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ABSTRACT

This study determined how much wood was potentially
available from short rotation hybrid poplar, and how much
was actually recovered when trees were delimbed and
debarked with chain flails and chipped. 31 groups of five
trees each were measured and then processed.

For trees larger than 50 kg total dry weight, potentially
recoverable wood averaged 75% of total weight. Over 95%
of this wood was converted into chips. Losses due to
breakage by the flails, which show up in the bark dis-
charge, amounted to 0.8 dry kg per tree and were relatively
independent of tree size. Chipper reject wood losses aver-
aged 2.3 dry kg per tree, but increased in almost direct
proportion to tree size, from 1.2 kg for 50 kg trees, to 3.2 kg
for 120 kg trees.

For trees less than 50 kg total dry weight, potentially
recoverable wood fraction was highly variable – from 50
to 75% of total weight. Because of  breakage of small
stems by the flail, wood recovery was also relatively low,
ranging from 40 to 95%. Most of the wood loss for smaller
trees showed up in the bark discharge rather than as chip-
per rejects.

For larger trees, the chipper rejects represent the big-
gest opportunity for improving the recovery of wood fiber.
Sharp chipper knives appear to be important for minimiz-

ing losses. Beyond that, it is not clear whether wood in
the chipper rejects is the result of bole damage by the flail
or chipper design characteristics.

Keywords: Short rotation forestry, wood losses,
processing.

INTRODUCTION

Chain flail delimbing and debarking has proven to be
the most popular means of separating residues from high-
quality wood chips for trees grown on short rotation (less
than 10 years) in western North America. This contrasts
with the situation in the eastern US. There, woodrooms
and satellite chipping mills are equipped with drum
debarkers for processing the small trees that contribute a
large fraction of the fiber supply. On the west coast, pulp
mills have traditionally relied on sawmill residues derived
from slabs and reject lumber, so no debarking facilities
were required at the pulp mills.

Flails can effectively handle smaller trees simultaneously,
and can reduce bark levels in chip furnish to less than the
one percent specified by many pulp mills. There have been
concerns about loss of white wood fiber caused by flails
(as well as by other means of processing small trees, nota-
bly irongate delimbing and drum debarking). The “blunt
force trauma” approach ¾ the basis for wood-bark sepa-
ration by chain flails ¾ can in theory result in wood loss
by breaking sections of white wood into chunks too small
to reach the chipper.

Numerous studies have investigated the production
rates of flails and/or the quality of the chips produced,
including bark content [1, 4, 7, 17]. Several studies have
reported on chip yields as percentages of total material in
when processing trees with flails [11, 13, 14, 15] and two
have compared yields for a number of harvesting sys-
tems, including those using flails at roadside [8, 16]. Only
one of these explicitly looked at yield as a function of tree
size, and it found that the BDU output of chips per cubic
meter of stem volume increased with tree diameter [2].
This study considered spruce and pine, with DBH appar-
ently ranging from about 5 to 20 cm. Only a few studies
have looked at how much useful wood fiber (versus bark,
branches and foliage) is lost in the flailing process. One
reported losses in the range of about 3 to 5% [10]; a sec-
ond reported losses on the order of 3 percent for sugar
maple and yellow birch averaging about 70 kg total dry
weight [12]. We are not aware of any previous published
studies of fiber loss with short-rotation hardwoods.The authors are Professor, Biological and Agricultural
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Objectives

The objectives of the study were to:

1) Determine the potential yield of clean chips from
bolewood to a 5 cm top, for a sample of hybrid poplar
stems across the range of DBH.

2) Determine the actual yield of chips when trees are proc-
essed by a chain flail delimber/debarker/ chipper (DDC),
and the losses of material that could potentially pro-
duce clean chips.

APPROACH

The trials were conducted in one of Boise Cascade’s
hybrid poplar plantations south of Boardman, Oregon,
from 14-19 October 1998. Temperatures during this period
ranged from –4 to 19 degrees C (daily averages ranged
from 6 to 12 and averaged 9), daily average wind speeds
from 1 to 4 m/s (averaging 2), and dew point temperatures
from –2 to 3 degrees C (average 2). The fall timing was
selected so that drying of materials between processing,
weighing and sample collection would be minimal. Since
the percentage yield of chips and the recovery percent-
age were expected to increase with tree size, stems of simi-
lar size were tested together. Trees less than or equal to 15
cm DBH were measured on the 14th, while larger trees were
measured on the 15th, 16th and 19th. On the 14th, trees were
processed almost immediately after felling. Because the
trials slowed the processing operation, trees tested on
later days had been on the ground for up to three days.

Trees were cut by a feller/buncher and forwarded to the
landing with a front-end loader in the normal operational
manner. At the landing, individual trees within the day’s
diameter specification were selected at random from the
turns and measured. Total length (to nearest 2.5 cm), DBH
(nearest 0.25 cm) and total green weight (nearest 0.5 kg) of
each tree were measured with a tape measure, diameter
tape and pair of electronic load scales, respectively. The
scales were supported on stands so that the branches of
the tree being weighed did not touch the ground.

Groups of five measured trees were processed by a
Peterson Pacific DDC 5000 equipped with a 600 kW en-
gine (Figure 1). Groups rather than single trees were tested
because multiple stems are normally processed together
to maximize production. (In normal operations, new groups
of stems are fed in while the previous batch is still being
processed, which spreads the flail energy over more stems.
We did not do this, so our results may be biased, but we
feel the differences are relatively small.) The DDC was
configured with the specifications normally used to ob-

tain the standard required bark content of one percent in
the chips going into the van. The three flail drums were
each equipped with 42 chains, with 8 oval links of 16 mm
material diameter and 41 mm inside pitch per chain. Flails
#1 (in front and on the bottom) and #2 (on the top) were
run at 576 rpm (85% of their maximum speeds), and flail #3
(in back and on top; the chains on this drum sweep oppo-
site the direction of tree flow) at 334 rpm (35% of its maxi-
mum). Feed speed of the chipper was 0.56 m/s. The flow
streams into and out of the DDC are shown in Figure 2.

Figure 1. Peterson Pacific DDC 5000 delimber/Debarker/
chipper.

Before a group of measured trees was processed, the
DDC was shut down, all residues were removed from within
the flail and bark discharge path, and residues on the
ground were cleared away from the bark discharge outlet
and chipper reject spout. Then two tarps were placed to
capture all materials from the discharge outlet and reject
spout. After each group of five measured trees was proc-
essed, the DDC was shut down and all residues were again
removed from within the unit and added to those on the
bark discharge tarp.

Figure 2. Material flow for the DDC.
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The material from the bark discharge was separated into
two categories:

a) potentially recoverable white wood, i.e. pieces from
sections of the tree that were at least 5 cm in diameter
under bark, and

b) all other material: bark, foliage, and all sections of the
bole and branches less than 5 cm in diameter inside
bark. For conciseness, this other material is called
“bark.”

The 5 cm diameter break was somewhat arbitrary, but
was considered reasonable because it is practically im-
possible to recover the small diameter material with any
mechanized delimbing and debarking methods.

Hand-held scrapers were used to separate intact bark
from the sections of white wood.

The chip rejects were also separated into white wood
and bark components. Each of the four residue compo-
nents (bark discharge wood, bark discharge bark, chip
reject wood, and chip reject bark) was weighed on a plat-
form scale (to the nearest 0.1 kg), and a representative
sample of each was placed in a ziploc plastic bag for bone
dry content determination. Separation, weighing and sam-
pling were completed within an hour of processing each
group of trees.

Immediately after a group of test trees was chipped, a
sample of chips was collected from the van and bagged
for bone dry content analysis. Bark contents were evalu-
ated by operational sampling of material from each van
when it arrived at the pulp mill.

In addition to typical experimental errors, there were
three possible sources of bias error associated with the
delimbing/debarking/chipping process: 1) Some limb and
top (bole<5 cm in diameter) material probably does get
chipped and therefore inflates the total recoverable wood
and recovery percentage based on the 5 cm bole specifi-
cation. 2) Some residues may ”leak” from the flail through
small gaps in housings that allow material to drop to the
ground beneath the DDC. 3) Fine materials leaving the
chip reject spout may be blown off of the collection tarp.

We assume that the first is the largest error, but estimate
it to be less than a tenth of a percent of total tree weight.

Bone dry (BD) contents were determined by oven dry-
ing of approximately 600 g (green) portions of each bagged
sample. Green and dry weights were measured to the near-
est gram.

After all the data were available, dry weights of each

component were calculated. First, green weight of chips
into the van was calculated by subtraction: green tree
weights in less residue weights out. Then the operational
bark content was used to calculate green weights of clean
chips and bark. Green weight of each component was
multiplied by the respective bone dry percentage to ob-
tain dry weights. Dry weights of the wood in the two
residue streams were added to that of clean chips to find
total potentially recoverable wood.

Appropriate statistical analyses (t-tests and regression)
were used to evaluate the data.

RESULTS

Thirty-one groups of five trees each were tested over
the span of four operating days. Data on one group was
excluded because the lower flail broke down while the
trees were being processed, resulting in abnormally low
separation of bark from wood.

Bone Dry Contents of Wood

Paired t-tests showed that the BD percentages of the
bark discharge wood, chip discharge wood and chips were
all significantly different, with the bark discharge BD% >
chip discharge BD% > chip BD%. The BD percentages for
all wood components were, in general, simultaneously high
or low (Figure 3), and in almost all cases were higher for
the discharge materials than for the chips. More of the
bark discharge material is from the outer and upper parts
of the tree, while clean chips are weighted to the inner-
most portion. Drying between felling and processing would
affect the outer and uppermost sections first. Also, the
chipper rejects tended to be oversize slivers from the pe-
riphery of the bole, which would dry faster than the inte-
rior of the tree.

If air-drying of chipped material was significant, smaller
material with higher surface-to-volume ratio would dry
faster. Since the smaller chip discharge material had lower
BD% than the chunks from the bark discharge, the results
suggest that drying during the hour between processing
and bagging of the samples must not have been a big
factor. The chips were sampled immediately after chip-
ping, so no significant drying would have taken place.

There was a lot of tree-group-to-tree-group variability
in the BD percentages for each type of material. For exam-
ple, the BD content for chips ranged from 39 to 59%, and
the calculated BD values for the whole trees ranged from
42 to 58%. The variability may have been related to mois-
ture differences  between  tree  sizes,  or  by a moisture
gradient within the stand. We doubt that it relates to dry-
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ing between felling and processing, because other work
in the same plantation indicates that BD percentages of
felled trees increase by only about a percent per day in
early fall.

Bark Contents

Estimates of bark contents in the chip vans were highly
variable.  The operational samples taken at the mill (five
samples for each of the four days) from the same vans
ranged from 1.4 to 7.1% and averaged 2.7%.  The variabil-
ity in both sets of samples probably reflects the small
sample size rather than operational differences. There were
no significant differences between the means of the op-
erational bark contents for each of the four days, so the
overall average of 2.7% was used. This value – higher
than the desired 1% - could be reduced by running the
flail at higher speed, reducing the number of trees fed per
group, or by slowing the feed rollers.

Wood Potentially Available

Figure 4 shows the total dry tree weight by diameter,
and Figure 5 shows the total wood available per tree – as
a percentage of total tree weight — over the range of total
dry tree weight. As was expected, the proportion of wood
in the trees increased with tree size at the low end of the
size range.  For the larger trees (50 kg and up), total wood
averaged 75% of total tree dry weight.

Figure 3. BD percentages for bark discharge wood and chipper reject wood versus that for the chips.
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For all the test trees, over 95% of the potentially avail-
able wood made it into the chip vans. Wood loss percent-
age was highest for the smallest trees, but roughly a con-
stant 5% for trees larger than about 50 kg (Figure 6). Pro-
portionally more wood is wasted by the flail when it treats
small trees because there is a higher percentage of smaller
and readily breakable material in the small trees. On a quali-
tative note, the limbs, tops and foliage in the bark dis-
charge stream were more “chewed up” when derived from
larger trees. This may be due to the “anvil effect” of the
larger stems.

Bark discharge loss, in absolute terms, was high for the
smallest trees, but was almost a constant for trees larger
than 35 kg (Figure 7). This seems logical since bark dis-
charge loss is mostly due to breakage of the small diam-
eter section of the bole.

Chip reject loss increased with tree size, which makes
sense as the amount of stringy material produced is prob-
ably related to the projected surface area of the tree. The
percentage loss averaged 3.5%, and was not significantly
different over the full range of tree size. The one obvi-
ously high loss value, of almost 6 kg (7% of total wood
weight), was apparently caused by dull chipper knives,
which were changed just after the observation. Dull knives
would produce more material that would not pass through
the slots in the chipper disk. In this case the knives blunted
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Figure 4. Total weight of the tree versus DBH.
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Figure 5. Total wood percentage versus tree weight.
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Figure 6. Wood loss percentage versus total tree dry weight.

Figure 7. Bark discharge and chipper reject wood loss versus tree weight.
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quickly because the previous loss values in the sequence
did not “ramp up” to the high one.

Bark Separation

A primary function of the two sorting mechanisms —
the flail and the chipper reject scheme — is to separate
bark from the chips. Figure 8 shows percentages of total
bark in the three streams. About 90% of the bark was
removed by the flail and ended up in the bark discharge
stream. About 3% was separated out with the chip rejects,
and 7% escaped into the chip van.

On average, for trees over 50 kg, over 95% of the mate-
rial in the bark discharge stream was bark, while only 20%of
the chip reject material was bark (Figure 9). The primary
purpose of the chip reject mechanism is to separate over-
size material that does not pass through the chipper disk.
We did not measure the size distribution of the chipper
rejects. However, most of the chipper reject material is
wood, and that stream appears to be the most promising
one to focus on for improving wood recovery. While sharp-
ness of chipper knives appears to have a major impact on
amount of wood in the chipper reject stream, it is not clear
whether the losses with sharp knives are due to chipper
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Figure 8. Percentage of total bark in each stream, over the range of total tree weight.

Figure 9. Bark percentage of the bark discharge stream and the chip rejects stream, dry basis, versus total tree weight.
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design and fabrication parameters such as clearances be-
tween the chipper disk and housing, or due to bole dam-
age caused by the flail.

A caution regarding the potential of recovering wood
from the chipper rejects: the 20% bark content in the chip
rejects was fairly close to the 25% value for the total tree.
Therefore, cleaning up the chip rejects to an acceptable
bark content may be no easier than cleaning whole tree
chips, a task that has proven difficult.

CONCLUSIONS

For trees larger than 50 kg dry weight, potentially avail-
able wood constituted 75% of the total tree weight. On
average, the chain flail delimber-debarker-chipper deliv-
ered over 95% of the potentially available wood into the
chip van. Recovery was substantially less for trees smaller
than 50 kg dry weight, because loss due to top breakage
represented a large fraction of wood in the smaller trees.

Bone dry contents for groups of five trees varied sub-
stantially, from 42% to 58%. This may be related to tree
size or a moisture gradient within the stand. The BD con-
tents for the bark discharge wood and chipper reject wood
were significantly and consistently higher than those for
chips.

Of the total bark — defined as all material other than
potentially available wood — about 90% was removed by
the flail and went into the bark discharge stream. About
3% showed up in the chipper rejects, and the rest made it
into the van

Three-fourths of the wood loss showed up in the chip-
per rejects, of which 80% were wood (versus 5% wood in
the bark discharge). The chipper rejects may be the best
opportunity for improving recovery. Keeping chipper
knives sharp appears to be very important. Beyond that, it
is not clear what contributes to the chipper reject loss:
bole damage caused by the flail, or chipper design param-
eters. The effect of flail damage could be tested, e.g., by
chipping flailed and unflailed green peeler cores.

This study was conducted during the growing season.
Wood-bark adhesion increases during the winter [3, 6]
and with drying [5, 9], so the results would be somewhat
different under different conditions. Boise Cascade has
found that fresh poplar foliage causes problems during
the growing season: it tends to ball up and clog the bark
discharge on the delimber/debarker/chipper. Their opera-
tors prefer to process dormant trees, or growing trees that
have partially dried.
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APPENDIX I.  Statistics for all sampled trees.

Parameter Mean Std. Dev. Range Count

Components, dry kg/tree
Chip wood 48.44 23.89 11.62-79.01 30
 Chip bark   1.33   0.12 0.32-2.17 30
Bark discharge wood   1.35   1.60 0.06-7.12 30
Bark discharge bark 16.13   6.38 7.57-32.72 30
Chipper reject wood   1.78   1.06 0.33-5.72 30
 Chipper reject bark   0.43   0.25 0.08-1.03 30
 Total wood 51.58 23.95 15.25-83.24 30
Total bark 17.89   7.05 8.33-35.28 30
Total tree 69.47 30.06 28.38-117.56 30
Bone dry percentages
 Chip 47.9 4.9 38.8-58.8 31
Bark discharge wood 55.3 6.3 41.2-65.3 30
Bark discharge bark 52.9 3.9 46.0-60.3 30
Chipper reject wood 52.7 4.3 43.3-60.5 30
Chipper reject bark 51.2 4.2 42.7-59.2 30
 Total tree 49.5 4.1 42.4-58.3 30
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APPENDIX II. Statistics for trees larger than  50 kg total dry weight.

   Parameter Mean Std. Dev. Range Count

   Components, dry kg/tree
   Chip wood 62.66 14.50 35.92-79.01 20
   Chip bark   1.72   0.40 0.98-2.17 20
   Bark discharge wood   0.84   0.51 0.06-1.89 20
   Bark discharge bark 19.07   5.74 10.42-32.72 20
   Chipper reject wood   2.28   0.96 1.37-5.72 20
   Chipper reject bark   0.56   0.19 0.29-1.03 20
   Total wood 65.78 14.96 39.12-83.24 20
   Total bark 21.35   6.04 12.31-35.28 20
   Total tree 87.13 19.63 57.11-117.56 20
   Bone dry percentages
   Chip 49.9 4.6 38.8-58.8 20
   Bark discharge wood 57.3 4.8 47.8-64.6 20
   Bark discharge bark 53.9 3.3 48.2-60.3 20
   Chipper reject wood 53.6 3.9 47.5-60.5 20
   Chipper reject bark 52.8 3.6 48.3-59.2 20
   Total tree 50.9 3.9 42.4-58.3 20

APPENDIX III. Wood loss relationships for trees larger than 50 kg total dry weight.

A. Bark Discharge Wood, dry kg/tree (not significantly affected by tree size)

B. Chip Reject Wood, dry kg/tree

= -0.16 + 0.0280*TotalTreeDryWeight, kg r2 = 0.33 p = 0.008

C. Total Wood Loss, dry kg/tree

=  0.69 + 0.0279*TotalTreeDryWeight, kg r2 = 0.28 p = 0.017

D. Total Wood Loss, % of total dry wood (not significantly affected by tree size)

mean = 4.86, std.dev. = 1.49, n = 20, 95% confidence interval = 4.2 to 5.6


