1999, Cleary and Tesar 1990, Martin et al.
1989, Nedungadi and Kazerounian 1989), energy minimiz-
ation (Beiner 1999, Chan and Dubey 1995, Klein 1985), manip-
ulator precision (Klein 1985), speed of operation (Chan and
Dubey 1995), joint limit avoidance (Chen et al. 1995), maximi-
zation of various end-effector dexterity measures (Klein and
Kee 1989), multiple performance criteria (Chen et al. 1995,
Erikson and Thor 1999, Nedungadi 1987), global optimization
and global versus local optimization. Additional information
about redundant manipulators can be found in Siciliano
(1990).

Basic Equations

The studied manipulator (Fig. 4) is velocity-controlled by
means of a 3-DOF joystick, operating in a cylindrical (r, θ, z) or
Cartesian (x, y, z) coordinate system.

If we are working in the cylindrical coordinate system, the
control of the θ0 - motor is separated from the control of the
other motors. If we are working in the Cartesian coordinate sys-
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tem, with commanded �, �, �x y zand , we find the commanded �θ0

by differentiating θ0 = arctan(y/x) and using:

r x y= +2 2 , [5]

� ( � �) /θ0 0 0= − +s x c y r, [6]

where:
s0 = sin θ0

c0 = cos θ0

The command �r is found by differentiating r x y= +2 2

� � �r c x s y= +0 0 [7]

We have now expressed the derivatives of x and y, and �x and
�y as the derivatives �θ0 and �r, and can focus our study on the ki-
nematic control in the r-z-plane, where the redundant DOF is
used.

A vectorθ is defined:

θ θ θ= [ , , ]1 2 3d T
[8]

The TCP coordinates r and z define the vector x:

x r z T= [ , ] [9]

Figure 4 gives the following relations:

r = d1s1 + (d2 + d3)s12 [10]

z = d0 + d1c1 + (d2 + d3)c12 [11]

where:
s12 = sin (θ1 + θ2),

c12 = cos (θ1 + θ2).

� � ( ) (� � ) �r d c d d c s d= + + + +1 1 1 2 3 12 1 2 12 3θ θ θ [12]

� � ( ) (� � ) �z d s d d s c d= − − + + +1 1 1 2 3 12 1 2 12 3θ θ θ [13]

or in matrix form:

� �x J= θ, [14]

where the Jacobian J (2 × 3 – matrix) has elements j11, j12, ... j23:

J
d c d d c d d c s

d s d d s d
=

+ + +
− − + −

1 1 2 3 12 2 3 12 12

1 1 2 3 12 2

( ) ( )

( ) ( +
⎡
⎣⎢

⎤
⎦⎥d s c3 12 12) [15]

Since the Jacobian J is not square, the matrix cannot be di-
rectly inverted. The problem can be solved by introducing a
constraint.

A control strategy called maximum lifting capacity will be
introduced in the following section.

Maximum Lifting Capacity

In some applications, the velocity is of major importance. It
is not possible, however, to have maximum velocity as a con-
straint, since the operator will not use maximum velocity all of
the time, but wants to utilize the highest possible velocity only
when they find it necessary. In other applications, velocity is of
minor importance, but for this application the static (low veloc-
ity) lifting capacity is essential. The kinematic control in this
work was based on an optimization study of the lifting capacity
(McGee et al. 1994), as a function of θ1, θ2, and d3, based on the
force or torque characteristics and the geometrical arrange-
ments of the motors. From the studies, it is possible to analyze
how the lifting capacity is dependent on the prismatic function
d3.

Figure 5 shows how d3 should be chosen for maximum lift-
ing capacity for a specific manipulator. Except for the lower left
and upper middle part of the work area, the three curves (d3 =
0%, 50%, and 100%) can be approximated by circles. In other
cases, where the d3-curves are more complicated, a look-up ta-
ble for d3 = d3(r, z) plus interpolation can be used.

In order to avoid unnecessarily large accelerations in d3, some
“smoothing” of the optimal d3(r, z) function may be introduced,
especially in areas in the r-z plane where the optimum is flat, i.e.,
where the effect of d3 on the lifting capacity is small. The pro-
posed kinematic control of d3 is shown in Figure 6.

From the analysis shown in Figure 5, the work space when d3

= d3 min or when d3 = d3 max could be compared to two circles
with different radii’s and origins (Fig. 6). The working area is
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Figure 4. ~ Manipulator geometry.

Figure 5. ~ Selection of d3 for maximum lifting capacity.



divided into two zones with equal width and the points A, B, C,
and D are on the same straight line placed on the height zC. The
points A – D have the following coordinates:

A: (r1, rC)

B: (r2, rC)

C:( , ); ,minr z ii i C+ =ρ 1 2

D:( , ); ,maxr z ii i C+ =ρ 1 2

Figure 6 gives:

ρi i Cr r z z= − + −( ) ( )2 2
[16]

where ri and rC are the coordinates for the center point of the
circles in the proposed kinematic control function.

The transition between ρi min and ρi max should be smooth.
The choice of the coordinates for ri and rc can be done according
to Figures 5 and 6 and the geometrical data from a specific
boom.

In the zone where d3 is active, it should vary smoothly with-
out large accelerations. We have chosen a function given in

Equation [17] according to Figure 7. This function has
dd

d i

3 0
ρ

=

for ρi = ρi min and for ρ = ρi max thus avoiding jumps in d3s ve-
locity.

The smoothing function depicted in Figure 7 is given by
Equations [17 through 19].

d
d p

q

p

q
i i i i

3
3

3

32
1

3

2 2
= +

−
−

−⎡

⎣
⎢

⎤

⎦
⎥max ( ) ( )ρ ρ

[17]

with

pi
i i=

+ρ ρmax min

2 [18]

q i i=
−ρ ρmax min

2 [19]

Differentiating Equation [17] gives:

� ( , )� ( , )�d f r r g z zi i i i3 = +ρ ρ [20]

with

f r c r r

g r c z z

f r g

i i i i

i i c i

i i i

( , ) ( ) /

( , ) ( ) /

( , ) (

ρ ρ
ρ ρ
ρ

= −
= −
= z

for

i

i i i

i i i

i i i− =

≤ ≤
≤ ≤

< >ρ

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ) ;

min max

min max

min0 ρi max [21]

where:

c
d

q

p

q
ki

i i= −
−⎡

⎣
⎢

⎤

⎦
⎥

3

4
1

2

2

2

max ( )ρ

[22]

Independent of what characteristics we use for d3 we can
simplify our notations: fi(r, ρi) = f, gi(z, ρi) = g

Using �d 3 from Equation [20] in Equation [16] gives:

�

�

�

�

� �

r

s

j j j

j j j
fr gz

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

⋅
+

⎡
11 12 13

21 22 23

1

2

θ
θ

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ [23]

Rewriting Equation [23] gives:

j j

j j

j f j g

j f
11 12

21 22

1

2

13 13

23

1

1

⎡
⎣⎢

⎤
⎦⎥

⋅
⎡

⎣
⎢

⎤

⎦
⎥ =

− −
− −

�

�

θ
θ j g

r

z23

⎡
⎣⎢

⎤
⎦⎥

⋅ ⎡
⎣⎢

⎤
⎦⎥

�

� [24]

or

�

�

θ
θ

1

2

11 12

21 22

1
13 13

23

1⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣⎢
⎤
⎦⎥

⋅
− −
−

−
j j

j j

j f j g

j f 1 23−
⎡
⎣⎢

⎤
⎦⎥

⋅ ⎡
⎣⎢

⎤
⎦⎥j g

r

z

�

� [25]

Equations [20], [25], and [15] give, after some calculations,
the kinematic control law:

� �θ = P x [26]

where the (3 × 2) P-matrix has the following elements:
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Figure 6. ~ d3 as a function of TCP position.

Figure 7. ~ d3 as a function of i.



p D s f d s

p D c g d s

p D d f c

11 12 1 2

12 12 1 2

21 1 2

= −
= −
=

( ) / ( )

( ) / ( )

[ ( f s d d s d s

p D d g c g c d d

− + −
= − +

1 2 3 12 1 2

22 1 2 1 2 3

) / ( ) ]/ ( )

[ ( ) / ( ) −
=
=

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

c d s

p f

p g

12 1 2

31

32

]/ ( )

[27]

where:

D
d d ac

=
−

1

1 23 2( ) [28]

Velocity Limitations

The motors have maximum velocities � , � ,max maxθ θ1 2 and
�

maxd 3 , respectively. If a motor, e.g., motor no. 1, receives a com-
mand signal �θ1c , with � �

maxθ θ1 1c > , the velocity limitations will
cause a position error. This problem is solved in the following
way:

Introduce:

α θ θ
α

i ic i

c

i

d d

= =
=

⎫
⎬
⎪

⎭⎪

� / � ; ,

� / �

max

max

1 2

3 3 3 [29]

In a practical case, the geometrical arrangement of the θ1 -
and θ2-motors (these revolute joints may be driven by hydrau-
lic cylinders) may cause �

maxθ1 and �
maxθ2 to be functions of θ1

and θ2, respectively, and directions. In this case, joints speeds
are set to equal in both directions. This is due to the fact that for
each machine application, the hydraulic pressure and flow are
different. Therefore, the joint speeds are set to suit one typical
pressure and flow.

We find the largest αi value, αmax:

α αmax max{ }
, ,

=
=

i

i 1 2 3 [30]

If α max ≤ 1, there are no velocity limitations, and �θ, is as de-
termined by Equation [26].

Assume that the joystick is working in the cylindrical coordi-
nate system and that the θ0- motor is separately controlled.

Assumeα α1 1= >max

Choose � �
maxθ θ1 1= if �θ1 0> and � �

maxθ θ1 1= − if �θ1 0< .
Since we have lost one DOF, i.e., the system is non-redundant,
the calculation of �θ2 and �d 3 is straightforward. (rc and zc are
commanded velocities.)

�

�

�

�

�

maxr

z
J

d

c

c
c

c

⎡
⎣⎢

⎤
⎦⎥

=
±⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

θ
θ

1

2

3 [31]

giving

�

�

� �θ θ2

3 1

23 13

22 12

11 11c

c

c

d D

j j

j j

r j⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡
⎣⎢

⎤
⎦⎥

⋅ ⋅� max

max� �z jc � 21 1⋅
⎡

⎣
⎢

⎤

⎦
⎥θ [32]

with

D j j j j1 12 23 13 22= − [33]

To find out if the new values for �θ2c and d3c given by Equa-

tion [32] will exceed their maximum velocities, α2 and α3 must
be calculated again giving ′α 2 , ′α 3 , and ′α max . If ′ ≤α max 1, control

law (Eq. [32]) is used. If ′ >α max 1, two motors, θ1 and θ2 or d3

must be working at their maximum velocities and hence we
now have only one DOF, and two DOFs are necessary to follow
a commanded path in the r-z-plane.

Assume that ′ = ′α αmax 2 , i.e., � �
maxθ θ2 2> .Choose � �

maxθ θ2 2>

if �θ2 0> or � �
maxθ θ2 2= − if �θ2 0< . The commanded velocity

must be scaled by a factorβ < 1since we cannot follow the com-
manded path with two motors at their maximum speeds, due
to the fact that we have lost two DOFs:

β
θ
θ

�

�

�

�
max

m

r

z

j j j

j j j
c

c

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

±
±11 12 13

21 22 23

1

2 ax

�d 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ [34]

Equation [34] has two unknowns,β and �d 3 .

We find:

β =
−
−

j k j k

j r j zc c

23 1 13 2

23 13� � [35]

and

�
�

d
r k

j
c

3
1

13

=
−β

[36]

where:

k j j1 11 1 12 2= ± ±� �
max maxθ θ [37]

k j j2 21 1 22 2= ± ±� �
max maxθ θ [38]

If instead ′α max = ′α 3 max similar calculations will apply.

Similar calculations will apply also if we have speed limita-
tions in θ2 or d3, i.e., α2 = αmax or α3 = αmax.

Mechanical Limitations

If one of the θ1 –, θ2 – or d3 – motors reaches a mechanical
limit (actually a software limit acts before the motor has
reached a mechanical limit), we are losing our redundant DOF,
but can still follow a desired path (until a second motor reaches
a mechanical limit). To solve this, �θ is first calculated by means

of Equation [26]. If the θ1 – motor is at a mechanical limit and
Equation [26] shows that the motor should pass through the
mechanical limit, we have to perform a second calculation ex-
actly as described in the section Velocity limitations, but now

with �
maxθ1 replaced by 0. Similar calculations are made for θ2

and d3 when they reach their mechanical limits.
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In order to avoid large transients when approaching a me-
chanical limit, the maximum velocity used for calculations is
decreased for that motor.

Simulations

The maximum lifting capacity control algorithm has been
tested through simulations in a program developed especially
for this work. The simulations are conducted for a common
manipulator driven by hydraulic actuators. We have limited the
simulations to one typical task. The task describes a normal
working cycle, which occurs when a forwarder is loading and
unloading logs from the ground and off/on the carrier. The task
consists of three linear segments (ABC) in the workspace as
shown in Figure 8. The paths are as follows: A – B, B – C, and C
– A. For each path, the position and velocity of the joints are
analyzed. The coordinates for each point in the work space are:

A (1.5, 1.0)

B (5.5, 1.0)

C (5.5, –3.0)

For the simulations, we have used the following data.
Workspace of the boom Cranab 850 is seen in Figure 8. The
joint limits are:
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The maximum velocities of the joints that are used for all of
the simulations are:
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The joint speeds are set to be equal in both directions. This is
due to the fact that for each machine application the hydraulic
pressure and flow are different. Therefore, the joint speeds are
set corresponding to one typical pressure and flow.
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Figure 8. ~ Workspace and simulation task.
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Figure 9. ~ TCP moves from A to B with a speed of 1.0 m/s.
Variations in 1 and 2. d3 is not moving.
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Figure 10. ~ TCP moves from A to B with a speed of 1.0 m/s.
Variations in � , � ,θ θ1 2 3and d is not moving.



The following figures from the simulations show the time

records of θ1, θ2, d3, �θ1 , �θ2 , and �d 3 when the TCP moves from

point A to B, B to C, and C to A in the workspace at the velocity
of 1.0 m/s. The theoretically achievable positioning times at
these speeds are as follows:

A to B and B to C: 4 s

C to A: 5.66 s

If these times are not met, it is an indication that one or
more of the DOFs are saturated.

The joints are limited to maximum allowed velocities. To be
able to display d3 on the same plot as θ1 and θ2, d3 has been mul-
tiplied with a constant set to 100.

TCP moves from point A to B (Figs. 9 and 10). The algo-
rithm needs 4.0 s to go from point A to B, which is the same
time as the theoretical achievable time. The velocities of the
joints change smoothly in both cases. Only the joints �θ1 and �θ2

are used and none of the joint velocities reach their speed limits.

TCP moves from point B to C (Figs. 11 and 12). The algo-
rithm needs 4.0 s to go from point B to C. d3 reaches its maxi-
mum velocity limit.

TCP moves from point A to C (Figs. 13 and 14). The algo-
rithm needs 5.77 s to go from point A to C, which is 0.11 s lon-
ger than the theoretically achievable time. θ2 and d3 reach their
maximum velocity limits. A scaling of the commanded signal is
necessary, which increases the time consumption. During scal-
ing, the path is followed, but with a lower velocity than 1.0 m/s.

Conclusions

An algorithm for computation of the inverse kinematics of
kinematically redundant hydraulic manipulators was investi-
gated. The hydraulic manipulator used in the simulation study
consists of a 4-DOF hydraulic forestry machine manipulator.
The simulations show the necessary speed requirements for all
of the joints when performing straight paths in the manipulator
work area. The simulations also show time consumption and
also what happens when the joints reach their maximum
velocity limit.

Although this work was an attempt to propose complete al-
gorithms that could be directly applicable to a real system, it is
still only a simulation study which lacks the qualities of imple-
mentation on a real hydraulic manipulator.
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Figure 11. ~ TCP moves from B to C with a speed of 1.0 m/s.
Variations 1, 2, and d3.
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Figure 12. ~ TCP moves from B to C with a speed of 1.0 m/s.
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Figure 13. ~ TCP moves from C to A with a speed of 1.0 m/s.
Variations 1, 2, and d3.
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In future work the maximum lifting capacity method will be
tested in a forestry real-time simulator. The method will be
evaluated by forestry machine operators to determine if boom
tip control could increase productivity. Semi-automated func-
tions will also be tested.
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