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ABSTRACT 

Taper equations make it possible to solve many 
different problems concerning tree stem mensura
tion, since they can be used to generate a three-
dimensional stem representation (as a body of 
revolution). Estimating the centre-of-gravity loca
tion along the stem length by taper equations proves 
a su i table approach for p red ic t ing such a 
biomechanical property, at least as regards tree stems 
with monopodial branching (e.g., stems of many 
coniferous species). A validation is performed on 
Monterey pine trees. Models to expand the same 
approach to predicting stem mass moments of iner
tia are developed. 
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INTRODUCTION 

In the last decade, many research works on 
forest tree mensuration have been developed to 
analytically describe stem form by taper equations. 
Taper equations make it possible to solve many 
different problems concerning stem mensuration, 
since they can be used to generate a three-dimen
sional stem representation (as a body of revolution). 

An important, often undervalued applicability 
of taper equations is the estimation of static properties, 
whose knowledge is especially useful in engineering 
analysis for design of machines that handle and /o r 
process tree stems, and for the biomechanical study 
of stem stability. 

The present work was planned to develop a 
model to predict the centre-of-gravity location of 
tree stems. In order to make the model practical as 
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regards the parameters to be input, the study was 
oriented to an approach which, being based on a 
simplified general taper equation, requires only eas
ily available stem data. 

A SIMPLIFIED STEM TAPER EQUATION 

In forest mensuration, tree stems, chiefly those 
characterized by monopodial branching (e.g., trees 
of many coniferous species), can be approximated to 
bodies of revolution with straight longitudinal axis 
and circular transversal sections, generated by the 
following taper equation: 

d = D 
H-h 

VH-I.3J 
(1) 

where: 
d 
H 
D 

b = 

stem diameter at h height 
total stem height 
stem diameter at breast height (i.e., stem 
diameter at 1.3 m-height 
equation's parameter 

This equation does not prove fully correct from 
a theoretical point of view, because tree stems are 
usually regarded as bodies of form sectionable into 
truncated paraboloids of revolution, each character
ized by a different exponent. In practice, however, 
equations as above (1), with a constant exponent for 
the whose stem profile, have found a fairly good 
applicability in forest mensuration. Despite their 
simple structure, they can provide rather acceptable 
approximations in stem taper estimations, at least in 
relation to tree species with monopodial branching 
[2]. 

Corona and Ferrara [1] have shown that the 
applicative profit of using equation (1) is that the b 
exponent can be directly calculated from already 
existing total stem volume equations or tables (even 
if elaborated by graphical smoothing). In fact, if, 
besides D and H, the stem volume (V) is known, the 
value of b can be easily computed by the following 
iterative algorithm. By rearranging the stem volume 
equation obtainable by integration of the equation 
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it can be seen that: 

h = \ 
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-0.5 

(2) 

Thus: 

1) b can be calculated by introducing an approxi
mate value of the exponent V (a 0.7 starting 
value is generally recommended) into equation 
(2); 

2) if b coincides with b', the calculation is ended; 
otherwise, the value of b has to be reintroduced 
as b' into the equation (2) to estimate a new value 
of b and so forth, until the value of V and b 
coincide (an approximation not exceeding the 
sixth decimal figure requires less than 5-7 itera
tions). 

THE CENTRE-OF-GRAVITY LOCATION 

A prediction model 

Considering a tree stem as a body of revolution 
generated by equation (1) and assuming the wood 
density (u) constant throughout the stem, it can be 
seen that the centre of gravity is located on the 
longitudinal axis (the /i-axis in Figure 1), which is 
symmetric in respect to the elements of the body. The 
location of the centre of gravity on axis h (G^) can be 
estimated as: 

Gh=-
i>(! d2hôh 

!> 
(n 

u; 

(3) 
d28h 

Substituting the value of d with that of equation 
(1), the following equation is obtained: 

j " 
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which brings to 
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Gh = 
H 

2b+ 2 
(4) 

With reference to the bodies of revolution 
adopted as dendrometrical prototypes, it can be 
noted that the location of the centre of gravity for 
stems geometrically similar to apollonic paraboloids 
(b = 0.5) is equal to H / 3 and that it is equal to H / 4 
for stems geometrically similar to cones (b = 1). 
However, the whole form of the tree stem rarely has 
an exact representation by the apollonic paraboloid 
or by the cone, since, in reality, the most prevalent 
whole stem forms are intermediate between such 
solids [3]. 

The usefulness of the simple equation (4) that 
allows one to estimate the centre-of-gravity location 
along the stem by simply knowing H, D and V is 
evident (the two latter values, together with H, are 

Figure 1. Tree stem seen as a body of revolution with straight longitudinal axis and circular transversal 
sections. 
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Table 1. Sampled stems' main characteristics. 

tree 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

dbh 

(m) 

0.22 
0.12 
0.15 
0.36 
0.24 
0.20 
0.29 
0.18 
0.26 
0.25 
0.20 
0.26 
0.18 
0.14 

height 

(m) 

14.80 
8.60 

12.20 
10.88 
18.20 
17.00 
17.76 
15.10 
18.26 
20.63 
18.55 
20.36 
17.63 
13.50 

volume 

(m3) 

0.261 
0.050 
0.123 
1.022 
0.399 
0.287 
0.554 
0.171 
0.452 
0.470 
0.265 
0.515 
0.220 
0.102 

centre-of -gravity 
location 

observed 
(m) 

4.46 
2.54 
4.00 
6.45 
5.53 
5.62 
5.23 
4.66 
5.44 
6.24 
5.81 
6.50 
5.46 
4.15 

predicted 

(m) 

4.28 
2.50 
4.13 
6.42 
5.38 
5.41 
5.30 
4.43 
5.24 
6.16 
5.62 
6.20 
5.19 
4.30 

Table 2. Test statistics of G/; estimation by equation 
(4) (B = bias; S = standard deviation of the residuals; 
PVE = percent of variation explained). 

B = I(y,-y,) = 10.9 cm 
N 

I ( y , - y i ) 
2 l ( y i - y i ) 2 

x0.5 

PVE 100 

JV-1 

l ( y i - y i ) 2 

= 14.6 cm 

= 97.1% 

used to compute b, as previously shown). 

Validating the model 

A validation to evaluate the soundness of the 
proposed model was carried out on 14 stems oiPinus 
radiata D.Don. The stems were sampled in a 20-year-
old plantation (stocking: 540 stems/ha; standing 
volume: 240 m 3 /ha) near Grosseto, in Central Italy 
(average rainfall: 673 mm/year; mean annual tem
perature: 15.0°C). The following parameters were 
measured on each sampled stem (Table 1): dbh and 
height; volume, by using the Heyer's method; weight 
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and balance point, by horizontally suspending each 
stem. 

The relative location of the centre-of-gravity 
location has a positive correlation with stem slender
ness (Figure 2): dominant trees, characterized by 
low slenderness, are more coniform, so that present 
G/, values are lower than dominated trees, which, on 
the contrary, have more paraboloidical stems char
acterized by greater slenderness. 

The measured location of the centre-of-gravity 
of each stem was compared with that predicted by 
equation (4), after having computed b by algorithm 
(2). In most cases, the residuals between actual and 

predicted values are positive, indicating 
that equation (4) tends to estimate G/, in a 
slightly lower location than the actual one. 
Actually, equation (1), by simplifying the 
s tem profile, implici t ly t ends to 
overconsider the middle part and, on the 
other hand, to underconsider the bottom 
and the top parts of the stem (2). However, 
from a practical point of view, the predic
tion by equation (4) is satisfactory: the 
residuals between actual and predicted 
values are never greater than 5% (Table 1) 
and the percent of variation explained is 
high (Table 2). 

Figure 2. Relative centre-of-gravity location as a function of 
slenderness ratio. 

Discussion 

As already mentioned, the usefulness 
of equation (4) is that it allows estimation of 
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the centre-of-gravity by easily measurable stem pa
rameters (D, H and V). The parameters to be meas
ured become only D and H, if a proper volume 
equation or table is available; for instance, with 
reference to the Monterey pine plantation in which 
model (4) validation was carried out, it can be stressed 
that the G/, values estimated by the b values com
puted using the local volume equation 

V = 0.018550 + 0.3469550 H 
(std. err. est. = 0.029 m 3 

prove quite satisfactory, being the bias equal to 12.1 
cm and the percent of variation explained equal to 
92.5%, in respect to the observed G/, values. 

/fc=/if-V-(H-l.3)^ 
\32J 

( rj4fc+l "\ 

4(b + l) 
(6) 

Hence, the mass moment of inertia about the 
longitudinal axis of a stem can be calculated by 
simply knowing H, D and V. For instance: 

considering stem no. 3 of 
H = 12.20 m; V = 0.123 m3), 
that, with the stem mean 
827 kg/m 3 , Ih is equal to 0 
considering stem no. 4 of 
H = 20.88 m;V= 1.022 m3), 
that, with the stem mean 
814 kg/m 3 , Iff is equal to 9 

Table 1 (D = 0.15 m; 
b is equal to 0.477, so 
wood density about 
.214 kgm 2 ; 
Table 1 (D = 0.36 m; 
b is equal to 0.627, so 
wood density about 
.387 kgm 2 . 

The model could be improved by taking into 
account wood density variations throughout the 
stem, but, even if such variations may be significant, 
a general model able to quantitatively explain them, 
so that it could be incorporated into (3), has not yet 
been stated [5]. 

Adopting the same approach, the mass moment 
of inertia about an axis perpendicular to fa-axis and 
through the butt of the stem (the x-axis in Figure 1) 
(Ix) (remember that Ix = Iy, being the stem seen as a 
body with circular transversal sections) can be 
assessed as: 

PREDICTION MODELS OF STEM MASS 
MOMENTS OF INERTIA 

The results obtained in predicting the centre-of-
gravity location by equation (4) suggest an expan
sion of the proposed approach to predicting stem 
mass moments of inertia. The present study was not 
designed to experimentally investigate such a sub
ject; however, it seems interesting to show the possi
ble development of prediction models from a theo
retical point of view. 

Considering a tree stem as a body of revolution 
generated by equation (1) and assuming the wood 
density constant throughout the stem (u), its mass 
moment of inertia (fy) about the longitudinal axis 
(the fa-axis in Figure 1) can be assessed as: 

Jo ^9 , 
(5) 

Substituting the value of d with that of equation 
(1), the following equation is obtained: 

h=P 
L32; - H H - 1 . 3 J 

which brings to 

J" 1 6 4 ; 
'K^ 

fid fa 
v + y 

Ôh (7) 

Substituting the value of d with that of equation 
(1), the following equation is obtained: 
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Hence, the mass moment of inertia about the x-
axis can be calculated by simply knowing H, D and 
V. For instance: 

• considering the stem no. 3 of Table 1 (D = 0.15m; 
H = 12.20 m; V = 0.123 m3), b is equal to 0.477, so 
that, with the stem mean wood density about 
827 kg /m 3 , I x i s equal to 2590 kgm 2 ; 

• considering the stem no. 4 of Table 1 (D = 0.36 m; 
H = 20.88 m; V = 1.022 m3), b is equal to 0.627, so 
that, with the stem mean wood density about 
814 kg /m 3 , Ix is equal to 52411 kg m2. 

It also seems interesting to show the model of 
estimating the mass moment of inertia (lx^) about an 
axis (xh) perpendicular to /i-axis and through a stem 
section at height h from the butt. It is known that, 
using M for stem mass, the following relation exists 
between Ixf, and Ix: 

hu=h-MGh 
M(Gh-hf 

Hence: 

h„=V 
' ^ 

D2H 
H \2b 

D ' 

H-l.3) 

16[4(fo+l)] 

H 
x2b 

H 

Hz 

(b + l)-[2(b + 3)]-
2(b + l) 

2(b + l)J 

h-H 

(9) 

b + 

For instance, considering the stem no. 4 of Table 
1 (b = 0.627; \i = 814 kg/m 3 ) , Ixh is equal to: 

• 23014 kgm 2 , through a stem section at height 
i = 4 m ; 

• 18155 kgm 2 , through a stem section at height 
h = Gh; 

• 129782 kgm 2 , through a stem section at height 
fr = 18m. 

CONCLUSIONS 

A simple model has been presented to predict 
the centre-of-gravity location of tree stems with 
monopodial branching. Models to evaluate stem 
mass moments of inertia have also been developed 
by the same approach as the centre-of-gravity loca
tion model. 

Despite the assumptions in approximating the 
stem to a body of revolution generated from a unique 
taper curve for the whole profile, and taking no 
account of wood density variations throughout the 
stem, the validation of the centre-of-gravity location 
model has given satisfactory results. Actually, calcu
lating the values of the centre-of-gravity location 
along the stem length by a taper equation proves a 
sui table me thod for p red ic t ing such s tem 
biomechanical properties. 

The proposed approach can be generalized: in 
particular, equations (3), (5) and (7) are usable also 
with more complex and sophisticated taper equa
tions than those used in the present study. Moreo
ver, they can be used to estimate the static properties 
of single parts of tree stems (i.e., logs or assortments) 
by varying integration limits. 

The approach is not original. Forslund [3] exam
ined the relationship between stem profile and G/j, 
elaborating a procedure to estimate numeric coeffi
cients of a taper equation by measuring that param
eter: the procedure was interesting from a theoreti
cal point of view, but had poor practicability, since 
the mensuration of G/, is not currently feasible. A 
different perspective was examined by Burrows and 
Fridley [1], who analytically determined G/,, \ and 
Ix, using a three-dimensional stem representation 
generated by a polynomial taper equation. Subse
quent research proved that simple taper equations 
(even if with only one numeric coefficient, as the one 
used in the present study) are also able to generate 
stem representations to profitably estimate stem 
static properties [4]. 

Obviously, if a taper equation is not available for 
the trees of interest, taper data (stem diameters at 
various heights) are needed to estimate the consid
ered biomechanical properties. The models presented 
in this paper are able to overcome this problem being 
based on easily available stem data (D, H, V). Their 
usefulness has to be regarded mainly in respect to 
the limited and often not available information about 
the forces to handle stems (or logs): they can contrib
ute to the biomechanical study of stem responses to 
natural stresses (e.g., by wind or /and wet snow) or 
help to prevent costly failures or unnecessary 
overdesign of prototype forest equipment [4]. 
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